Systems development and EM

EM for Systems development

‘Concurrent system in the mind of the external observer’
- identifying an objective perspective
- circumscribing agency

- Identifying reliable generic patterns of interaction

Concurrent engineering design task ...

Concurrent Engineering view

Have a design team. Need to

- represent many alternative views

- distinguish and synthesis knowledge of many
different kinds

- deal with concurrency, inconsistency and conflict

- record human decision-making and negotiation

- express the concept of a consensus view

Abstract Definitive Machine

.. in principle supplies a very general framework within
which to address all these issues

- represent state at all levels of abstraction using

definitive scripts

represent agent interaction at all ievels of abstraction

as redefinition with scripts

- combine manual and automatic redefinition reflecting
interaction by manager, designer, engineer, user

Routine vs creative design

Building a system that can fulfil a specific requirement
from machine-like components of proven reliability
with identified function and range of application

E.g. sequential programming, object-based design,
catalogue-based design

Building an environment within which systems and
requirement can be identified: reconciling what we
believe to be true with what we observe to be true

EM as pre-system development

Making the transition from
uncircumsribed ill-conditioned, loosely regulated
interactions

to
circumscribed precisely prescribed well-regulated
reliable behaviours

See this in railway history ...

Issues for development in EM

- negotiation and elaboration
- learning as involved in requirements and design
“growing software”

- development as situated probiem-solving —
amethodical software development

- traditional systems/programs derived by
circumscription and optimisation
how far can object / agent abstractions help?

Issues for development in EM

- negotiation and elaboration

cf. experiential framework for learning

- learning as involved in requirements and design

“growing software” — Brooks, WMB+SBR
Racing Cars — Simon Gardner

- development as situated problem-solving —

amethodical software development
car maintenance analogy
Pi-Hwa Sun PhD Thesis, Paul Ness, Y-C Chen

Issues for development in EM

- traditional systems/programs derived by
circumscription and optimisation

cf. OXO in Pascal programs
(~wmb/public/projects/games/OXO/PASCAL)
Allan Wong PhD Thesis — ‘beyond systems’

- how far can object / agent abstractions help?
original aspirations of object-oriented programming
Lind - notion of ‘very weak agent’ - McCarthy

The logicist debate

McDermott — a Critique of Pure Reason
Celebrated renunciation of faith in logic as basis for Al
Responses collected in Comput. Intell. Vol 3 1987

Brian Cantwell Smith - a non-logicist stance ...

Two Lessons of Logic

Smith identifies two factors of a symbol system:

“first factor” - form
shapes of the symbols
how put together / taken apart
operations and behaviour

“second factor” - content
what the symbols mean, what they are about

The two lessons

Lesson one: the irreducibility of content to form

content relations aren’t computed: how symbols
‘reach out and touch someone’ - almost total mystery

Lesson two: a single theoretical stance

The two factors are relatively independent, but have
to be ultimately related: a single, unified theory must
provide an account of both factors

Formal logic tenets not for Al

1. Use can be ignored

2. Locally the two factors can be treated independently,
even though must be globally related

3. Language and modelling should be treated
completely differently (promiscuous modelling: can
substitute model of X for X with theoretical abandon)

Formal logic tenets not for Al

1. Use can be ignored

cf. natural language — context dependence, resolving
‘now’, pronouns etc

2. Locally the the two factors can be treated
independently, even though must be globally related
it the first factor could be cleft from the second
factor, would make sense to write things down first
and build programs second’ (McD) — not {ike thought

Formal logic tenets not for Al

3. Language and modelling should be treated
completely differently

Whole new theories of representation and
correspondence will be required:
- explaining computational practice
- promiscuous modelling pernicious where fine
grained questions are concerned

- representations in current computational systems
range continuously from linguistic to virtually iconic

What Then?

[In] the empirical view ... as reality is created
temporally day by day, concepts ... can never fitly
supersede perception

William James: A Pluralist Universe ¢.1900

A rationalist critique of William James's position

... mere experience ... furnishes no consistent view.
[The direct products of experience] | find that my
intellect rejects because they contradict themselves.
They offer a complex of diversities conjoined in a way
which it feels is not its way and which it can not repeat
as its own ... For to be satisfied, my intellect must
understand, and it can not understand a congeries [ie
an aggregate] in the fump.

F H Bradley: Appearance and Reality

James' counter-view

To be 'conscious' means not simply to be, but to be
reported, known, to have awareness of one's being
added to that being ... The difficulty of understanding
what happens here is .. not a logical difficulty: there is
no contradiction involved. It is an ontological difficulty
rather. Experiences come on an enormous scale, and if
we take them all together, they come in a chaos of
incommensurable relations that we can not straighten
out. We have to abstract different groups of them, and
handle these separately if we are to talk of them at all.
But how the experiences ever get themselves made, or
why their characters and relations are just such as
appear, we can not begin to understand.

William Jarnes: Essays in Radical Empiricism

An engineer’s outlook ...

Blind variation ... interaction without complete or
adequate guidance, leading to discovery ...

W alter Vincenti

What Engineers Know and How They Know It:
Analytical Studies from Aeronautical History, 1993

Closed world vs. open development
cultures in engineering ... [Brodner]

One position, ... the closed world paradigm,
suggests that all real-world phenomena, the
properties and relations of its objects, can
ultimately, and at least in principle, be
transformed by human cognition into
objectified, explicitly stated, propositional
knowledge.

The counterposition, ... the open development
paradigm ... contests the completeness of
this knowledge. In contrast, it assumes the
primary existence of practical experience, a
body of tacit knowledge grown with a
person's acting in the world. This can be
transformed into explicit theoretical
knowledge under specific circumstances and
to a principally limited extent only
Human interaction with the environment,
thus, unfolds a dialectic of form and process
through which practical. experience is partly
formalized and objectified as language, tools
or machines (i.e. form) the use of which, in
turn, produces new experience (i.e. process)
as basis for further objectification.

David Gooding on Science and Philosophy

Most received philosophies of science focus so
exclusively on the literary world of
representations that they cannot begin to address
the philosophical problems arising from the
interaction of these worlds: empirical access as a
source of knowledge, meaning and reference, and,
of course, realism.

John Keats on Negative Capability

. several things dovetailed in my mind, and at
once it struck me what quality went to form a
Man of Achievement ... - | mean Negative
Capability, that is when a man is capable of being
in Uncertainties, Mysteries, Doubts without any
irritable reaching after fact and reason ...

Letter to George and Thomas Keats
December 1817

... a Challenge and a Caution!

The "Good Experiment" Paradox

A Good Experiment is one in which we really don't
know what to expect ...

BUT

... must be some preconception of what to expect

A Good Experiment is one in which we know
exactly what will happen ...

BUT

... must be some possibility of being confounded

Essence of Empirical Modelling process

Conviction based on empirical evidence converts
experimental activity from 1st to 2nd category

Only a change of perspective is involved
NOT
a change in the experimental activity

The scientist has a lot of experience with ignorance and doubt
and uncertainty, and this experience is of very great importance,
I think. When a scientist doesn't know the answer to a problem,
he is uncertain. And when he is pretty darn sure of what the
result is going to be, he is still in some doubt. We have found it
of paramount importance that in order to progress we must
recognise our ignorance and leave room for doubt. Scientific
knowledge is a body of statements of varying degrees of
certainty - some most unsure, some nearly sure, but none

absolutely certain.

Richard Feynman (cited in a letter to the Guardial

Communicating from myself to another agent like myself

Empirical Modelling identifies the primitive with 1st person activities: ! asser that
"this experience is like this experience”

No-one else can experience this likeness as | experience it in the sense that my

experience is divorced from your consciousness and vice versa

[cf the idea that fogic provides the most primitive foundation for human activity]

There may be what empirically seems to be a corresponding likeness between two
experiences of your own :

| may construct an artefact specifically to represent some experience in this manner

It may be that this artefact serves a mediating role in leading you to apprehend what
empirically seems to be a simifar likeness between your own experiences

Personal validity of my use of antefacts to represent experiences doesn't rely on this
e.g. snooker player uses an idiosyncratic trick to align the cue for a particular shot
Mediation needn't be via a commonly perceived artefact, e.g. invoked linguistically
cf "though 1 sang in my chains like the sea”

... where words evoke the likeness but two private experiences are necessary for
the likeness to be apprehended

“singing in chains” as sense of protesting against being captive
"the sea singing in chains" as evoking breaking waves over pebbles

Communication between observers introduces intersubjectivity issues

cf the commonly accepted different nature of certain observabies, such as traffic
speed readings

cf the way in which mathematical models e.g. finite state machines, geometric
references are used

§
2nd November 1998

Motivations for Empirical Modelling

Investigation of blends

Explanatory modelling, especially where confiict is involved (e.g. accidents)
Identification of stable contexts

Designing behaviours for concurrent systems of agents

Supporting activities in which concurrent decision-making is involved
Enabling construction through experimentation and human intervention

Migration through different paradigms of knowledge represented in the Empiricist
Perspective on Learning

Ways.in which to organise and interpret the use of definitive scripts

- 1-agent modelling

. B.-Modelling the interaction of many agents in a concurrent system

C. Modelling phenomena from several different perspectives concurrently

g
2nd November 1998

The SQLEDDI environment

The development of the SQLEDDI environment illustrates a particularly
ambitious use of EM in conjunction with education. The overall educational
aims of building the environment, and the relevance of EM to achieving
these objectives is set out in the following extract from a research
proposal. The proposal contains some claims that will be elaborated upon
below.

Project Overview

Title of Project: A lightweight portable environment to support teaching of
the theory and practice of relational databases

Brief Description:

Anticipated Outcomes: Our proposed environment will

- support a richer learning experience in which practice and theory in
relational databases are better integrated, enabling students from various
backgrounds to appreciate the significance of relational theory and the
flaws in SQL

- supply lightweight open source software that subsumes those aspects of a
commercial database system that are most relevant to teaching relational
database principles and can be run on any platform

- allow query processing to be integrated with interfaces and visualisation
models that are problem specific (in our particular context, relating to
timetabling)

- provide students and staff with more flexible and less cumbersome
interactive learning and marking strategies.

Aims: In this project, we aim

- to address the problems of motivation encountered by students who find it
difficult to relate practical use of complex commercial relational database
systems with abstract relational theory.

- to reduce the overheads associated with deploying a commercial RDB system
and delineating its core functionality from an academic viewpoint.

- to disseminate new principles for constructing educational software for
which we have established proof-of-concept through prior project work at
Warwick, and that have wide application.

Methodology: The project will ... illustrate unusual development features
that would be exceptionally hard to replicate in a conventional programming
paradigm. These include: on-the-fly evolution of notations, wvisualisation
and evaluation techniques specific to the problem under consideration;
scope to extend and modify a software environment interactively to take
account of needs of different users and issues (e.g. to customise
interfaces for particular groups of students, to take account of an issue
such as query optimisation, to introduce software agents to monitor or
evaluate student responses); potential for convenient reconfiguration for
different architectures (e.g. client-server distribution) and modes of use
(e.g. amenable to customisation by students, adapted for peer assessment).
The evaluation of the project will be integrated with the preparation,
delivery and assessment of well-established second and third year database
modules (CS233 and CS319).

Deliverables:

The main deliverable will be an extensible environment in which principles
of relational database (RDB) query languages can be taught with reference
to mathematical foundations and the flaws of SQL. This relational query
language (RQL) environment will combine the basic DML and DDL functionality
of commercial RDB systems (such as Oracle) with a simple environment for
defining and evaluating pure relational algebra expressions (such as was
designed by Todd in ISBL). It will have an interface supporting layers of
interaction of different degrees of sophistication that is oriented towards
teaching basic SQL in a sound theoretical framework and is useable in a
consistent way across UNIX, Linux and Windows platforms.

For purposes of assessment, our specific focus of interest will be on
relational database use in a timetabling application. For this purpose, we
shall integrate our RQL environment with a pre-existing timetabling model
and develop an interface to this environment that will (in particular)
enable users to visualise the results of queries, support the creation of

1

assignments that are different for each student, and allow such coursework
to be marked efficiently and consistently by tutors.

Outline rationale for embedding innovation / method within teaching and
learning (include any evaluation outcomes)

A central concept behind our project is the open-ended development of
educational resources that are specifically targetted at supporting a
particular academic requirement (viz. relational query languages in theory
and practice) and a specific application (viz. timetabling). This kind of
development is quite different in character from the development of a
monolithic environment whose functionality is carefully preconceived to
admit many different applications, but is effectively not open to
modification by its users. The model-building approach we have developed
is especially well-suited to situations in which there is a specific focus
of interest, but there are a whole range of different agents and
perspectives that must be recruited on-the-fly as a situation evolves. In
the long term, subject to appropriate development both of our tools and of’
understanding of the principles behind their use, we envisage that our RQL
environment will be amenable to customisation by academics with different
teaching agendas and styles and by students with different interests and
learning strategies.

Comments on the proposal

The history of the development of SQLEDDI to this point provides some
context.

The original version of eddi from which SQLEDDI originated is to be found
in eddipTruongl996. Another version, very similar in functionality, but
integrated more closely with tkeden is found in agentparserBrown200l1. In
its original form (July 2001), Brown's eddi parser was quite primitive. For
instance: it had no catalogue, had no garbage collection, didn't handle
sytax errors well, didn't allow renaming of attributes. The transition from
this state to the current eddi interpreter (stabilised in November 2001)
was an incremental activity that is arguably (to some extent - and with
apologies to Ashley) self-documented in the library file
~empublic/emp/lib/lib-tkeden-1.46/eddi.eden.
The significant point is that the entire development was associated with
incremental on-the-fly modification of the interpreter which took place in
the very same context as the testing and exploration of potential design
and implementation strategies. It was also accompanied by and motivated by
a parallel enhancement of the interpreter to handle the translation of SQL
to eddi, for which the essential framework had been supplied by Michael
Evans's implementation of an agent-oriented SQL parser / translator.

A good analogy for traditional development is that, in (say) building a
car, you road test it until you find a context in which it doesn't function
properly, then return to the garage, explain the problem, then go out again
in your modified car trying to 'revisit' the context in which you formerly
had difficulties. In EM, the aspiration is quite different. The current
state always subsumes the current status of your artefact and its present
state and context, so that modifying the artefact is like repairing /
redesigning your car in the context where it isn't meeting your
requirements. In distinguishing EM development from other forms of use of
interpreters in development, the contention is that fixing the interpreter
is actually redesigning the context in a way that is inconsistent with the
'continuous relation' that is characteristic of an ongoing experience.

From an educational perspective, the development of SQLEDDI was carried out
whilst teaching CS233 in exactly the above spirit. The best documentation
of this activity from an educational perspective is to be found in the
worksheets (worksheets 5 and 6 on the CS233 website) that accompanied the
software construction. The implementation of a subset of standard SQL that
emerged from this activity was designed on-the-£fly after experiments that
showed the infeasibility of merely enhancing the eddi evaluation
strategies. The development of SQLO can be seen as a form of scaffolding
that is essential to understanding the problematic nature of giving good
mathematical semantics to standard SQL.

Nw@/&} /ﬂ“-éﬁg&/\J.%VeiA ele.
Some extracts from the eddi parser development

670 where the eddi parser specification first begins

eddi_statement = ["suffix", ";", "eddi_statement_ 1", ["fail",
"eddi_statement_1"11;

673 [comment]

eddi_statement_1 = ["prefix", "?", "table_val", ["script", ["declare",
"relname"l, ["setparas", ["relname"]], ["later", "showrel (%%);", "relname"]],
["fail", "eddi_statement_2"]];

676

eddi_statement_ 1 = ["prefix", "?", "rel_exp", ["script", ["declare",
"relname"]}, ["setparas", ["relname"l], ["later", "showrel (%%);", "relname"]],
["fail", "eddi_statement_2"]1};

eddi_statement_2 = ["prefix", "~", "table_name", ["script", ["declare",
"relname"], ["setparas", ["relname"]], ["later", "droptable (%%);",
"relname"]], ["fall", "eddi_statement_3"11];

eddi_statement_3 = ["pivot", "<<", ["table_name", "tuples"], ["script",
["declare", "relname"], ["setparas', ["relname"], []], ["later", "S$$ = addvals
(SS, %%);", "relname", "relname", "v_substrs[2]"]], ["fail",
"eddi_statement_4"11];

eddi_statement_4 = ["pivot"”, "!!", ["table_name", "tuples"], ["script",
["declare", "relname"], ["setparas", ["relname"], []], ["later", "$$ = delvals
(S, %%);", "relname", "relname", "v_substrs([2]"]], ["fail",

"eddi_statement_5"]1];

eddi_statement_5 = ["pivot", "is", ["table_name", "rel_exp"], ["script",
[*declare", "relname", "expr"], ["setparas", ["relname"], ["expr"]l]l, ["later",
"$S is %%;", "relname", "expr"]]l, ["fail", "eddi_statement_6"]];
eddi_statement_6 = ["pivot", "(", ["table_name", "create_state"], ["script",
["declare", "relname", "cdata"], ["setparas", ["relname"], ["cdata"]],
["later", "S$$ = create ($$); addtotablelist (\"$S\");", "relname", "cdata",
"relname"]], ["fail", "eddi_statement_7"]];

Initial functionality - guery expressions (1), drop tables (2), insert tuples
(3), delete tuples (4), define views (5), and create intensional relation (6).

685 precursor to the catalogue table - lists the currently known tables
eddi_statement_7 = [“literal®, "#", ["script", ["execute", "listtables ();"]1];

The function of eddi_statement_7 is later overwritten by assignment of
relations. The

1899 the listing of tables in response to ‘#;’ is replaced by display of the
CATALOGUE:

eddi_statement_8 = ["literal", "#", ["script", ["execute", "curr_agent=8;
showrel (CATALOGUE);"1113;

1677 notion of a ’'current agent’ added to disambiguate observation

eddi_statement_1 = ["prefix", "?", "rel_exp", ["script", ["declare",
"relname"]l, ["setparas", ["relname"]], ["later", "showrel (%%);", "relname"],
["execute", "curr_agent = 1;"]], ["faill", "eddi_statement_2"]1];

1716 gives a new definition of the piveot() function, which describes a generic
form of observation in the parser. Now the parser consults the current agent to
determine whether to pivot on a key symbol or not. For instance, it is
appropriate to pivot on the ’.’ in X.Y, where X and Y are relational tables,
but not such a good idea to pivot on the decimal point in 3.14. Observation

gualified by context is an important idea here.

1870 CATALOGUE added, and so checking of CATALOGUE became necessary in the
evaluation of a query

extract of code and comment below suggests that (though idea of checking
consistency with the CATALOGUE when observing the entire expression to be
evaluated was explored) checking of the CATALOGUE was subsequently effected
step-by-step during the evaluation of relational expressions

1901

eddi_statement_1 = ["prefix", "?", "rel_exp", ["script", ["declare",
vrelname"], ["setparas”, ["relname"]], ["later", "showrel (%%);", "relname"],
["execute", "curr_agent=1;"1], ["fail", "eddi_statement_2"11;

/* handle this checking elsewhere in parsing rel expressions

eddi_statement_1 = ["prefix", "?", "rel exp", ["script", ["declare",
"relname"], ["setparas", ["relname"]l]l, ["later", "if (gsearch CAT(%%)!1=0)
showrel (%%); else writeln(\"Table not in catalogue\");", "relname",
"relname"], ["execute", "curr_agent=1;"11,["fail", "eddi statement_2"11;
*/

1869 The introduction of the CATALOGUE involves some bootstrapping. There was
initially no type checking on the insertion of tuples, but it became necessary
to add this later. The addition of this type checking was assisted by a happy
coincidence: that Truong had implemented some (misconceived) structure for
handling key attributes in his table representations - this was redundant to
this point in the eddi implementation using the agent-oriented parser, but was
appropriated here to serve a role in typechecking.

$eddi
_CATALOGUE (relname CHAR, reltype CHAR, defn CHAR, ptr POINTER) ;

$eden

/* this line was added after type checking: it makes use of redundant fields in
the relation table record that had been inappropriately used for key
information */

_CATALOGUE[1][1) = ["string", "string", "string", "pointer"];

$eddi

CATALOGUE is _CATALOGUE % relname, reltype;

Evolution of view definitions in eddi

682 most primitive form of view definition

eddi statement_5 = ["pivot", "is", ["table name", "rel_exp"], ["script",
['declare", "relname", "expr"], ["setparas", ["relname"], ["expr"]], ["later",
"¢ ig %%;", "relname", "expr"l], ["fail", "eddi_statement_6"}];

1683 with a current agent setting added

eddi_statement_5 = ["pivot", "is", ["table_name", "rel_exp"l, ["script”,
["declare”, "relname", "expr"], ["setparas", ["relname'], ["expr"l], ["later",

"SS ;s %%;", "relname", "expr"], ["execute", "curr_agent = 5;"] 1, ["fail"
"eddi statement_6"11]; ,

1909 Placing views in the CATALOGUE

eddi_statement_5 = ["pivot", "is", ["table_name", "rel exp"], ["script",
["declare", "relname", "expr"l, ["setparas", ["relname"], ["expr"l],
["execute", "curr_agent=5; instr = v_string;"], ["later", "if

(search_CAT (%%)==0) { $$ is %%; _CATALOGUE = addvals (_CATALOGUE, [\"$S\",
\'"view\", instr, &$$]1); } else writeln(\"Table name already in use\");",
"relname", "relname", "expr", "relname", "relname"]], ["fail",

"eddi_statement_6"]];

1991 Ensuring that views that are not inapproriately defined don’t get placed
in the CATALOGUE

eddi_statement_5 = ["pivot", "is", ["table_name", "rel_exp"], ["script",
["declare", "relname", "expr"], ["setparas", ["relname"], ["expr"]],
["execute", "curr_agent=5; instr = v_string;"], ["later", "if
(search_CAT(%%)==0) { 1if (%%!=@Q) {S$S is %%; _CATALOGUE = addvals (_CATALOGUE,
[\"S$\", \"view\", instr, &3S8]);} else writeln(\"Invalid definition\"); } else
writeln(\"Table name already in use\");", "relname", "expr", "relname", "expr",
"relname", "relname"l], ["fail", "eddi_statement_6"11;

Evaluation strategy for relational DB expressions

Even when simply querying or assigning a relational value, the expression is
(temporarily) built up using dependency links. For instance: when executing the
query

? allfruits : begin < 3 % name, end;
an expression tree similar to that needed to store the view definition
X is allfruits : begin < 3 % name, end;

is constructed (see AOP.dmt). After an eddi statement has been executed all
temporary variables (of the form var_*) that have a dependee in the CATALOGUE
are retained. Those that do not can be garbage collected: for this purpose,
each var_* is "assigned to itself", after which it csan be forgotten. (Note
that forgetting a variable in eden reguires that no variable should depend upon
it.)

How the eddi statement parsing evolves
1984 accommodating the describe table feature (?? X;)

eddi_statement = ["suffix", ";", "eddi_statement 0", ["fail",
"eddi_statement_0"]1];

eddi_statement_0 = ["prefix", "??", ["describetbl"], ["fail",
"eddi_statement_1"]1;

2151 Introducing comments into eddi (## ...)

eddi_statement = ["suffix", ";", "eddi_comment”", ["fail", "eddi_comment"]];
eddi_comment = ["prefix", "##", ["anything"], ["fail", "eddi_statement 0"]];
2274 post garbage collection in eddi

eddi_statement = ["suffix", ";", "eddi_comment", ["script", ["later”,
"garbage_collect();"]], ["fail", "eddi_ comment"l];

How the evaluation of relational expressions evolves.

695 - 705 original parsing of rel_exp is as follows:

rel_exp = op_exp (’'+', rrel_exp_1"});

rel exp 1l = op_exp ('—', "rel exp 2");

rel exp_2 = op_exp ('*', "rel_exp_3");

rel exp 3 = op_exp ('.", "rel exp_4");

rel exp_4 = ["rev_pivot", ngn ["rel_exp", "attr_list"], ["script", ["declare",
"expr_part", "attr_part"l, ["setparas", ["expr_part"], ["attr_part"]],
["execute", "%% is " // lookupop (’%') // "(%%, %%);", "v_paras([1l]",
"expr_part", "attr_part"l], ["ignore", ["bras"l], ["fail", "rel exp_5"11;

rel exp 5 = ["rev_pivot", ":", ["rel_exp", "predicate"], ["script", ["declare",
"expr_part"], ["setparas", ["expr_part"], []], ["execute", "%% is " // lookupop
(") /7 (%%, ##):“, "v_paras[l]", "expr_part", "v_substrs[2]1"1], ["ignore",
("bras"]], ["fail", "rel exp_6"11;

rel_exp_6 = ["prefix", " (", "rel exp 7", ["fail", "table val"], ["script",
["setparas", ["v_paras{1]"]]1l;

rel _exp_ 7 = ["suffix", ")", "rel exp", ["script", ["setparas",

["v_paras[1]"}11];

The file prec.e changes the precedence of the relational expression evaluation

1836 - 1847

%eden

/* this file changes the precedence of the eddi ops - giving higher precedence
to * than to % and : and lowest precedence to +, - and

*/

rel_exp = op_exp (’+’, "rel exp_1");

rel exp_1l = op_exp ('—’, "rel_exp_2");

rel _exp_5 = op_exp ('*’, "rel_exp_6");

rel_exp_2 = op_exp ('.', "rel_exp_3");

rel_exp_3 = ["rev_pivot", "%", ["rel_exp", "attr_list"], ["script", ["declare",
"expr_part', "attr_part"], ["setparas”, ["expr_part"], ["attr_part"]],
["execute", "%% is " // lookupop ('%') /7 "(%%, %%);", "v_paras[i]",
"expr_part", "attr_part"l], ["ignore", ["bras"]], [("fail", "rel exp_4"11;

rel exp 4 = ["rev_pivot", ":", ["rel_ exp", "predicate"], ["script", ["declare",
"expr_part"], ["setparas", ["expr_part"], []], ["execute", "%% is " // lookupop
("1 // "(%%, ##);", "v_paras[l]", "expr_part", "v_substrs(2]"]1}, ["ignore",
["bras"]), ["fail", "rel_exp_5"11;

First rules applied are those that correspond to operators of lowest precedence
in the evaluation process.

AOR dmbt mod L

project |

allfruits ;\'\-}
var_115 var_114 W
L] /',: 1V} /\
Lr A
Y\'MM—

Analysis of the model used for the nodes of the heap suggests some refinement
of the design of the heap artefact.

The interpretation of the clusters of observables are as follows:

_N3 is <cart{(75 + 3 * _sep, 70);
_S3 is «cart(75 + 3 * _sep, 50);
V3 is line(_S3, _N3

)i
_elt3 is scalar_div({(vector_add(_S2, _N3)), 2);
_v3 1is label(str(val3), _elt3);
A_v3 is ‘"color="// (((val3==minelt) || (val3==maxelt))? RED: GREEN) ;
etc

refers to vertical lines in the boxed array of values displayed at the top of
the screen

_elt3 is the location of the third value in the boxed array: it is labelled by
the string _v3, which is RED if the element is maximal or minimal, and is

otherwise GREEN

_137 is newline(_p3,_p7);
_136 is newline(_p3,_pb6);
_p3 is cart(600,500);

_c3 is circle(_p3, _radius);
etc

refers to the display of node 3 in the tree, the circle around it, and the
lines incident with it. The value associated with node 3 in the tree is
recorded in the label _lab3. The line that connects the donald points p3 and p7
associated with nodes 3 and 7 is an adaptation of the standard donald line()
function that produces a short line.

The attributes of the circle surrounding node 3 are determined by A c3, which
is associated with the subscript:

A_c3 is "color="//{({inhp3)? c3col: WHITE) ;

c3col is (hc3) ?BLUE: RED;

ord37 is <c¢f(3,7,htree);

ord36 1is c¢f(3,6,htree);

ordl3 is c¢cf(1l,3,htree);

inhp3 is inheap(3, first,last);

he3 is (!inhp3) || (inhp3 && (!inhpé || (inhp6 && (ord36 >= 0)) && (!inhp7 ||
(oxd37 >= 0))));

hc3 expresses the heap condition at node 3, according to whether node 6 is in

the heap (as expressed by inhp6) etc.
cf() is a comparison function: htree is the list of values - identical to val,

but computed from the definitions:

htree is proj2 (harray);

harray is [nodel,node2,node3,noded,node5,nodeb,node7];
nodel is [1, valll;

vall is val[ll;

etc

As A_c3 ensures, the colour of the circle around node 3 is WHITE (the
"background" colour) is the node is not in the heap, and is otherwise BLUE or
RED according to whether the heap condition is / isn’t satisfied at node 3.

A_137 is '"color="//((inhp3&&inhp7)?((ord37==0) ?BLACK: ((ord37== 1)°?BLUE:
RED)) : WHITE) ;

is the definition that determines the colour of the line that connects node 3
to node 7 - if both are in the heap, it makes the line BLACK / RED / BLUE
according to whether the values at node 3 is equal to / is less than / is
greater than that at node 7.

The following definition computes the index of the child node of 3 that has the
greater value, subject to being within the heap.

ixgtch3 is {(!inhp7) ? 6: ((val[6]>val{7]) ? 6: 7);

The coincidental choice of colours for labelling values in the boxed array and
the circles and lines associated with tree nodes creates spurious edges in the
dependency model.

It is apparent that if the colour of circles were not chosen to be BLUE or RED
(coinciding with the colours of lines), there would be no edges between the
c3col and the BLUE and RED nodes, nor between the RED node and the A_v3 node.

Morals of the exercise - controversial!

2About EM

It is possible through modelling with artefacts to make highly sensitive
and discriminating semantic distinctions

- ¢f promiscuous modelling [Cantwell-Smith] using abstract mathematical
models

It is possible to construct computer models without predetermined goals,
formal IO behaviours and use-cases: uncertain interaction in the world is
conceptually prior to formalisation

We are just at the beginning of understanding how to organise and manage
EM model development: need better tools, but also need unorthodox
strategies for dealing with issues such as versioning and documenting.

About classical computing

Much of classical computer science is motivated by optimisation to
specific goals (as was historically expedient); clearly specification of
function is a prerequisite for optimisation, but it is a mistake to
imagine that such specification is an essential prerequisite for
constructing computer models.

Functional specification is not very prescriptive where program
development is concerned

Abstract data types do not really capture the analogue characteristics of
data types as pseudo-physical artefacts that embody understanding, and
underpin mental models to aid the imagination

About ‘computers for learning’

How we construct models is highy relevant to how useful they can be in
supporting learning cf. Logo as a vision for constructionism

Interaction that is creative in character has to accommodate situation,
ignorance and nonsense (the SIN principle) - essence of learning is the
capacity not to know, to be suspicious of perfect knowledge, and to be
able to make mistakes; these require support from modelling approaches
that negotiate meaning through interactive development rather than
prescribe the interpretation of interaction in advance

About the relationship between EM and classical programming / software
development

The distinction between EM and rapid prototyping and iterative
development as in XP is ontological rather than being simply a matter of
degree: the basis for EM is in the notion of construal, and continuity in
EM development is in the ’‘stream of thought’ (cf car maintenance analogy
in the discussion of the sgleddi environment)

The ’'experimental paradox’ is central to the distinction between EM and
the classical theory of computation

It. is more appropriate to seek a foundation for specification and logic
in" EM than to seek a foundation for EM in specification and logic

The single square of the draughts model can be isclated and used to disclose
problems in definition. The model should be read in conjunction with the dmt
model: draughtssg68sde.dmt in the Models directory associated with DMT072.

This shows one of the squares of the draughts board: sgquare number 68

To load the display it is necessary to execute the Run.e file. Because of the
way the model is built, it is not enough to define the position of a single
piece, as in

bll = [6,8];

since the visualisation operates with dependency driven by the lists wpieces,
bpieces, wcrowned, bcrowned etc.

/* valid positions for pieces are:

(1,23, (3,21, I[5,11, [7.11, [2,21, [2,4] etc
and a piece that is placed off the board is at [1000,1000] - initially:
bl = [2,6];
bl0 = [4,8];
bll = [6,8];
bl2 = [8,8];
b2 = [4,6];
b3 = [6,6];
b4 = [8,6];
b5 = [1,7];

B = [3k 7l

lo7=1 (5 A7 lj13

b8 = [7,71;

b9 = [2,8];

bcrowned = [0,0,0,0,0,0,0,0,0,0,0,0];
wl = [1,17;

wlO = [3,31];

wll = [5,3];

wl2 = [7,3];

w2 = [3,11;

w3 = [5,17;

wd = [7,1];

wh = [2,2];

w6 = [4,2];

w7 = [6,2];

w8 = [8,2];

w9 = [1,31];

wcrowned = {0,0,0,0,0,0,0,0,0,0,0,07;
*/

An unfortunate aspect of checkcol{) is the hidden role for a global variable:
blank, that is set to the value "blank" in the actual script:

func checkcol {
para coord;
auto ans,i;

ans = blank; /* 'blank’ is global */
for (i=1;i<=12;1i++){
if (*"b"//str(i)' == coord)
ans = black;
}
for (i=1;i<=12;1i++){
if('"w"//str(i)* == coord)

ans = white;
}

return ans;

Can move a piece off the square [6,8] by redefining

bll = [1000,1000];
say: can then move the piece wll to this square:
wll = [6,8];
The model works because bgcol in the definition of square68:
window square68 = {

type: DONALD

box: [p68, g68]

pict: "pilece68"

bgcolor: bgcol

sensitive: ON
Y

happens to be the same as bgcolor, as used in the definitions:

colsqgr68 is (Sqguare68 == white)? white: ({Sguare68 == black)? black: bgcolor) ;
A Piece68 1s "fill=solid,color=" // colsgr68;

which are used to determine the colour of the donald circle representing the
draughts piece.

If we change the background of the scout window to red, via

scout
bgcol = "red";

and then move the piece from this square, via

eden
wll = [1000,1000];

the hidden problem in the colour definition for the sgquare is disclosed.
Can check the effect of crowning a pilece also:

wcrowned = [0,0,0,0,0,0,0,0,0,0,1,0];

This (unexpectedly!) has no effect on the colour of the king dot: kingcolé68
This is because there is a dependency of the form:

iscrowned ~> [kingcol68];

but nothing to ensure that iscrowned is redefined when wcrowned or bcrowned is
altered. To fix this, we would need to change the definition of

kingcol68 is (iscrowned([6,8]) == 1)? red: colsqgrés8;
to the form
kingcol68 is (iscrowned([6,8], wcrowned, bcrowned)==1) ? red : colsgré68;

as in the definition of Square68 with reference to bpieces and wpieces which
checkcol does not use explicitly in computing its result:

Squareb8 is checkcol([6,8)], bpieces, wpieces);
A further (unresolved) problem is that there is no layering in DoNaLD, so that

when we arrange for iscrowned([6,8]) to be true, the white circle representing
the piece may not get displayed beneath the red dot.

