Distributed Minimum Vertex Coloring Approximation

Workshop on Data Summarization, University of Warwick

Christian Konrad

21.03.2018

Joint work with Victor Zamaraev (Durham)

Distributed Minimum Vertex Coloring Approximation

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

Distributed Minimum Vertex Coloring Approximation

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

The LOCAL Model

Input: Network $G=(V, E), n=|V|$, max degree Δ

- Nodes host processors and have unique IDs
- Synchronous communication along edges, individual messages of unbounded sizes
- Running time: Number of communication rounds
- r rounds \Leftrightarrow compute output from distance- r neighborhood

The LOCAL Model

Input: Network $G=(V, E), n=|V|$, max degree Δ

- Nodes host processors and have unique IDs
- Synchronous communication along edges, individual messages of unbounded sizes
- Running time: Number of communication rounds
- r rounds \Leftrightarrow compute output from distance- r neighborhood

Vertex Coloring Problems

($\Delta+1$)-coloring:

- Easy sequentially: Greedy algorithm
- Ring: $\Theta\left(\log ^{*} n\right)$ [Cole, Vishkin, 1986], [Linial, 1992]
- General Graphs: $2^{\mathrm{O}(\sqrt{\log \log n})}$ [Chang, Li, Pettie, 2018]
Δ-coloring: (assuming no $\Delta+1$ clique, $\Delta \geq 3$)
- Not achievable by a Greedy coloring
- $\Theta\left(\log ^{3} n / \log \Delta\right)$ [Panconesi, Srinivasan, 1993]
- $\mathrm{O}(\log \Delta)+2^{\mathrm{O}(\sqrt{\log \log n})}$ [Ghaffari et al., 2018]

Fewer colors:

- Arboricity a: $\mathrm{O}(a)$-coloring in $\mathrm{O}(a \log n)$ rounds [Barenb., Elkin, 2010]
- 3-coloring trees, 6 -coloring planar graphs, ...

Minimum Vertex Coloring

Chromatic number $\chi(G)$: smallest c such that there is a c-coloring Minimum Vertex Coloring (MVC): find $\chi(G)$-coloring

- NP-hard [Karp, 1972]
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC: Network-decomposition [Linial, Saks, 1993]

- Partition vertices $V=V_{1} \dot{\cup} \cdots \dot{U} V_{k}$ into clusters, $\mathrm{O}\left(\log ^{2} n\right)$ rounds
- Each cluster $G\left[V_{i}\right]$ has diameter $\mathrm{O}(\log n)$
- Cluster graph colored with $\mathrm{O}(\log n)$ colors:

Minimum Vertex Coloring

Chromatic number $\chi(G)$: smallest c such that there is a c-coloring Minimum Vertex Coloring (MVC): find $\chi(G)$-coloring

- NP-hard [Karp, 1972]
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC: Network-decomposition [Linial, Saks, 1993]

- Partition vertices $V=V_{1} \dot{\cup} \cdots \dot{\cup} V_{k}$ into clusters, $\mathrm{O}\left(\log ^{2} n\right)$ rounds
- Each cluster $G\left[V_{i}\right]$ has diameter $\mathrm{O}(\log n)$
- Cluster graph colored with $\mathrm{O}(\log n)$ colors:

Minimum Vertex Coloring

Chromatic number $\chi(G)$: smallest c such that there is a c-coloring Minimum Vertex Coloring (MVC): find $\chi(G)$-coloring

- NP-hard [Karp, 1972]
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC: Network-decomposition [Linial, Saks, 1993]

- Partition vertices $V=V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ into clusters, $\mathrm{O}\left(\log ^{2} n\right)$ rounds
- Each cluster $G\left[V_{i}\right]$ has diameter $\mathrm{O}(\log n)$
- Cluster graph colored with $\mathrm{O}(\log n)$ colors:

- $\mathrm{O}(\log n)$-approximation in $\mathrm{O}\left(\log ^{2} n\right)$ rounds to MVC
- Poly-time if graph class admits poly-time approximations

MVC on Interval Graphs

Interval Graphs: Intersection graph of intervals on the line

[Halldórsson, Konrad, 2014,2017] :

- $(1+\epsilon)$-approximation in $\mathrm{O}\left(\frac{1}{\epsilon} \log ^{*} n\right)$ rounds (for $\left.\epsilon>\frac{2}{\chi(G)}\right)$
- Lower Bound: $\Omega\left(\frac{1}{\epsilon}+\log ^{*} n\right)$ rounds

Research Questions: Can we...

- Improve approximation factor $\mathrm{O}(\log n)$ on general graphs?
- Get $\mathrm{O}(1)$ or $(1+\epsilon)$-approximations on other graph classes?

Distributed Minimum Vertex Coloring Approximation

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

MVC on Chordal Graphs

Chordal Graphs: Every cycle of at least 4 vertices contains a chord:

[Konrad, Zamaraev, 2018] : MVC

- $(1+\epsilon)$-approximation in $\mathrm{O}\left(\frac{1}{\epsilon} \log n\right)$ rounds (for $\left.\epsilon>\frac{2}{\chi(G)}\right)$
- Lower Bound: $\Omega\left(\frac{1}{\epsilon}+\log n\right)$ rounds

MVC on Chordal Graphs

Chordal Graphs: Every cycle of at least 4 vertices contains a chord:

[Konrad, Zamaraev, 2018] : MVC

- (1+ $)$-approximation in $\mathrm{O}\left(\frac{1}{\epsilon} \log n\right)$ rounds (for $\left.\epsilon>\frac{2}{\chi(G)}\right)$
- Lower Bound: $\Omega\left(\frac{1}{\epsilon}+\log n\right)$ rounds

Chordal Graphs vs. Interval Graphs:

- Chordal graphs contain trees, interval graphs don't
- Linial's tree coloring LB applies: coloring trees with $O(1)$ colors requires $\Omega(\log n)$ rounds [Linial, 1992]

MVC on Chordal Graphs

Chordal Graphs: Every cycle of at least 4 vertices contains a chord:

[Konrad, Zamaraev, 2018] : MVC

- $(1+\epsilon)$-approximation in $\mathrm{O}\left(\frac{1}{\epsilon} \log n\right)$ rounds $\left(\right.$ for $\left.\epsilon>\frac{2}{\chi(G)}\right)$
- Lower Bound: $\Omega\left(\frac{1}{\epsilon}+\log n\right)$ rounds

Chordal Graphs vs. Interval Graphs:

- Chordal graphs contain trees, interval graphs don't
- Linial's tree coloring LB applies: coloring trees with $O(1)$ colors requires $\Omega(\log n)$ rounds [Linial, 1992]

Technique: Tree Decomposition

Tree Decomposition of Chordal Graphs

Chordal Graph: Clique Tree

(1) Set of bags $=$ set of maximal cliques
(2) Bags containing any vertex v induces a subtree

Distributed Processing:

- Nodes compute local view of (global) clique tree
- Locality property: Diameter of each bag is 1

Interval Graph: Clique tree is a path

Tree Decomposition of Chordal Graphs

Chordal Graph: Clique Tree

(1) Set of bags $=$ set of maximal cliques
(2) Bags containing any vertex v induces a subtree

Distributed Processing:

- Nodes compute local view of (global) clique tree
- Locality property: Diameter of each bag is 1

Interval Graph: Clique tree is a path

Local View of Clique Tree

Weighted Clique Intersection Graph:

- Let \mathcal{C} be the maximal cliques in chordal graph G
- Let $W_{G}=(\mathcal{C}, \mathcal{E})$ be the weighted clique intersection graph of G, i.e., there is an edge of weight $k(k \geq 1)$ between cliques C_{i}, C_{j} if $\left|C_{i} \cap C_{j}\right|=k$
\mathcal{T} is a clique tree $\Leftrightarrow \mathcal{T}$ is a maximum weight spanning tree in W_{G}

Technicalities:

- Clique tree unique if W_{G} has unique maximum weight spanning tree
- Local View of v : For each $u \in \Gamma^{k}(v)$:
(1) Compute maximal cliques that u is contained in;
(2) Compute maximum weight spanning tree \mathcal{T}_{u} in clique intersection graph of these cliques;
(3) Add \mathcal{T}_{u} to local view of global spanning tree.

Distributed Algorithm

$(1+\epsilon)$-approximation Algorithm for MVC:
(1) Peeling Phase: Partition vertex set V into layers $V_{1}, V_{2}, \ldots, V_{\log n}$ such that $G\left[V_{i}\right]$ is an interval graph in $O\left(\frac{1}{\epsilon} \log n\right)$ rounds
(2) Coloring Phase: Color each interval graph $G\left[V_{i}\right]$ independently and seperately (compute a $(1+\epsilon)$-approximation to MVC) in $\mathrm{O}\left(\frac{1}{\epsilon} \log ^{*} n\right)$ rounds using [Halldórsson, Konrad, 2017]
(3) Color Correction Phase: Resolve coloring conflicts between the layers in $\mathrm{O}\left(\frac{1}{\epsilon} \log n\right)$ rounds

Overall Runtime: $\mathrm{O}\left(\frac{1}{\epsilon} \log n\right)$ rounds

Peeling Phase

Definition: Let \mathcal{T} be the clique tree of G

- Pendant Path: incident to a leaf, degrees at most 2
- Internal Path: not incident to a leaf, degrees at most 2

Lemma: Set of vertices whose corresponding subtrees are contained in a pendant or internal path forms an interval graph

Peeling Process: Let $\mathcal{T}_{1}=\mathcal{T}$. For $i=1 \ldots \log n$ do:

- Remove all pendant paths, and all "long enough"
 internal paths from \mathcal{T}_{i}. (nodes can decide this in $\mathrm{O}\left(\frac{1}{\epsilon}\right)$ rounds)
- Let V_{i} be all vertices whose corresponding subtree in \mathcal{T}_{i} is included in a pendant/long enough internal path
- Let \mathcal{T}_{i+1} be clique tree of residual graph (can be obtained by removing pendant/internal paths)

Lemma: Peeling process terminates after $\log n$ rounds.
(each step number of nodes of degree ≥ 3 halves)

Color Correction Phase

Algorithm:

(1) Leave colors of layer $V_{\log n}$ unchanged
(2) Correct colors layer by layer from $V_{\log n-1}$ downwards to layer V_{1}

Correcting layer i :
Layer i corresponds to pendant and internal paths in \mathcal{T}_{i}

Lemma: Only intervals at distance $\mathrm{O}\left(\frac{1}{\epsilon}\right)$ from boundary cliques need to change colors to resolve all coloring conflicts

Coloring Interval Graphs with Precolored Boundary Cliques

Goal: Prove that color completion with few colors exists

Coloring Interval Graphs with Precolored Boundary Cliques

Goal: Prove that color completion with few colors exists

Circular Arc Graphs:

- Load $L(G)$: Largest subset containing the same point
- Circular cover length I(G): cardinality of smallest subset of arcs covering the circle

Coloring Interval Graphs with Precolored Boundary Cliques

Goal: Prove that color completion with few colors exists

Circular Arc Graphs:

- Load $L(G)$: Largest subset containing the same point
- Circular cover length $I(G)$: cardinality of smallest subset of arcs covering the circle
[Valencia-Pabon, 2003] :
$\left\lfloor\left(1+\frac{1}{1(G)-2}\right) L(G)\right\rfloor+1$ colors suffice to color circular arc graph G

Approximation Factor (2)

Pre-colored Interval Graph G to Circular Arc Graph F:

$$
1 .
$$

$$
C_{1}^{C_{1}}
$$

2.

3.

Properties:

(1) Load: $L(F) \leq \chi(G)$
(2) Circular cover: $l(F) \geq k$

Valencia-Pabon: $\left\lfloor\left(1+\frac{1}{k-2}\right) \chi(G)\right\rfloor+1$ colors suffice

Approximation Factor (2)

Pre-colored Interval Graph G to Circular Arc Graph F:

$$
1 .
$$

2.

3.

Properties:

(1) Load: $L(F) \leq \chi(G)$
(3) Circular cover: $I(F) \geq k$
4.

$$
k \sim \frac{1}{\epsilon}, \epsilon \geq \frac{2}{\chi(G)}
$$

Valencia-Pabon: $\left\lfloor\left(1+\frac{1}{k-2}\right) \chi(G)\right\rfloor+1$ colors suffice

Approximation Factor (2)

Pre-colored Interval Graph G to Circular Arc Graph F:

$$
1 .
$$

2.

3.

Properties:
(1) Load: $L(F) \leq \chi(G)$
(3) Circular cover: $I(F) \geq k$
4.

$$
k \sim \frac{1}{\epsilon}, \epsilon \geq \frac{2}{\chi(G)}
$$

Valencia-Pabon: $\left\lfloor\left(1+\frac{\epsilon}{2}\right) \chi(G)\right\rfloor+\frac{\epsilon}{2} \chi(G)$ colors suffice

Approximation Factor (2)

Pre-colored Interval Graph G to Circular Arc Graph F:

$$
1 .
$$

2.

3.

Properties:
(1) Load: $L(F) \leq \chi(G)$
(2) Circular cover: $I(F) \geq k$
4.

$$
k \sim \frac{1}{\epsilon}, \epsilon \geq \frac{2}{\chi(G)}
$$

Valencia-Pabon: $(1+\epsilon) \chi(G)$ colors suffice

Algorithm: Summary

Three phases:
(1) Peeling Phase: $\log n$ iterations, each requiring $\mathrm{O}\left(\frac{1}{\epsilon}\right)$ rounds
(2) Coloring Phase: $\mathrm{O}\left(\frac{1}{\epsilon} \log ^{*} n\right)$

- Color Correction Phase: $\log n$ iterations, each requiring $\mathrm{O}\left(\frac{1}{\epsilon}\right)$ rounds

Adapt Technique to Maximum Independent Set: (MaxIS)

- (1+ $)$-approximation to MaxIS on chordal graphs in $\mathrm{O}\left(\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right) \log ^{*} n\right)$ rounds
- On the way: $(1+\epsilon)$-approximation to MaxIS on interval graphs in $\mathrm{O}\left(\frac{1}{\epsilon} \log ^{*} n\right)$ rounds
- Lower Bound: $\Omega\left(\frac{1}{\epsilon}\right)$

Distributed Minimum Vertex Coloring Approximation

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

Tree Decomposition in Distributed Computing

How useful are Tree Decompositions for Distributed Algorithms?

- Only few papers make use of tree decompositions
- Perfect tool for chordal graphs
- Can we handle other graph classes as well using tree decompositions?

Obstacle:

- Tree decomposition of cycle of length k contains bags that are at distance $\Omega(k)$ in the original graph
- Impossible for nodes to obtain coherent local views of global tree decomposition in $o(k)$ rounds

Tree Length

- Graph of tree length k has tree decomposition where diameter of every bag is at most k
- Contains k-chordal graphs

Thank you very much.

