
11/12/2010

1

The Abstract Definitive Machine

(See Lectures 5 and 7 in the EM for Concurrency series)

Many perspectives ….

• definitive parallel programming

• animation of LSD accounts

• conceptual framework for EM in EDEN

• machine-computing-oriented viewpoint

• human-computing-oriented viewpoint

Many variants ….

• first design / implementation Slade 1990

• various translators from ADM to EDEN

– Y P Yung, P-H Sun

• underlying concept obscured, recovered

by Ward: The Authentic ADM (2004)

Basic architecture of the ADM

The Abstract Definitive Machine: entity = definitions + actions
Linking LSD agents to ADM entities …

LSD agents’
state and derivate

observables

LSD agents’
protocols

11/12/2010

2

Core features of the ADM 1

• entity = set of definitions + set of actions

• have instances of abstract entities

• action is guarded sequence of form:

(redefinition + entity invocation/deletion)*

• in some contexts actions have been

interpreted as atomic; better conceived

as interleaving asynchronously

Core features of the ADM 2

• model of “true” concurrent interaction

• definitions can be performed in parallel

• scope for syntactic checks on interference

• changes of state admit free interpretation:

– “computational step” in machine

– redesign / reprogramming step

– manual, automated and semi-automated

Some illustrative examples A systolic array simulation

Parallel programming

Model of systolic array
for sparse matrix

multiplication …

Input matrices A and B
at top-left and top-right

Output matrix C = A . B

at top centre

EM paper 010: Parallel computation in definitive models

The Railway Station

Animation

11/12/2010

3

LSD account of the stationmaster
entity sm() {

definition

whistle = false,

whistled = false,

sm_flag = false,

sm_raised_flag = false,

can_move = false,

ready is !door_open{1} && !door_open{2},

tarrive,

Limit = 20,

timeout is (Time - tarrive) > Limit,

level = 0,

init = true

action

……

}

entity sm() {

definition

whistle = false, whistled = false, sm_flag = false,

sm_raised_flag = false, can_move = false,

ready is !door_open{1} && !door_open{2}, tarrive,

Limit = 20, timeout is (Time - tarrive) > Limit,

level = 0, init = true

action

init → tarrive = Time; init = false,

door_open{1} && !around{1}

print("Station master shuts door 1")

→ door_open{1} = false,

……

}

entity sm() {

definition

….

action

init → tarrive = Time; init = false,

door_open{1} && !around{1} print("Station master shuts door 1")

→ door_open{1} = false,

door_open{2} && !around{2} print("Station master shuts door 2")

→ door_open{2} = false,

ready && timeout && !whistled print("Station master whistles to call guard")

→ whistle = true; whistled = true; guard(); level = 1,

level == 1 print("Station master stops whistling") → whistle = false; level = 0,

ready && whistled && !sm_raised_flag print("Station master raises his flag")

→ sm_flag = true; sm_raised_flag = true,

sm_flag && guard_raised_flag print("Station master lowers his flag")

→ sm_flag = false,

ready && guard_raised_flag && driver_ready && engaged && !can_move

print("Train can move now") → can_move = true

}

Human and Machine

Perspectives on the ADM

The ADM from a machine perspective (Rungrattanaubol, 2002)

11/12/2010

4

Machine perspective on ADM

Machine-like execution:

• true guard as obligation to perform action

• action performed automatically / atomically

Examples

• systolic array

• railway station animation

• telephone animation

About the examples

Systolic array �

• highly structured, synchronised, clocked

Railway station animation �

• too regimented, clock cycle metaphor
“init � tarrive = |Time|; init = false” is atomic

Telephone animation ?

• embellish actions with probabilities to reflect
delay, timeliness of response; introduces
artificial observables / actions

The ADM from the human perspective (Rungrattanaubol, 2002)

Human perspective on ADM

“Free agent” style execution (cf. AADM):

• true guard as entitlement to perform action

• action not atomic – intermediate states

• re-evaluation of guards during execution

Further from implementation …

execution / interpretation needs human input

… modeller takes a role in directing / acting

necessary to capture semantics of EDEN use

JUGS
in the

ADM

The Authentic Abstract

Definitive Machine

Ashley Ward

(after Beynon and Slade)

11/12/2010

5

Ambiguity in ADM writings
The description of the ADM in Slade refers to execution
in which sequences of commands in ADM actions are

executed atomically

This originates from the need to cope with instantiating
observables and initialising entities, or resetting

observables and deleting entities, in a single step

In the application of the ADM in ‘animating LSD’, it is

appropriate to think of a guard as a cue that enables an
entity to initiate a sequence of actions to be performed
asynchronously: this is the execution model for what

Ward terms the authentic ADM …

Execution model for the

Authentic ADM

In each step:
(The state is now S)

For each action a:
If the action a is currently executing and there is no

command from a already in the runset (pending execution)
Add the next command in action a to the runset

Else:

Evaluate guard of a in state S
If guard of a is true:

Add the first command in action a to the runset
Check the runset for an invalid transition
If the transition is invalid,

Stop and ask the modeller to resolve the conflict before
proceeding

Select a subset of the commands from the runset and execute
these, conceptually in parallel, making a transition to the state S'
(The state is now S')

In each step:
1. (The state is now S)

2. For each action a:
3. If the action a is currently executing and there is no

command from a already in the runset (pending execution)
4. Add the next command in action a to the runset

5. Else:

6. Evaluate guard of a in state S
7. If guard of a is true:

8. Add the first command in action a to the runset
9. Check the runset for an invalid transition
10. If the transition is invalid,

11. Stop and ask the modeller to resolve the conflict before
proceeding

12. Select a subset of the commands from the runset and execute
these, conceptually in parallel, making a transition to the state S'
13. (The state is now S')

Notes on selection of actions
At step 12, selection of the subset of commands can be

determined non-deterministically by the algorithm or
determined by the modeller in the ‘super-agent’ role

Due to the guarantee given by the invalid transition check,
there is no interference between actions in the runset

… in an implementation

Commands can therefore be performed sequentially or in
parallel

If commands are performed sequentially, the state will transit
intermediate states before it reaches S'. Evaluations can be
performed in these intermediate states or in S without
influencing the result as there is no interference between
commands.

