Ramsey Spanning Trees and their Applications

Arnold Filtser

Ben-Gurion University

Co-authors: Ittai Abraham, Shiri Chechik, Michael Elkin, Ofer Neiman

Workshop on Data Summarization University of Warwick

Metric Embeddings

Embedding $f: X \rightarrow \mathbb{R}^{d}$ has distortion $\boldsymbol{\alpha}$ if for all $x, y \in X$

$$
d_{X}(x, y) \leq\|f(x)-f(y)\|_{2} \leq \boldsymbol{\alpha} \cdot d_{X}(x, y)
$$

Metric Embeddings

Embedding $f: X \rightarrow \mathbb{R}^{d}$ has distortion $\boldsymbol{\alpha}$ if for all $x, y \in X$

$$
d_{X}(x, y) \leq\|f(x)-f(y)\|_{2} \leq \boldsymbol{\alpha} \cdot d_{X}(x, y)
$$

Theorem (Bourgain,85)
Every n-point metric $\left(X, d_{X}\right)$ is embeddable into Euclidean space with distortion $O(\log n)$.

Metric Embeddings

Embedding $f: X \rightarrow \mathbb{R}^{d}$ has distortion $\boldsymbol{\alpha}$ if for all $x, y \in X$

$$
d_{X}(x, y) \leq\|f(x)-f(y)\|_{2} \leq \boldsymbol{\alpha} \cdot d_{X}(x, y)
$$

Theorem (Bourgain,85)
Every n-point metric $\left(X, d_{X}\right)$ is embeddable into Euclidean space with distortion $O(\log n)$.

Asymptotically tight.

Metric Ramsey-Type Problem

For a fixed distortion $k>1$, what is the largest subset $M \subset X$,
s.t. $\left(M, d_{X}\right)$ is embeddable into Euclidean space with distortion k ?

Metric Ramsey-Type Problem

For a fixed distortion $k>1$, what is the largest subset $M \subset X$,
s.t. $\left(M, d_{X}\right)$ is embeddable into Euclidean space with distortion k ?

$$
\forall x, y \in M, \quad d_{x}(x, y) \leq\|f(x)-f(y)\|_{2} \leq \boldsymbol{k} \cdot d_{X}(x, y)
$$

Metric Ramsey-Type Problem

For a fixed distortion $k>1$, what is the largest subset $M \subset X$, s.t. $\left(M, d_{X}\right)$ is embeddable into Euclidean space with distortion k ?

$$
\begin{aligned}
& M\left(X, d_{X}\right) \\
& \stackrel{\bullet}{\bullet} \cdot \stackrel{\bullet}{\bullet} \cdot{ }^{\bullet} \cdot{ }_{f: M \rightarrow R^{d}}\left(R^{d},\|\cdot\|_{2}\right) \\
& \forall x, y \in M, \quad d_{x}(x, y) \leq\|f(x)-f(y)\|_{2} \leq k \cdot d_{X}(x, y)
\end{aligned}
$$

Theorem (Mendel, Naor 07, following BFM86, BLMN05)
For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into Euclidean space with distortion $O(k)$.

Metric Ramsey-Type Problem

 Theorem (Mendel, Naor 07, following BFM86, BLMN05) For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into Euclidean space with distortion $O(k)$.
Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into Euclidean space with distortion $O(k)$.

Asymptotically tight.

Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into Euclidean space with distortion $O(k)$.

Asymptotically tight.
Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric with distortion $O(k)$.

Asymptotically tight.
Euclidean space can be replace here by an ultrametric U! (a.k.a HST)
Ultrametric is a spacial kind of tree which is:
(1) Very useful for divide an conquer algorithms.
(2 Isometrically embeds into Euclidean space (i.e. distortion 1).

Our Second Result: Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)
For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric
with distortion $O(k)$.

Our Second Result: Metric Ramsey-Type Problem

 Theorem (Mendel, Naor 07, following BFM86, BLMN05)For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric with distortion $O(128 \cdot k)$.

The constant in the distortion important as it in the exponent.

Our Second Result: Metric Ramsey-Type Problem

 Theorem (Mendel, Naor 07, following BFM86, BLMN05) For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric```
with distortion O(128\cdotk).
```

The constant in the distortion important as it in the exponent.

| Paper | Distortion | Size |  |
| :--- | :--- | :--- | :--- |
| BFM06 | $O(k \log \log n)$ | $n^{1-1 / k}$ |  |
| BLMN04 | $O(k \log k)$ | $n^{1-1 / k}$ |  |
| MN07 | $128 \cdot k$ | $n^{1-1 / k}$ |  |
| BGS16 | $33 \cdot k$ | $n^{1-1 / k}$ |  |
| NT12 | $2 e \cdot k$ | $n^{1-1 / k}$ |  |

## Our Second Result: Metric Ramsey-Type Problem

 Theorem (Mendel, Naor 07, following BFM86, BLMN05) For every $n$-point metric space and $k \geq 1$, there exists a subset $M$ of size $n^{1-1 / k}$ that can be embedded into ultrametric```
with distortion O(128\cdotk).
```

The constant in the distortion important as it in the exponent.

Paper	Distortion	Size	
BFM06	$O(k \log \log n)$	$n^{1-1 / k}$	Randomized
BLMN04	$O(k \log k)$	$n^{1-1 / k}$	Randomized
MN07	$128 \cdot k$	$n^{1-1 / k}$	Randomized
BGS16	$33 \cdot k$	$n^{1-1 / k}$	Randomized
NT12	$2 e \cdot k$	$n^{1-1 / k}$	Randomized

Our Second Result: Metric Ramsey-Type Problem

 Theorem (Mendel, Naor 07, following BFM86, BLMN05) For every n-point metric space and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric```
with distortion O(128\cdotk).
```

The constant in the distortion important as it in the exponent.

| Paper | Distortion | Size |  |
| :--- | :--- | :--- | :--- |
| BFM06 | $O(k \log \log n)$ | $n^{1-1 / k}$ | Randomized |
| BLMN04 | $O(k \log k)$ | $n^{1-1 / k}$ | Randomized |
| MN07 | $128 \cdot k$ | $n^{1-1 / k}$ | Randomized |
| BGS16 | $33 \cdot k$ | $n^{1-1 / k}$ | Randomized |
| NT12 | $2 e \cdot k$ | $n^{1-1 / k}$ | Randomized |
| This Paper | $\mathbf{8 \cdot k - 2}$ | $n^{1-1 / k}$ | Deterministic |

## Our Second Result: Metric Ramsey-Type Problem

 Theorem (Mendel, Naor 07, following BFM86, BLMN05) For every $n$-point metric space and $k \geq 1$, there exists a subset $M$ of size $n^{1-1 / k}$ that can be embedded into ultrametric```
with distortion O(128\cdotk).
```

The constant in the distortion important as it in the exponent.

Paper	Distortion	Size	
BFM06	$O(k \log \log n)$	$n^{1-1 / k}$	Randomized
BLMN04	$O(k \log k)$	$n^{1-1 / k}$	Randomized
MN07	$128 \cdot k$	$n^{1-1 / k}$	Randomized
BGS16	$33 \cdot k$	$n^{1-1 / k}$	Randomized
NT12	$2 e \cdot k$	$n^{1-1 / k}$	Randomized
This Paper	$8 \cdot k-2$	$n^{1-1 / k}$	Deterministic

*Bartal had similar (deterministic) result.

Our Second Result: Metric Ramsey-Type Problem

Theorem (Our Secondary Result)
For every n-point metric space and $k \geq 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric with distortion $8 \cdot k$.

Our Second Result: Metric Ramsey-Type Problem

Theorem (Our Secondary Result)
For every n-point metric space and $k \geq 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1 / k}$ that can be embedded into ultrametric with distortion $8 \cdot k$.

Instead of preserving distance for $M \times M$, we can preserve distances for $M \times X$.

Our Second Result: Metric Ramsey-Type Problem

Theorem (Our Secondary Result)

For every n-point metric space and $k \geq 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1 / k}$ such that the hall metric can be embedded into ultrametric with distortion $16 \cdot k$ w.r.t $M \times X$.

```
Instead of preserving distance for \(M \times M\), we can preserve distances for \(M \times X\).
```


Our Second Result: Metric Ramsey-Type Problem

Theorem (Our Secondary Result)
For every n-point metric space and $k \geq 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1 / k}$ such that the hall metric can be embedded into ultrametric with distortion $16 \cdot k$ w.r.t $M \times X$.

Our Second Result: Metric Ramsey-Type Problem

Theorem (Our Secondary Result)

For every n-point metric space and $k \geq 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1 / k}$ such that the hall metric can be embedded into ultrametric with distortion $16 \cdot k$ w.r.t $M \times X$.

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\operatorname{home}_{(x)}}(x, y) \leq(16 \cdot \boldsymbol{k}) \cdot d_{x}(x, y)
$$

Our Second Result: Metric Ramsey-Type Problem

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\mathbf{h o m e}_{(x)}}(x, y) \leq(16 \cdot k) \cdot d_{x}(x, y)
$$

$\left(X, d_{X}\right) \Rightarrow$

$U_{i}=\operatorname{home}(x)$
$U_{k \cdot n^{1 / k}}$

Distance Oracle

A distance oracle is a succinct data structure that (approximately) answers distance queries.

Distance Oracle

A distance oracle is a succinct data structure that (approximately) answers distance queries.

Distance Oracle

A distance oracle is a succinct data structure that (approximately) answers distance queries.

The properties of interest are size, distortion and query time.

Distance Oracles: State of the Art

DO	Distortion	Size	Query	Deterministic?
TZ05	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(k)$	no
MN07	$128 k$	$O\left(n^{1+1 / k}\right)$	$O(1)$	no
W13	$(2+\epsilon) k$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1 / \epsilon)$	no
C14	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$	no
C15	$2 k-1$	$O\left(n^{1+1 / k}\right)$	$O(1)$	no
RTZ05	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(k)$	yes
W13	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(\log k)$	yes

Our contribution: Deterministic Distance Oracles

Distance Oracle	Distortion	Size	Query
RTZ05	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(k)$
W13	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(\log k)$
This paper	$8(1+\epsilon) k$	$O\left(n^{1+1 / k}\right)$	$O(1 / \epsilon)$
This paper+C14	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$

Our contribution: Deterministic Distance Oracles

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\operatorname{home}_{(x)}}(x, y) \leq(16 \cdot k) \cdot d_{x}(x, y)
$$

$\left(X, d_{X}\right) \Rightarrow$

$$
U_{i}=\operatorname{home}(x)
$$

Our contribution: Deterministic Distance Oracles

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\mathbf{h o m e}_{(x)}}(x, y) \leq(16 \cdot \boldsymbol{k}) \cdot d_{x}(x, y)
$$

Our contribution: Deterministic Distance Oracles

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\text {home }_{(x)}}(x, y) \leq(16 \cdot \boldsymbol{k}) \cdot d_{x}(x, y)
$$

Theorem (Tree Distance Oracle, HT84, BFC00)
For every tree metric, there is an exact distance oracle of linear size and constant query time.

Our contribution: Deterministic Distance Oracles

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\text {home }_{(x)}}(x, y) \leq(16 \cdot k) \cdot d_{x}(x, y)
$$

Theorem (Tree Distance Oracle, HT84, BFC00)
For every tree metric, there is an exact distance oracle of linear size and constant query time.

Theorem (Ramsey based Deterministic Distance Oracle)
For any n-point metric space, there is a distance oracle with :

Distortion	Size	Query time
$16 \cdot k$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$

Our contribution: Deterministic Distance Oracles

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\mathbf{h o m e}_{(x)}}(x, y) \leq(16 \cdot \boldsymbol{k}) \cdot d_{x}(x, y)
$$

Theorem (Ramsey based Deterministic Distance Oracle) For any n-point metric space, there is a distance oracle with :

Distance Oracle	Distortion	Size	Query
This paper	$16 \cdot k$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$
This paper	$8(1+\epsilon) k$	$O\left(n^{1+1 / k}\right)$	$O(1 / \epsilon)$
This paper $+C 14$	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$

Our contribution: Deterministic Distance Oracles

Corollary

For every n-point metric space and $k \geq 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \rightarrow \mathcal{U}$, such that for every $x, y \in U$,

$$
d_{\text {home }_{(x)}}(x, y) \leq(16 \cdot \boldsymbol{k}) \cdot d_{x}(x, y)
$$

Theorem (Ramsey based Deterministic Distance Oracle)
For any n-point metric space, there is a distance oracle with :

Distance Oracle	Distortion	Size	Query
This paper	$16 \cdot k$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$
This paper	$8(1+\epsilon) k$	$O\left(n^{1+1 / k}\right)$	$O(1 / \epsilon)$
This paper +C14	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$
C15 (Randomized)	$2 k-1$	$O\left(n^{1+1 / k}\right)$	$O(1)$

Ramsey Spanning Tree Question

Given a weighted graph $G=(V, E, w)$, and a fixed distortion $k>1$, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?

Ramsey Spanning Tree Question

Given a weighted graph $G=(V, E, w)$, and a fixed distortion $k>1$, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?

For all $v \in M$ and $u \in V$, $d_{T}(v, u) \leq k \cdot d_{G}(v, u)$.

Main Result

Ramsey Spanning Tree Question

Given a weighted graph $G=(V, E, w)$, and a fixed distortion $k>1$, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?

Theorem (Main Result)
For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Main Result

Ramsey Spanning Tree Question

Given a weighted graph $G=(V, E, w)$, and a fixed distortion $k>1$, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?

Theorem (Main Result)

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(\overline{k \cdot \log \log n) w}$.r.t $M \times V$.

Theorem (Mendel, Naor 07)

For every n-point metric space $\left(X, d_{X}\right) \quad$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and an ultrametric U over X with distortion $O(k) \quad$ w.r.t $M \times X$.

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Theorem (Main Result)

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(\boldsymbol{k} \cdot \log \log n)$ w.r.t $M \times V$.

Corollary

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

Corollary

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

The union of all the trees in \mathcal{T} creates an $O(k \cdot \log \log n)$-spanner with $O\left(k \cdot n^{1+\frac{1}{k}}\right)$ edges.

Application: Compact Routing Scheme

- Huge network

Application: Compact Routing Scheme

- Huge network
- There is a server in each node.

Application: Compact Routing Scheme

- Huge network
- There is a server in each node.
- Task: route packages throughout the network.

Application: Compact Routing Scheme

- Huge network
- There is a server in each node.
- Task: route packages throughout the network.
- Store the whole network in each node is unfeasible.

Compact Routing Scheme

In order to keep other parameters small, we will allow stretch.

Compact Routing Scheme

In order to keep other parameters small, we will allow stretch. Stretch k : the length of a route from v to u will be $\leq k \cdot d_{G}(v, u)$.

Compact Routing Scheme

In order to keep other parameters small, we will allow stretch. Stretch k : the length of a route from v to u will be $\leq k \cdot d_{G}(v, u)$.

Theorem (Thorup, Zwick, 01)
For any n-vertex tree $T=(V, E)$, there is a routing scheme with :

Stretch	Label	Table	Decision time
1	$O(\log n)$	$O(1)$	$O(1)$

Routing using Ramsey Spanning Trees

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

Routing using Ramsey Spanning Trees

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

To route a package from u to v, we will simply route on home (v) !

Routing using Ramsey Spanning Trees

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

To route a package from u to v, we will simply route on home (v) ! The label of v will consist of: $\left(\operatorname{home}(v)\right.$, Label $\left.\operatorname{home}_{(v)}(v)\right)$.

Routing using Ramsey Spanning Trees

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

To route a package from u to v, we will simply route on home (v) ! The label of v will consist of: $\left(\right.$ home (v), Label home $\left._{(v)}(v)\right)$. The table of v will consist of union of all tables in \mathcal{T}.

Routing using Ramsey Spanning Trees

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \rightarrow \mathcal{T}$, such that for every $u, v \in V$,

$$
d_{\text {home }(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_{G}(v, u)
$$

To route a package from u to v, we will simply route on home (v) !
The label of v will consist of: $($ home (v), Label home $(v)(v))$. The table of v will consist of union of all tables in \mathcal{T}.

Theorem (Ramsey based Compact Routing Scheme)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
$O(k \cdot \log \log n)$	$O(\log n)$	$O\left(k \cdot n^{\frac{1}{k}}\right)$	$O(1)$

Theorem (Ramsey based Compact Routing Scheme)

 For any n-vertex graph, there is a routing scheme with :| Stretch | Label | Table | Decision time |
| :--- | :--- | :--- | :--- |
| $O(k \cdot \log \log n)$ | $O(\log n)$ | $O\left(k \cdot n^{\frac{1}{k}}\right)$ | $O(1)$ |

Theorem (Thorup, Zwick 01, Chechik 13)
For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
$3.68 k=O(k)$	$O(k \cdot \log n)$	$O\left(k \cdot n^{\frac{1}{k}}\right)$	$O(1)$ (initial: $O(k))$

Theorem (Ramsey based Compact Routing Scheme)

 For any n-vertex graph, there is a routing scheme with :| Stretch | Label | Table | Decision time |
| :--- | :--- | :--- | :--- |
| $O(k \cdot \log \log n)$ | $O(\log n)$ | $O\left(k \cdot n^{\frac{1}{k}}\right)$ | $O(1)$ |

Theorem (Thorup, Zwick 01, Chechik 13)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
$3.68 k=O(k)$	$O(k \cdot \log n)$	$O\left(k \cdot n^{\frac{1}{k}}\right)$	$O(1)$ (initial: $O(k))$

By choosing $k=\log n$, we get:

	Stretch	Label	Table	D. time
Here	$O(\log n \cdot \log \log n)$	$O(\log n)$	$O(\log n)$	$O(1)$
$[$ TZ01]	$O(\log n)$	$O\left(\log ^{2} n\right)$	$O(\log n)$	$O(1)(O(\log n))$

Technical Ideas

Theorem (Main Result)

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(\boldsymbol{k} \cdot \log \log n)$ w.r.t $M \times V$.

Technical Ideas

Theorem (Main Result)

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(\boldsymbol{k} \cdot \log \log n)$ w.r.t $M \times V$.

- Framework: Petal decomposition.

Technical Ideas

Theorem (Main Result)

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(\boldsymbol{k} \cdot \log \log n)$ w.r.t $M \times V$.

- Framework: Petal decomposition.
- Hierarchically padded decompositions.

Technical Ideas

Theorem (Main Result)

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

- Framework: Petal decomposition.
- Hierarchically padded decompositions.
- Region growing.

Petal Decomposition

Petal Decomposition

${ } x_{0}$

Petal Decomposition

$$
x_{0}
$$

Petal Decomposition

Petal Decomposition

- Each cluster X (petal) has a center vertex x.

Petal Decomposition

- Each cluster X (petal) has a center vertex x.
- The radius Δ defined w.r.t the center.

Petal Decomposition

- Each cluster X (petal) has a center vertex x.
- The radius Δ defined w.r.t the center.
- The radius decrease by $\frac{3}{4}$ factor in each hierarchi. step.

Petal Decomposition

- Each cluster X (petal) has a center vertex x.
- The radius Δ defined w.r.t the center.
- The radius decrease by $\frac{3}{4}$ factor in each hierarchi. step.
- The radius of T is at most 4 times larger than in G.

Petal Decomposition

- Each cluster X (petal) has a center vertex x.
- The radius Δ defined w.r.t the center.
- The radius decrease by $\frac{3}{4}$ factor in each hierarchi. step.
- The radius of T is at most 4 times larger than in G.

Corollary

Suppose v, u were separated while being in cluster of radius Δ. Then $d_{T}(v, u) \leq 8 \cdot \Delta$.

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.
W_{r} denotes the petal (cluster)
created for $R=r$.
Monotonicity: $r^{\prime} \leq r \Rightarrow W_{r^{\prime}} \subseteq W_{r}$.

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.
W_{r} denotes the petal (cluster)
created for $R=r$.
Monotonicity: $r^{\prime} \leq r \Rightarrow W_{r^{\prime}} \subseteq W_{r}$. Set $\delta=\Delta /(k \cdot \log \log n)$.
x_{0}

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.
W_{r} denotes the petal (cluster)
created for $R=r$.
Monotonicity: $r^{\prime} \leq r \Rightarrow W_{r^{\prime}} \subseteq W_{r}$.
Set $\delta=\Delta /(k \cdot \log \log n)$.
Vertex v s.t. $B(v, \delta) \subseteq W_{r}$ is padded.

$\stackrel{\bullet}{0}_{0}$

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.
W_{r} denotes the petal (cluster)
created for $R=r$.
Monotonicity: $r^{\prime} \leq r \Rightarrow W_{r^{\prime}} \subseteq W_{r}$.
Set $\delta=\Delta /(k \cdot \log \log n)$.
Vertex v s.t. $B(v, \delta) \subseteq W_{r}$ is padded.
All vertices out of $W_{r+\delta} \backslash W_{r-\delta}$ (restricted area) are padded.

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.
W_{r} denotes the petal (cluster)
created for $R=r$.
Monotonicity: $r^{\prime} \leq r \Rightarrow W_{r^{\prime}} \subseteq W_{r}$.
Set $\delta=\Delta /(k \cdot \log \log n)$.
Vertex v s.t. $B(v, \delta) \subseteq W_{r}$ is padded.

Padded vertices suffer distortion at most $\boldsymbol{\Delta} / \boldsymbol{\delta}=O(k \cdot \log \log n)$!

Petal Growth

Degree of freedom:
parameter $R \in[\mathrm{lo}, \mathrm{hi}]\left(\mathrm{hi}-\mathrm{lo}=\frac{\Delta}{8}\right)$.
W_{r} denotes the petal (cluster)
created for $R=r$.
Monotonicity: $r^{\prime} \leq r \Rightarrow W_{r^{\prime}} \subseteq W_{r}$.
Set $\delta=\Delta /(k \cdot \log \log n)$.
Vertex v s.t. $B(v, \delta) \subseteq W_{r}$ is padded.

Padded vertices suffer distortion at most $\boldsymbol{\Delta} / \boldsymbol{\delta}=O(k \cdot \log \log n)$!
Goal: find r, with many padded vertices! (sparse restricted area).

Petal Decomposition

Petal Decomposition

A vertex which is padded in all the levels will have small distortion w.r.t all other vertices.

Petal Decomposition

A vertex which is padded in all the levels will have small distortion w.r.t all other vertices.

Goal: choose parameters $(r \in[/ o, h i])$ s.t. at least $n^{1-\frac{1}{k}}$ vertices will be padded in all levels.

Petal Decomposition

A vertex which is padded in all the levels will have small distortion w.r.t all other vertices.

Goal: choose parameters $(r \in[/ o, h i])$ s.t. at least $n^{1-\frac{1}{k}}$ vertices will be padded in all levels.

A vertex is called active if it is
 padded in all levels up till now.

Region Growing

For petal W_{r} :
Active $x \in W_{r-\delta}$ remains active.
Active $x \in W_{r+\delta} \backslash W_{r-\delta}$
$r \in[l o, h i]$

Region Growing

For petal W_{r} :
Active $x \in W_{r-\delta}$ remains active.
Active $x \in W_{r+\delta} \backslash W_{r-\delta}$
ceases to be active.

Region Growing

For petal W_{r} :
Active $x \in W_{r-\delta}$ remains active.
Active $x \in W_{r+\delta} \backslash W_{r-\delta}$
ceases to be active.

Region Growing

For petal W_{r} :
Active $x \in W_{r-\delta}$ remains active.
Active $x \in W_{r+\delta} \backslash W_{r-\delta}$
ceases to be active.

Region Growing

For petal W_{r} :
Active $x \in W_{r-\delta}$ remains active.
Active $x \in W_{r+\delta} \backslash W_{r-\delta}$
ceases to be active.

$$
r \in[l o, h i] \quad \dot{x}_{0}
$$

Intuition

There is $r \in[l o, h i]$ such that $W_{r-\delta}$ is
large enough compared to $W_{r+\delta}$.

Intuition

There is $r \in[l o, h i]$ such that $W_{r-\delta}$ is large enough compared to $W_{r+\delta}$.

Intuition

There is $r \in[l o, h i]$ such that $W_{r-\delta}$ is
large enough compared to $W_{r+\delta}$.

Intuition

There is $r \in[/ o, h i]$ such that $W_{r-\delta}$ is
large enough compared to $W_{r+\delta}$.

Corollary

At least $n^{1-1 / k}$ vertices remain active at the end of the process.

Intuition

There is $r \in[l o, h i]$ such that $W_{r-\delta}$ is
large enough compared to $W_{r+\delta}$.

Corollary

At least $n^{1-1 / k}$ vertices remain active at the end of the process.

Theorem (Main Result)
For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Open Questions

- Remove the $\log \log n$ factor.

Conjecture

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O\left(k \cdot \lambda \phi \phi \phi \phi \phi_{\phi} / \boldsymbol{\eta}\right)$ w.r.t $M \times V$.

Open Questions

- Remove the $\log \log n$ factor.

Conjecture

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O\left(k \cdot \lambda \phi \phi_{\phi} \lambda \phi \phi / \phi_{1}\right)$ w.r.t $M \times V$.
(2) Improve construction for deterministic distance oracle.

Distance Oracle	Distortion	Size	Query
This paper+C14	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$
C15 (Randomized)	$2 k-1$	$O\left(n^{1+1 / k}\right)$	$O(1)$

Open Questions

- Remove the $\log \log n$ factor.

Conjecture

For every n-vertex weighted graph $G=(V, E, w)$ and $k \geq 1$, there exists a subset M of size $n^{1-1 / k}$ and spanning tree T of G with distortion $O\left(k \cdot \lambda \phi \phi_{\phi} / \phi \phi_{\phi}^{\prime} / \eta_{1}\right)$ w.r.t $M \times V$.
(2) Improve construction for deterministic distance oracle.

Distance Oracle	Distortion	Size	Query
This paper+C14	$2 k-1$	$O\left(k \cdot n^{1+1 / k}\right)$	$O(1)$
C15 (Randomized)	$2 k-1$	$O\left(n^{1+1 / k}\right)$	$O(1)$

(3) Find more applications to Ramsey spanning trees!

