
1/20/2010

1

Dependency and its role in

modern programming languages

Antony Harfield

8th January 2010

Background

• Warwick, UK: Empirical Modelling Research
Group

• Joensuu, Finland: EdTech Research Group

Current work

• France: international project to develop fusion

as a renewable energy source

A bit of history

• A long time ago, before Java and .NET

existed…

• People have been using dependency in

software

• Computer scientists at Warwick developed

principles for using dependency and tools for

building software that use dependency

What is dependency?

• Values (e.g. a total) dependent on other values

Item Quantity Amount

Mango 5 60.00฿

Coconut 1 20.00฿

Durian 3 75.00฿

Orange 8 24.00฿

Total 179.00฿

What is dependency?

• Another example of values dependent on

other values from relational databases

Customer
CustomerId,

Name

Order
OrderId,

CustomerId,

Amount

ValuableCustomers
Name, TotalSpent

CREATE VIEW ValuableCustomers AS

SELECT Name, Sum(Amount) TotalSpent

FROM Customer INNER JOIN Order ON

Customer.CustomerId = Order.CustomerId

WHERE Sum(Amount) > 1000

GROUP BY Name

1/20/2010

2

What is dependency?

• Properties (e.g. cell colour) dependent on values

Item Quantity Amount

Mango 5 60.00฿

Coconut 1 20.00฿

Durian 3 75.00฿

Orange 8 24.00฿

Total 179.00฿

What is dependency?

• Properties dependent on other properties?

– A bit more difficult

– Requires a notion of dependency at a low level in

the application/programming language

• But, it gives the freedom to create

dependencies between any objects,

properties, and variables

Key ingredients of dependency

1. Observable (Variable, property or object)

2. Definition (Formula or function)

For example, in a spreadsheet:

– The observable is the cell or the value displayed

in a cell

– The definition is the formula of the cell (e.g. the

sum of a column of cells)

Empirical Modelling Tools

• EDEN – a general purpose modelling environment in
which any variable/property can depend on other
variables/properties

• Web EDEN – a web-based version of EDEN currently in
development

• DOSTE – another general purpose dependency
environment

• ADM – a tool for defining agents with dependency

• JAM – a tool for adding dependency to Java

Dependency is the key principle behind all these tools!

EDEN example

myexample = window {

title = "Listbox Example: " // mylistbox_selecteditems[1];

content = [mylistbox]

};

mylistbox = listbox {

selectmode = "browse";

items = ["blue", "red", "green", "yellow"];

selecteditems = ["red"];

background = mylistbox_selecteditems[1];

font = "Verdana 32";

width = myexample_width;

height = mylistbox_items#

};

Spot the

dependencies

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

The rise of WPF

• Windows Presentation Foundation is

Microsoft’s latest API for creating Windows

applications

• Much richer interfaces than existing Windows

Forms UIs

• Because it uses DirectX

• WPF 3.5 (in .NET Framework 3.5) is considered

mature – reasonable VisualStudio integration

1/20/2010

3

What can you do with WPF?

• Groovy user interfaces!

– The usual GUI components

– Rich drawing model for 2D and 3D

– Animation, audio, video

– Styles, templating, layouts

• In a variety of formats:

– Traditional windows application

– Packaged web app

– Silverlight RIAs (Rich Internet Applications)

How do you write WPF applications?

• User interfaces can be written in XML, using a

language called XAML

• Code behind in any of the CLR languages (C#,

VB.NET, etc)

• Or you could write it all in code – but XAML is

much cleaner and allows you to separate your

presentation logic from your business logic

WPF Example

<Window x:Class="CoolShapedWindow.Mickey"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title=“Mickey" AllowsTransparency="True" WindowStyle="None"

Background="Transparent">

<Grid>

<Image Source=“famousmouse.png"

MouseLeftButtonDown="Image_MouseLeftButtonDown"

MouseRightButtonDown="Image_MouseRightButtonDown"/>

</Grid>

</Window>

CoolShapedWindow.exe

EM technologies and WPF

• What is the connection between WPF and

Empirical Modelling?

• Dependency!

• Or more precisely, Microsoft’s implementation

of .NET dependency properties

Normal properties

• In OOP, classes usually have fields and methods

• But in .NET classes also have ‘properties’ that

wrap getters and setters:

private String name;

public String Name {

get { return name; }

set { name = Value; }

}

Dependency properties

• Look like normal properties, but…

• Support change notification -> dependency

– Bind one property to another

– Triggered actions

• Default value inheritance

• Efficient storage

1/20/2010

4

Dependency properties

• Most properties in WPF are dependency

properties

• Therefore you can create dependencies

between almost every aspect of your GUI

• You can create dependency properties in your

custom classes so that you can make your GUI

‘depend’ upon your business objects

Binding

• A ‘binding’ is what creates the actual

dependency

• For example:

<Slider Name=“SourceSlider" Value="20" />

<TextBlock Name=“TargetTextBlock“

Text=“Sawasdee Naresuan!“

FontSize="{Binding ElementName=SourceSlider, Path=Value}"/>

GettingStartedWithDataBinding.exe

Binding

• Equivalent binding in code:

Binding binding = new Binding();

binding.Source = SourceSlider;

binding.Path = new PropertyPath(“Value”);

binding.Mode = BindingMode.OneWay;

TargetTextBlock.SetBinding(FontSize, binding);

• Binding is nothing new: it has been used to bind
domain objects to user interfaces for some time

• But (I think) WPF has brought out (or will bring out)
the power of binding…

Examples

• Simple dependency

• Two way dependency

• Triggers

• Animation

Examples

<Window …

Title="{Binding ElementName=MyTextBox, Path=Text}">

<StackPanel>

<TextBox Name="MyTextBox" />

<TextBlock Name="MyTextBlock" Text="{Binding

ElementName=MyTextBox, Path=Text}" />

…

GettingStartedWithDataBinding.exe

Examples (two-way binding)

<Slider Name="FontSizeSlider" Minimum="10" Maximum="50"

Value="20" Margin="3" />

<TextBlock Name="MyTextBlock" Text="Hello World!"

FontSize="{Binding ElementName=FontSizeSlider, Path=Value,

Mode=TwoWay}" Margin="3" />

<StackPanel Orientation="Horizontal">

<Button Click="Click_SetSliderValue" Margin="5">Set Slider

Value</Button>

<Button Click="Click_SetTextBlockFontSize" Margin="5">Set

TextBlock FontSize</Button>

</StackPanel>

GettingStartedWithDataBinding.exe

1/20/2010

5

Examples (triggers)

<Style.Triggers>

<Trigger Property="Control.IsMouseOver" Value="True">

<Setter Property="Control.Foreground" Value="White" />

<Setter Property="Control.Background" Value="Red" />

</Trigger>

</Style.Triggers>

UsingTriggers.exe

Examples (animation)

<Button Name="MyButton" HorizontalAlignment="Center" Width="100" Height="30">

<Button.Triggers>

<EventTrigger RoutedEvent="Mouse.MouseEnter">

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty="Width" To="120" Duration="0:0:1" />

<DoubleAnimation Storyboard.TargetProperty="Height" To="50" Duration="0:0:1" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

<EventTrigger RoutedEvent="Mouse.MouseLeave">

<BeginStoryboard>

<Storyboard>

<DoubleAnimation Storyboard.TargetProperty="Width" To="100" Duration="0:0:1" />

<DoubleAnimation Storyboard.TargetProperty="Height" To="30" Duration="0:0:1" />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</Button.Triggers>

Button 1

</Button>

<ProgressBar Minimum="100" Maximum="120" Value="{Binding ElementName=MyButton, Path=Width}" Height="20"/>

UsingAnimations.exe

EM / WPF comparisons

1. Types of dependency

– WPF has 4 types of binding:

• One time

• One way

• Two way

• One way to source – nasty

– EM has one type of dependency

• E.g. a = b + c

EM / WPF comparisons

2. Complexity of definitions

– WPF makes it easier to do one-to-one bindings,

but ‘multi-bindings’ require a bit code

• If you want to do a = f(x,y,z) then you need to write an

IMultiValueConverter class for your function f

– EM languages allow functional definitions for

dependencies

• Simply create a definition a = f(x,y,z)

EM / WPF comparisons

3. Triggered actions

– Enable you to write (ADM-like) definitions such as

‘when this condition occurs, make this state

change’

– WPF has good support (see button hover

example)

– Triggers are fundamental concepts in EM

EM / WPF comparisons

4. User interface layout

– WPF is really the first technology that encourages

laying out your user interface with dependency

• Make the size and position of your components

dependent on each other

– EM has been doing this for a while, but the

graphics were quite primitive

• Visual effects in WPF are impressive (full power of

DirectX)

1/20/2010

6

EM / WPF comparisons

5. Transformations

– WPF has some support

• E.g. ‘VisualBrush’ that uses dependency/binding to

paint components that are transformed

– In DoNaLD (Definitive Notation for Line Drawing),

there are transformations that fully use the

power of dependency

EM / WPF comparisons

6. Animations

– Very similar ways of doing animation

• Create an iterator

• Make positions, sizes, colours, styles dependent on the

iterator (or some other component that is dependent

on the iterator)

EM / WPF comparisons

7. Interactivity

– The biggest area of difference!

– WPF is compiled from XAML/C#

• The dependencies are fixed

– EM technologies are interactive environments

• Dependencies can be changed on-the-fly

EM / WPF summary

• WPF has excellent graphical capabilities

• WPF’s dependency properties allow
developers to build software artefacts that are
more concise

• BUT…

• The complexity of the definitions and types of
dependency could be much better

• It is never going to be an interactive
environment

Flex has dependency too

<?xml version="1.0" encoding="utf-8"?>

<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"

layout="vertical">

<mx:TextInput id="input" />

<mx:Label text="{input.text}" />

</mx:Application>

Binding1.swf

But they are not called ‘dependency properties’…

Animation through dependency (Flex)

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
creationComplete="init()" layout=“absolute”>

<mx:Script>

[Bindable]

public var counter:int = 0;

public function init() {

setInterval(function(){ counter++; }, 1000);

}

</mx:Script>

<mx:Text text="Hello" x="{counter}" scaleY="{counter/10}“

color="{counter*1024}" />

</mx:Application>

FlexDependencyAnimation.swf

1/20/2010

7

Running the examples

• To run the WPF examples you will need Visual

Studio 2008

– Create new project -> WPF Application

• To run the Flex examples you can download a

trial version of Flex Builder from Adobe

More information

• Empirical Modelling:

www.warwick.ac.uk/go/em

• WPF: pick up a book, or Google for “wpf

dependency properties”

• Flex: go to the Adobe Developer Connection

(www.adobe.com/devnet/flex) or Flex After

Dark (www.flexafterdark.com)

Thank you for your patience

Antony Harfield

ant@dcs.warwick.ac.uk

Questions?

