Ramsey Spanning Trees and their Applications

Arnold Filtser

Ben-Gurion University

Co-authors: Ittai Abraham, Shiri Chechik, Michael Elkin, Ofer Neiman

Workshop on Data Summarization University of Warwick

Metric Embeddings

$$(X, d_X)$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$f: X \to R^d$$

$$(R^d, \|\cdot\|_2)$$

Embedding $f : X \to \mathbb{R}^d$ has distortion α if for all $x, y \in X$ $d_X(x, y) \le \|f(x) - f(y)\|_2 \le \alpha \cdot d_X(x, y)$

Metric Embeddings

$$(X, d_X)$$

$$\vdots$$

$$\vdots$$

$$f: X \to R^d$$

$$(R^d, \|\cdot\|_2)$$

Embedding $f : X \to \mathbb{R}^d$ has distortion α if for all $x, y \in X$ $d_X(x, y) \le \|f(x) - f(y)\|_2 \le \alpha \cdot d_X(x, y)$

Theorem (Bourgain,85)

Every *n*-point metric (X, d_X) is embeddable into <u>Euclidean</u> space with distortion $O(\log n)$.

Metric Embeddings

$$(X, d_X)$$

$$(X, d_X)$$

$$(X, d_X)$$

$$(X, d_X)$$

$$(X, d_X)$$

$$(R^d, \|\cdot\|_2)$$

$$(R^d, \|\cdot\|_2)$$

Embedding $f : X \to \mathbb{R}^d$ has distortion α if for all $x, y \in X$ $d_X(x, y) \le \|f(x) - f(y)\|_2 \le \alpha \cdot d_X(x, y)$

Theorem (Bourgain,85)

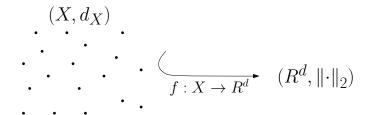
Every *n*-point metric (X, d_X) is embeddable into <u>Euclidean</u> space with distortion $O(\log n)$.

Asymptotically tight.

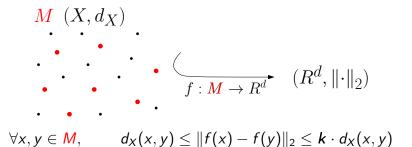
Arnold Filtser

Ramsey Spanning Trees and their Applications

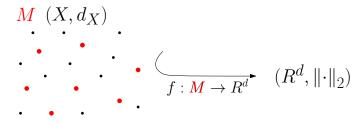
For a fixed distortion k > 1, what is the largest subset $M \subset X$, s.t. (M, d_X) is embeddable into Euclidean space with **distortion** k?



For a fixed distortion k > 1, what is the largest subset $M \subset X$, s.t. (M, d_X) is embeddable into Euclidean space with **distortion** k?



For a fixed distortion k > 1, what is the largest subset $M \subset X$, s.t. (M, d_X) is embeddable into Euclidean space with **distortion** k?



 $\forall x, y \in M, \qquad d_X(x, y) \leq \|f(x) - f(y)\|_2 \leq k \cdot d_X(x, y)$

Theorem (Mendel, Naor 07, following BFM86, BLMN05) For every n-point metric space and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ that can be embedded into Euclidean space with distortion O(k).

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ that can be embedded into Euclidean space with distortion O(k).

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ that can be embedded into Euclidean space with distortion O(k).

Asymptotically tight.

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ that can be embedded into Euclidean space with distortion O(k).

Asymptotically tight.

Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ that can be embedded into <u>ultrametric</u>

with distortion O(k).

Asymptotically tight.

Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Ultrametric is a spacial kind of tree which is:

- Very useful for divide an conquer algorithms.
- Isometrically embeds into Euclidean space (i.e. distortion 1).

Paper	Distortion	Size	
BFM06	$O(k \log \log n)$	$n^{1-1/k}$	
BLMN04	$O(k \log k)$	$n^{1-1/k}$	
MN07	128 · <i>k</i>	$n^{1-1/k}$	
BGS16	33 · <i>k</i>	$n^{1-1/k}$	
NT12	2e ⋅ k	$n^{1-1/k}$	

Paper	Distortion	Size	
BFM06	$O(k \log \log n)$	$n^{1-1/k}$	Randomized
BLMN04	$O(k \log k)$	$n^{1-1/k}$	Randomized
MN07	128 · <i>k</i>	$n^{1-1/k}$	Randomized
BGS16	33 · <i>k</i>	$n^{1-1/k}$	Randomized
NT12	2e ⋅ k	$n^{1-1/k}$	Randomized

Paper	Distortion	Size	
BFM06	$O(k \log \log n)$	$n^{1-1/k}$	Randomized
BLMN04	$O(k \log k)$	$n^{1-1/k}$	Randomized
MN07	128 · <i>k</i>	$n^{1-1/k}$	Randomized
BGS16	33 · <i>k</i>	$n^{1-1/k}$	Randomized
NT12	2e · k	$n^{1-1/k}$	Randomized
This Paper	8 · <i>k</i> − 2	$n^{1-1/k}$	Deterministic

The constant in the distortion important as it in the exponent.

Paper	Distortion	Size	
BFM06	$O(k \log \log n)$	$n^{1-1/k}$	Randomized
BLMN04	$O(k \log k)$	$n^{1-1/k}$	Randomized
MN07	128 · <i>k</i>	$n^{1-1/k}$	Randomized
BGS16	33 · <i>k</i>	$n^{1-1/k}$	Randomized
NT12	2e · k	$n^{1-1/k}$	Randomized
This Paper	$8 \cdot \mathbf{k} - 2$	$n^{1-1/k}$	Deterministic

*Bartal had similar (deterministic) result.

Theorem (Our Secondary Result)

For every n-point metric space and $k \ge 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1/k}$ that can be embedded into <u>ultrametric</u> with distortion $\mathbf{8} \cdot k$.

Theorem (Our Secondary Result)

For every n-point metric space and $k \ge 1$, there is a deterministic algorithm that finds a subset M of size $n^{1-1/k}$ that can be embedded into <u>ultrametric</u> with distortion $\mathbf{8} \cdot k$.

Instead of preserving distance for $M \times M$, we can preserve distances for $M \times X$.

Theorem (Our Secondary Result)

For every n-point metric space and $k \ge 1$, there is a **deterministic algorithm** that finds a subset M of size $n^{1-1/k}$ such that the hall metric can be embedded into **ultrametric** with distortion **16** $\cdot k$ w.r.t $M \times X$.

Instead of preserving distance for $M \times M$, we can preserve distances for $M \times X$.

Theorem (Our Secondary Result)

For every n-point metric space and $k \ge 1$, there is a **deterministic algorithm** that finds a subset M of size $n^{1-1/k}$ such that the hall metric can be embedded into **ultrametric** with distortion **16** $\cdot k$ w.r.t $M \times X$.

Theorem (Our Secondary Result)

For every n-point metric space and $k \ge 1$, there is a **deterministic algorithm** that finds a subset M of size $n^{1-1/k}$ such that the hall metric can be embedded into **ultrametric** with distortion **16** $\cdot k$ w.r.t $M \times X$.

Corollary

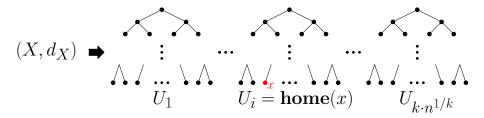
For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a <u>mapping</u> home : $X \to \mathcal{U}$, such that for every $x, y \in U$,

 $d_{\mathbf{home}(x)}(x,y) \leq (\mathbf{16} \cdot \mathbf{k}) \cdot d_X(x,y)$

Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \to \mathcal{U}$, such that for every $x, y \in U$,

 $d_{\mathsf{home}(x)}(x,y) \leq (16 \cdot k) \cdot d_X(x,y)$



Distance Oracle

A distance oracle is a succinct data structure that (approximately) answers distance queries.

Distance Oracle

A distance oracle is a succinct data structure that (approximately) answers distance queries.

Distance Oracle

A distance oracle is a succinct data structure that (approximately) answers distance queries.

The properties of interest are size, distortion and query time.

Arnold Filtser

Distance Oracles: State of the Art

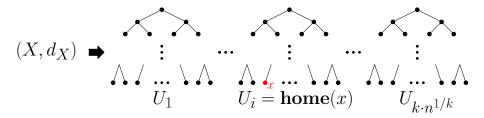
DO	Distortion	Size	Query	Deterministic?
TZ05	2k - 1	$O(k \cdot n^{1+1/k})$	O(k)	no
MN07	128 <i>k</i>	$O(n^{1+1/k})$	O(1)	no
W13	$(2+\epsilon)k$	$O(k \cdot n^{1+1/k})$	$O(1/\epsilon)$	no
C14	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)	no
C15	2k - 1	$O(n^{1+1/k})$	O(1)	no
RTZ05	2k - 1	$O(k \cdot n^{1+1/k})$	O(k)	yes
W13	2k - 1	$O(k \cdot n^{1+1/k})$	$O(\log k)$	yes

Distance Oracle	Distortion	Size	Query
RTZ05	2k - 1	$O(k \cdot n^{1+1/k})$	O(k)
W13	2k - 1	$O(k \cdot n^{1+1/k})$	$O(\log k)$
This paper	$8(1+\epsilon)k$	$O(n^{1+1/k})$	$O(1/\epsilon)$
This paper+C14	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)

Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \to \mathcal{U}$, such that for every $x, y \in U$,

 $d_{\mathsf{home}(x)}(x,y) \leq (16 \cdot k) \cdot d_X(x,y)$



Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a <u>mapping</u> home : $X \to \mathcal{U}$, such that for every $x, y \in U$,

 $d_{\mathbf{home}(x)}(x,y) \leq (\mathbf{16} \cdot \mathbf{k}) \cdot d_X(x,y)$

Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a <u>mapping</u> home : $X \to \mathcal{U}$, such that for every $x, y \in U$, $d_{\text{home}(x)}(x, y) \le (16 \cdot k) \cdot d_X(x, y)$

Theorem (Tree Distance Oracle, HT84, BFC00)

For every tree metric, there is an exact distance oracle of linear size and constant query time.

Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a <u>mapping</u> home : $X \to \mathcal{U}$, such that for every $x, y \in U$, $d_{\text{home}(x)}(x, y) \le (16 \cdot k) \cdot d_X(x, y)$

Theorem (Tree Distance Oracle, HT84, BFC00)

For every tree metric, there is an exact distance oracle of linear size and constant query time.

Theorem (Ramsey based Deterministic Distance Oracle)

For any n-point metric space, there is a distance oracle with :

Distortion		Query time
16 ⋅ <i>k</i>	$O(k \cdot n^{1+1/k})$	O(1)

Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a <u>mapping</u> home : $X \to \mathcal{U}$, such that for every $x, y \in U$, $d_{\text{home}(x)}(x, y) \le (16 \cdot k) \cdot d_X(x, y)$

Theorem (Ramsey based Deterministic Distance Oracle)

For any n-point metric space, there is a distance oracle with :

Distance Oracle	Distortion	Size	Query
This paper	16 · <i>k</i>	$O(k \cdot n^{1+1/k})$	O(1)
This paper	$8(1+\epsilon)k$	$O(n^{1+1/k})$	$O(1/\epsilon)$
This paper+C14	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)

Corollary

For every n-point metric space and $k \ge 1$, there is a set \mathcal{U} of $k \cdot n^{\frac{1}{k}}$ ultrametrics and a mapping home : $X \to \mathcal{U}$, such that for every $x, y \in U$, $d_{\text{home}(x)}(x, y) \le (16 \cdot k) \cdot d_X(x, y)$

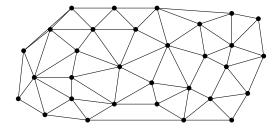
Theorem (Ramsey based Deterministic Distance Oracle)

For any n-point metric space, there is a distance oracle with :

Distance Oracle	Distortion	Size	Query
This paper	16 · <i>k</i>	$O(k \cdot n^{1+1/k})$	O(1)
This paper	$8(1+\epsilon)k$	$O(n^{1+1/k})$	$O(1/\epsilon)$
This paper+C14	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)
C15 (Randomized)	2k - 1	$O(n^{1+1/k})$	O(1)

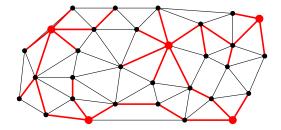
Ramsey Spanning Tree Question

Given a weighted graph G = (V, E, w), and a fixed distortion k > 1, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?



Ramsey Spanning Tree Question

Given a weighted graph G = (V, E, w), and a fixed distortion k > 1, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?



For all $v \in M$ and $u \in V$, $d_T(v, u) \leq k \cdot d_G(v, u)$.

Main Result

Ramsey Spanning Tree Question

Given a weighted graph G = (V, E, w), and a fixed distortion k > 1, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?

Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Main Result

Ramsey Spanning Tree Question

Given a weighted graph G = (V, E, w), and a fixed distortion k > 1, what is the largest subset $M \subset V$, such that: there is a spanning tree T of G with distortion k w.r.t $M \times V$?

Theorem (Main Result)

For every n-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ and spanning tree T of Gwith distortion $O(\overline{k \cdot \log \log n}) w.r.t M \times V$.

Theorem (Mendel, Naor 07)

For every n-point metric space (X, d_X) and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ and an <u>ultrametric</u> U over Xwith distortion O(k) w.r.t $M \times X$.

Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

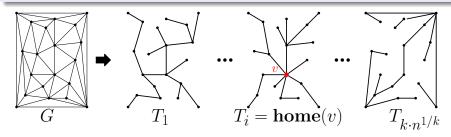
Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n) w.r.t M \times V$.

Corollary

For every n-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a <u>mapping</u> home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

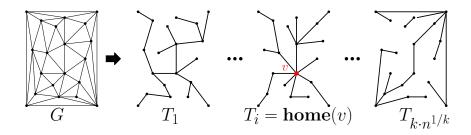
 $d_{\mathbf{home}(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_G(v, u)$



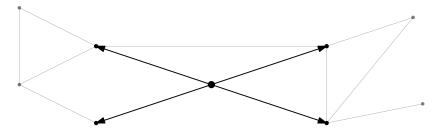
Corollary

For every n-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $\overline{k \cdot n^{\frac{1}{k}}}$ spanning trees and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

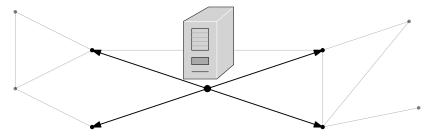
 $d_{\mathbf{home}(v)}(v, u) \le O(k \cdot \log \log n) \cdot d_G(v, u)$



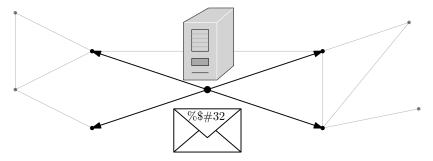
The union of all the trees in \mathcal{T} creates an $O(k \cdot \log \log n)$ -spanner with $O(k \cdot n^{1+\frac{1}{k}})$ edges.



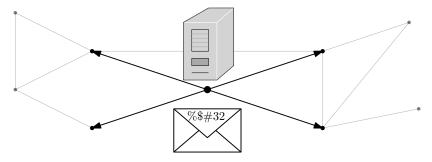
• Huge network



- Huge network
- There is a server in each node.

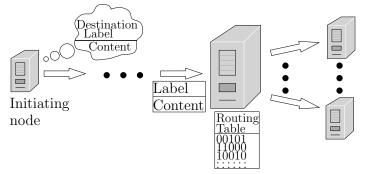


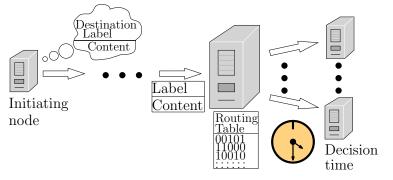
- Huge network
- There is a server in each node.
- Task: **route** packages throughout the network.

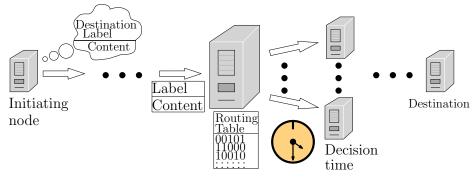


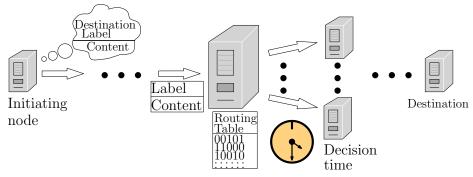
- Huge network
- There is a server in each node.
- Task: **route** packages throughout the network.
- Store the whole network in each node is unfeasible.

node

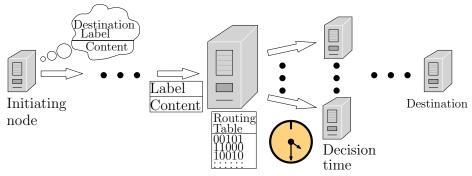




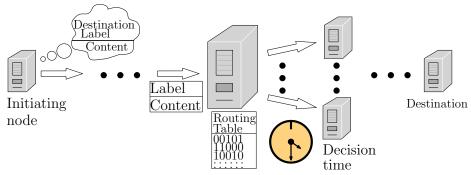




In order to keep other parameters small, we will allow stretch.



In order to keep other **parameters small**, we will allow **stretch**. Stretch k: the length of a **route** from v to u will be $\leq k \cdot d_G(v, u)$.



In order to keep other **parameters small**, we will allow **stretch**. Stretch k: the length of a **route** from v to u will be $\leq k \cdot d_G(v, u)$.

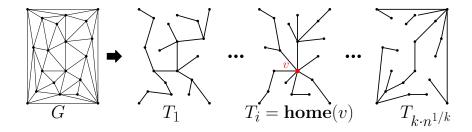
Theorem (Thorup, Zwick, 01)

For any n-vertex tree T = (V, E), there is a routing scheme with :

Stretch	Label	Table	Decision time
1	$O(\log n)$	O(1)	<i>O</i> (1)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

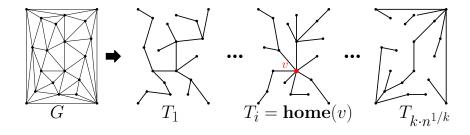
 $d_{\mathbf{home}(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_G(v, u)$



For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

 $d_{\mathbf{home}(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_G(v, u)$

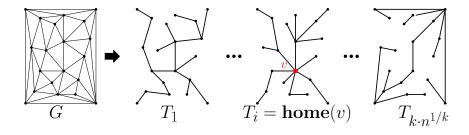
To **route** a package from *u* to *v*, we will simply route on **home**(*v*)!



For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

 $d_{\mathbf{home}(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_G(v, u)$

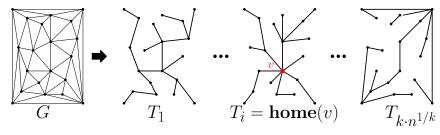
To **route** a package from u to v, we will simply route on **home**(v)! The label of v will consist of: $(home(v), Label_{home(v)}(v))$.



For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

$$d_{\mathbf{home}(v)}(v, u) \leq O(\mathbf{k} \cdot \log \log n) \cdot d_G(v, u)$$

To **route** a package from u to v, we will simply route on **home**(v)! The label of v will consist of: $(home(v), Label_{home(v)}(v))$. The table of v will consist of union of all tables in \mathcal{T} .



For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there is a set \mathcal{T} of $k \cdot n^{\frac{1}{k}}$ spanning trees and a mapping home : $V \to \mathcal{T}$, such that for every $u, v \in V$,

 $d_{\mathbf{home}(v)}(v, u) \leq O(k \cdot \log \log n) \cdot d_G(v, u)$

To **route** a package from u to v, we will simply route on **home**(v)! The label of v will consist of: $(home(v), Label_{home(v)}(v))$. The table of v will consist of union of all tables in \mathcal{T} .

Theorem (Ramsey based Compact Routing Scheme)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
$O(k \cdot \log \log n)$	$O(\log n)$	$O(k \cdot n^{\frac{1}{k}})$	<i>O</i> (1)

Theorem (Ramsey based Compact Routing Scheme)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
$O(k \cdot \log \log n)$	$O(\log n)$	$O(k \cdot n^{\frac{1}{k}})$	<i>O</i> (1)

Theorem (Thorup, Zwick 01, Chechik 13)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
3.68k = O(k)	$O(k \cdot \log n)$	$O(k \cdot n^{\frac{1}{k}})$	O(1) (initial: $O(k)$)

Theorem (Ramsey based Compact Routing Scheme)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
$O(k \cdot \log \log n)$	$O(\log n)$	$O(k \cdot n^{\frac{1}{k}})$	<i>O</i> (1)

Theorem (Thorup, Zwick 01, Chechik 13)

For any n-vertex graph, there is a routing scheme with :

Stretch	Label	Table	Decision time
3.68k = O(k)	$O(k \cdot \log n)$	$O(k \cdot n^{\frac{1}{k}})$	O(1) (initial: $O(k)$)

By choosing $k = \log n$, we get:

	Stretch	Label	Table	D. time
Here	$O(\log n \cdot \log \log n)$	$O(\log n)$	$O(\log n)$	<i>O</i> (1)
[TZ01]	$O(\log n)$	$O(\log^2 n)$	$O(\log n)$	$O(1) (O(\log n))$

Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

• Framework: Petal decomposition.

Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

• Framework: Petal decomposition.

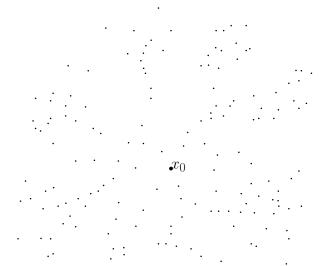
• Hierarchically padded decompositions.

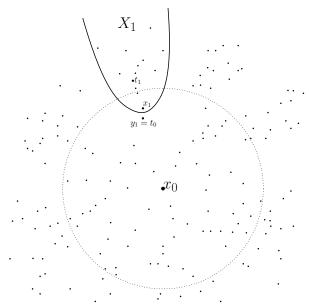
Theorem (Main Result)

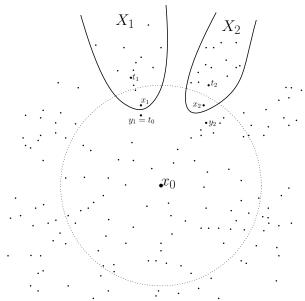
For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset *M* of size $n^{1-1/k}$ and spanning tree *T* of *G* with distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

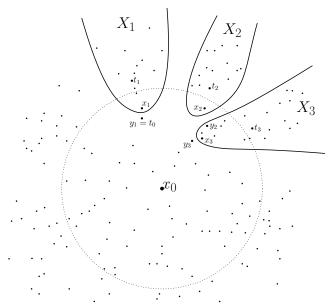
• Framework: Petal decomposition.

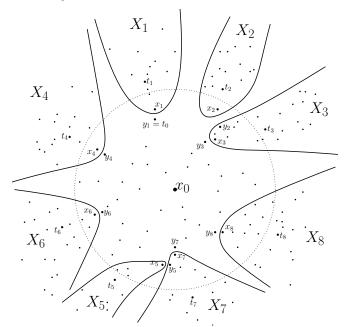
- Hierarchically padded decompositions.
- Region growing.

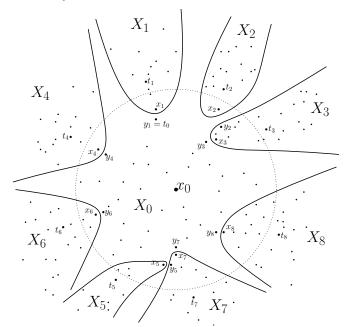


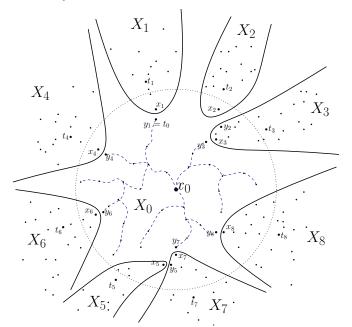


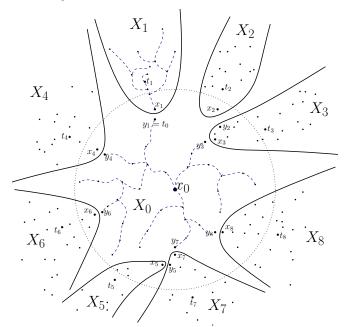


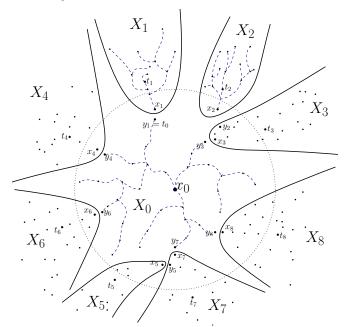


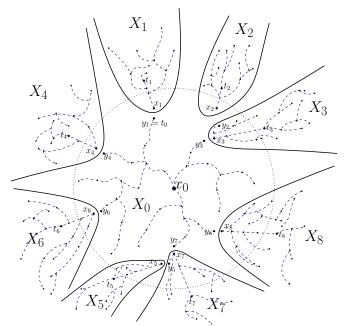


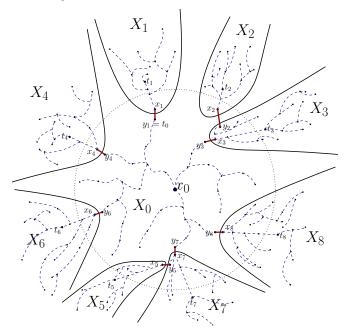




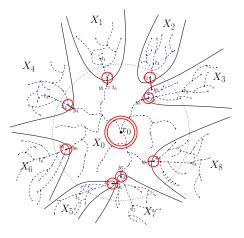




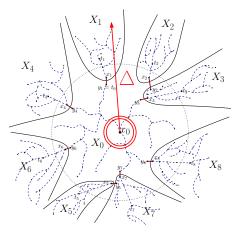




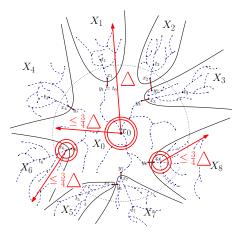
• Each cluster X (petal) has a center vertex x.



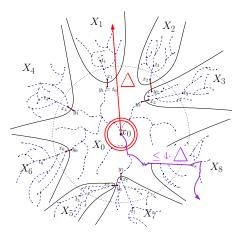
- Each cluster X (petal) has a center vertex x.
- The radius ∆ defined w.r.t the center.



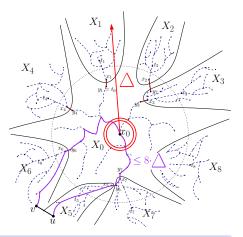
- Each cluster X (petal) has a center vertex x.
- The radius ∆ defined w.r.t the center.
- The radius decrease by $\frac{3}{4}$ factor in each hierarchi. step.



- Each cluster X (petal) has a center vertex x.
- The radius ∆ defined w.r.t the center.
- The radius decrease by $\frac{3}{4}$ factor in each hierarchi. step.
- The radius of *T* is at most 4 times larger than in *G*.



- Each cluster X (petal) has a center vertex x.
- The radius ∆ defined w.r.t the center.
- The radius decrease by $\frac{3}{4}$ factor in each hierarchi. step.
- The radius of *T* is at most 4 times larger than in *G*.



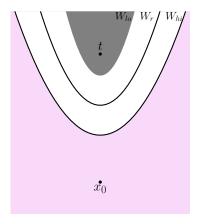
Corollary

Suppose v, u were separated while being in cluster of radius Δ . Then $d_T(v, u) \leq 8 \cdot \Delta$.

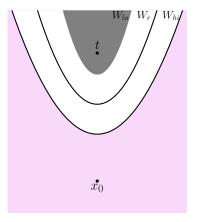
Arnold Filtser

Ramsey Spanning Trees and their Applications

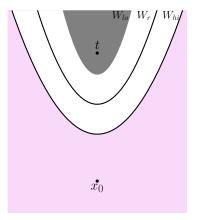
$\frac{\text{Degree of freedom:}}{\text{parameter } R \in [\text{lo}, \text{hi}] \text{ (hi - lo} = \frac{\Delta}{8}\text{)}.$



 $\begin{array}{l} \underline{\text{Degree of freedom:}}\\ \hline \text{parameter } R \in [\text{lo},\text{hi}] \ (\text{hi} - \text{lo} = \frac{\Delta}{8}).\\ W_r \ \text{denotes the } \textbf{petal} \ (\text{cluster})\\ & \text{created for } R = r.\\ \hline \text{Monotonicity: } r' \leq r \Rightarrow W_{r'} \subseteq W_r. \end{array}$

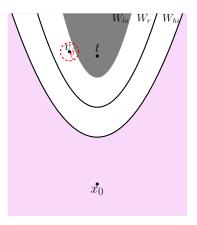


 $\begin{array}{l} \underline{\text{Degree of freedom:}}\\ \hline \text{parameter } R \in [\text{lo},\text{hi}] \ (\text{hi} - \text{lo} = \frac{\Delta}{8}).\\ W_r \ \text{denotes the } \textbf{petal} \ (\text{cluster})\\ & \text{created for } R = r.\\ \hline \underline{\text{Monotonicity:}} \ r' \leq r \Rightarrow W_{r'} \subseteq W_r.\\ \hline \text{Set } \delta = \Delta/(k \cdot \log \log n). \end{array}$

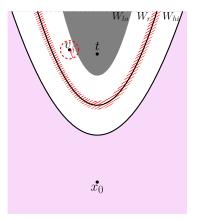


Degree of freedom: parameter $R \in [lo, hi]$ (hi - lo = $\frac{\Delta}{8}$). W_r denotes the **petal** (cluster) created for R = r. <u>Monotonicity</u>: $r' \leq r \Rightarrow W_{r'} \subseteq W_r$. Set $\delta = \Delta/(k \cdot \log \log n)$.

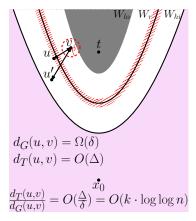
Vertex v s.t. $B(v, \delta) \subseteq W_r$ is padded.



Degree of freedom: parameter $R \in [lo, hi]$ (hi – lo = $\frac{\Delta}{8}$). W_r denotes the **petal** (cluster) created for R = r. Monotonicity: $r' < r \Rightarrow W_{r'} \subset W_r$. Set $\delta = \Delta/(k \cdot \log \log n)$. Vertex v s.t. $B(v, \delta) \subseteq W_r$ is padded. All vertices out of $W_{r+\delta} \setminus W_{r-\delta}$ (restricted area) are padded.

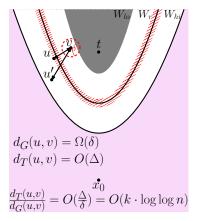


Degree of freedom: parameter $R \in [lo, hi]$ (hi – lo = $\frac{\Delta}{\circ}$). W_r denotes the **petal** (cluster) created for R = r. Monotonicity: $r' \leq r \Rightarrow W_{r'} \subset W_r$. Set $\delta = \Delta/(k \cdot \log \log n)$. Vertex v s.t. $B(v, \delta) \subseteq W_r$ is padded. All vertices out of $W_{r+\delta} \setminus W_{r-\delta}$ (restricted area) are padded.



Padded vertices suffer distortion at most $\Delta/\delta = O(k \cdot \log \log n)!$

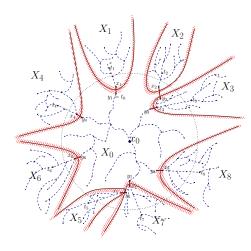
Degree of freedom: parameter $R \in [lo, hi]$ (hi – lo = $\frac{\Delta}{8}$). W_r denotes the **petal** (cluster) created for R = r. Monotonicity: $r' < r \Rightarrow W_{r'} \subset W_r$. Set $\delta = \Delta/(k \cdot \log \log n)$. Vertex v s.t. $B(v, \delta) \subseteq W_r$ is **padded**. All vertices out of $W_{r+\delta} \setminus W_{r-\delta}$ (restricted area) are padded.



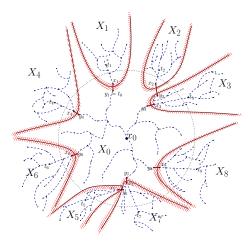
Padded vertices suffer distortion at most $\Delta/\delta = O(k \cdot \log \log n)!$

Goal: find *r*, with **many padded vertices**! (sparse restricted area).

Arnold Filtser

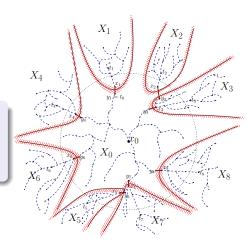


A vertex which is **padded in all the levels** will have small distortion w.r.t all other vertices.



A vertex which is **padded in all the levels** will have small distortion w.r.t all other vertices.

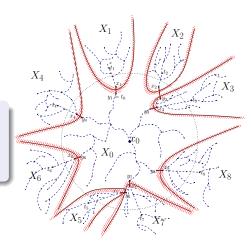
Goal: choose parameters $(r \in [lo, hi])$ s.t. at least $n^{1-\frac{1}{k}}$ vertices will be **padded in all levels**.



A vertex which is **padded in all the levels** will have small distortion w.r.t all other vertices.

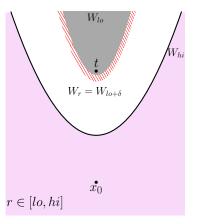
Goal: choose parameters $(r \in [lo, hi])$ s.t. at least $n^{1-\frac{1}{k}}$ vertices will be **padded in all levels**.

A vertex is called <u>active</u> if it is **padded** in all levels **up till now**.



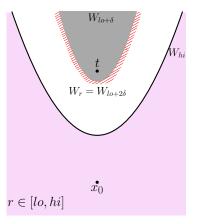
For petal W_r :

Active $x \in W_{r-\delta}$ remains active.



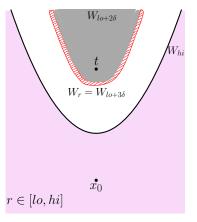
For petal W_r :

Active $x \in W_{r-\delta}$ remains active.



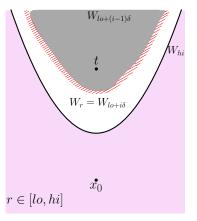
For petal W_r :

Active $x \in W_{r-\delta}$ remains active.



For petal W_r :

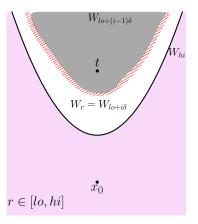
Active $x \in W_{r-\delta}$ remains active.



For petal W_r :

Active $x \in W_{r-\delta}$ remains active.

Active $x \in W_{r+\delta} \setminus W_{r-\delta}$ ceases to be active.



Intuition There is $r \in [lo, hi]$ such that $W_{r-\delta}$ is large enough compared to $W_{r+\delta}$.

There is $r \in [lo, hi]$ such that $W_{r-\delta}$ is large enough compared to $W_{r+\delta}$.

There is $r \in [lo, hi]$ such that $W_{r-\delta}$ is large enough compared to $W_{r+\delta}$.

There is $r \in [lo, hi]$ such that $W_{r-\delta}$ is large enough compared to $W_{r+\delta}$.

Corollary

At least $n^{1-1/k}$ vertices remain active at the end of the process.

There is $r \in [lo, hi]$ such that $W_{r-\delta}$ is large enough compared to $W_{r+\delta}$.

Corollary

At least $n^{1-1/k}$ vertices remain active at the end of the process.

Theorem (Main Result)

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ and spanning tree T of Gwith distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Open Questions

• **Remove** the log log *n* factor.

Conjecture

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ and spanning tree T of Gwith distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

Open Questions

• **Remove** the log log *n* factor.

Conjecture

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ and spanning tree T of Gwith distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

2

Improve construction for deterministic distance oracle.

Distance Oracle	Distortion	Size	Query
This paper+C14	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)
C15 (Randomized)	2k - 1	$O(n^{1+1/k})$	O(1)

Open Questions

• **Remove** the log log *n* factor.

Conjecture

For every *n*-vertex weighted graph G = (V, E, w) and $k \ge 1$, there exists a subset M of size $n^{1-1/k}$ and spanning tree T of Gwith distortion $O(k \cdot \log \log n)$ w.r.t $M \times V$.

2

Improve construction for deterministic distance oracle.

Distance Oracle	Distortion	Size	Query
This paper+C14	2k - 1	$O(k \cdot n^{1+1/k})$	O(1)
C15 (Randomized)	2k - 1	$O(n^{1+1/k})$	O(1)

Sind more applications to Ramsey spanning trees!