Workshop on Data Summarization, University of Warwick

Christian Konrad

21.03.2018

Joint work with Victor Zamaraev (Durham)

Outline:

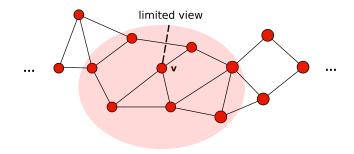
- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

The LOCAL Model

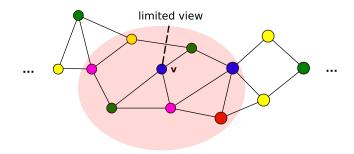
Input: Network G = (V, E), n = |V|, max degree Δ



- Nodes host processors and have unique IDs
- Synchronous communication along edges, individual messages of unbounded sizes
- Running time: Number of communication rounds
- *r* rounds ⇔ compute output from distance-*r* neighborhood

The LOCAL Model

Input: Network G = (V, E), n = |V|, max degree Δ



- Nodes host processors and have unique IDs
- Synchronous communication along edges, individual messages of unbounded sizes
- Running time: Number of communication rounds
- *r* rounds ⇔ compute output from distance-*r* neighborhood

Vertex Coloring Problems

$(\Delta + 1)$ -coloring:

- Easy sequentially: GREEDY algorithm
- Ring: $\Theta(\log^* n)$ [Cole, Vishkin, 1986], [Linial, 1992]
- General Graphs: $2^{O(\sqrt{\log\log n})}$ [Chang, Li, Pettie, 2018]

Δ -coloring: (assuming no $\Delta+1$ clique, $\Delta\geq 3$)

- Not achievable by a GREEDY coloring
- $\Theta(\log^3 n/\log \Delta)$ [Panconesi, Srinivasan, 1993]
- $O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$ [Ghaffari et al., 2018]

Fewer colors:

- Arboricity a: O(a)-coloring in $O(a \log n)$ rounds [Barenb., Elkin, 2010]
- 3-coloring trees, 6-coloring planar graphs, ...

Minimum Vertex Coloring

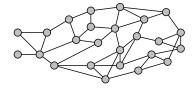
Chromatic number $\chi(G)$: smallest c such that there is a c-coloring

Minimum Vertex Coloring (MVC): find $\chi(G)$ -coloring

- NP-hard [Karp, 1972]
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC: Network-decomposition [Linial, Saks, 1993]

- Partition vertices $V = V_1 \dot{\cup} \cdots \dot{\cup} V_k$ into clusters, $O(\log^2 n)$ rounds
- Each cluster $G[V_i]$ has diameter $O(\log n)$
- Cluster graph colored with $O(\log n)$ colors:



Minimum Vertex Coloring

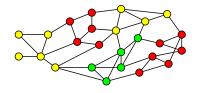
Chromatic number $\chi(G)$: smallest c such that there is a c-coloring

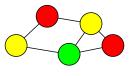
Minimum Vertex Coloring (MVC): find $\chi(G)$ -coloring

- NP-hard [Karp, 1972]
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC: Network-decomposition [Linial, Saks, 1993]

- Partition vertices $V = V_1 \cup \cdots \cup V_k$ into clusters, $O(\log^2 n)$ rounds
- Each cluster $G[V_i]$ has diameter $O(\log n)$
- Cluster graph colored with $O(\log n)$ colors:





Minimum Vertex Coloring

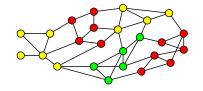
Chromatic number $\chi(G)$: smallest c such that there is a c-coloring

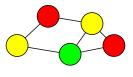
Minimum Vertex Coloring (MVC): find $\chi(G)$ -coloring

- NP-hard [Karp, 1972]
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC: Network-decomposition [Linial, Saks, 1993]

- Partition vertices $V = V_1 \dot{\cup} \cdots \dot{\cup} V_k$ into clusters, $O(\log^2 n)$ rounds
- Each cluster $G[V_i]$ has diameter $O(\log n)$
- Cluster graph colored with $O(\log n)$ colors:

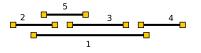




- $O(\log n)$ -approximation in $O(\log^2 n)$ rounds to MVC
- Poly-time if graph class admits poly-time approximations

MVC on Interval Graphs

Interval Graphs: Intersection graph of intervals on the line



[Halldórsson, Konrad, 2014,2017] :

- $(1+\epsilon)$ -approximation in $O(\frac{1}{\epsilon}\log^* n)$ rounds (for $\epsilon>\frac{2}{\chi(G)}$)
- Lower Bound: $\Omega(\frac{1}{\epsilon} + \log^* n)$ rounds

Research Questions: Can we...

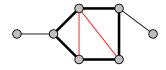
- Improve approximation factor $O(\log n)$ on general graphs?
- Get O(1) or $(1+\epsilon)$ -approximations on other graph classes?

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

MVC on Chordal Graphs

Chordal Graphs: Every cycle of at least 4 vertices contains a **chord**:

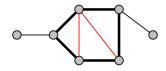


[Konrad, Zamaraev, 2018]: MVC

- $(1+\epsilon)$ -approximation in $\mathrm{O}(\frac{1}{\epsilon}\log n)$ rounds (for $\epsilon>\frac{2}{\chi(G)}$)
- Lower Bound: $\Omega(\frac{1}{\epsilon} + \log n)$ rounds

MVC on Chordal Graphs

Chordal Graphs: Every cycle of at least 4 vertices contains a chord:



[Konrad, Zamaraev, 2018]: MVC

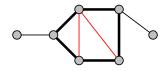
- $(1+\epsilon)$ -approximation in $\mathrm{O}(\frac{1}{\epsilon}\log n)$ rounds (for $\epsilon>\frac{2}{\chi(G)}$)
- Lower Bound: $\Omega(\frac{1}{\epsilon} + \log n)$ rounds

Chordal Graphs vs. Interval Graphs:

- Chordal graphs contain trees, interval graphs don't
- Linial's tree coloring LB applies: coloring trees with O(1) colors requires $\Omega(\log n)$ rounds [Linial, 1992]

MVC on Chordal Graphs

Chordal Graphs: Every cycle of at least 4 vertices contains a chord:



[Konrad, Zamaraev, 2018]: MVC

- ullet $(1+\epsilon)$ -approximation in $\mathrm{O}(rac{1}{\epsilon}\log n)$ rounds (for $\epsilon>rac{2}{\chi(G)}$)
- Lower Bound: $\Omega(\frac{1}{\epsilon} + \log n)$ rounds

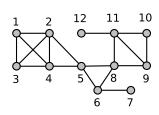
Chordal Graphs vs. Interval Graphs:

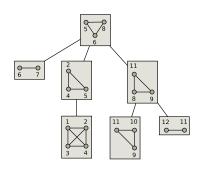
- Chordal graphs contain trees, interval graphs don't
- Linial's tree coloring LB applies: coloring trees with O(1) colors requires $\Omega(\log n)$ rounds [Linial, 1992]

Technique: Tree Decomposition

Tree Decomposition of Chordal Graphs

Chordal Graph: Clique Tree





- Set of bags = set of maximal cliques
- Bags containing any vertex v induces a subtree

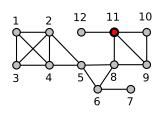
Distributed Processing:

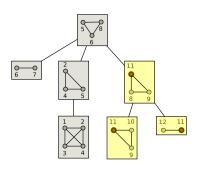
- Nodes compute local view of (global) clique tree
- Locality property: Diameter of each bag is 1

Interval Graph: Clique tree is a path

Tree Decomposition of Chordal Graphs

Chordal Graph: Clique Tree





- Set of bags = set of maximal cliques
- Bags containing any vertex v induces a subtree

Distributed Processing:

- Nodes compute local view of (global) clique tree
- Locality property: Diameter of each bag is 1

Interval Graph: Clique tree is a path

Local View of Clique Tree

Weighted Clique Intersection Graph:

- ullet Let ${\mathcal C}$ be the maximal cliques in chordal graph ${\mathcal G}$
- Let $W_G = (\mathcal{C}, \mathcal{E})$ be the weighted clique intersection graph of G, i.e., there is an edge of weight k ($k \ge 1$) between cliques C_i , C_j if $|C_i \cap C_j| = k$

 ${\mathcal T}$ is a clique tree $\Leftrightarrow {\mathcal T}$ is a maximum weight spanning tree in $W_{\mathcal G}$

Technicalities:

- Clique tree unique if W_G has unique maximum weight spanning tree
- Local View of v: For each $u \in \Gamma^k(v)$:
 - Compute maximal cliques that u is contained in;
 - **②** Compute maximum weight spanning tree \mathcal{T}_u in clique intersection graph of these cliques;
 - 3 Add \mathcal{T}_u to local view of global spanning tree .

Distributed Algorithm

$(1+\epsilon)$ -approximation Algorithm for MVC:

- **Quantity Peeling Phase:** Partition vertex set V into layers $V_1, V_2, \ldots, V_{\log n}$ such that $G[V_i]$ is an interval graph in $O(\frac{1}{\epsilon} \log n)$ rounds
- **Quantification Quantification Quan**
- **Olor Correction Phase:** Resolve coloring conflicts between the layers in $O(\frac{1}{\epsilon} \log n)$ rounds

Overall Runtime: $O(\frac{1}{\epsilon} \log n)$ rounds

Peeling Phase

Definition: Let \mathcal{T} be the clique tree of G

- Pendant Path: incident to a leaf, degrees at most 2
- Internal Path: not incident to a leaf, degrees at most 2

Lemma: Set of vertices whose corresponding subtrees are contained in a pendant or internal path forms an interval graph

Peeling Process: Let $T_1 = T$. For $i = 1 \dots \log n$ do:

- Remove all pendant paths, and all "long enough" • • internal paths from \mathcal{T}_i . (nodes can decide this in $O(\frac{1}{\epsilon})$ rounds)
- Let V_i be all vertices whose corresponding subtree in \mathcal{T}_i is included in a pendant/long enough internal path
- Let \mathcal{T}_{i+1} be clique tree of residual graph (can be obtained by removing pendant/internal paths)

Lemma: Peeling process terminates after $\log n$ rounds. (each step number of nodes of degree ≥ 3 halves)

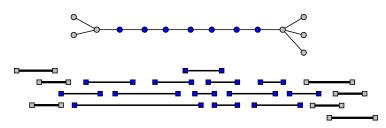
Color Correction Phase

Algorithm:

- **1** Leave colors of layer $V_{\log n}$ unchanged
- ② Correct colors layer by layer from $V_{\log n-1}$ downwards to layer V_1

Correcting layer *i*:

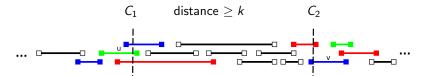
Layer i corresponds to pendant and internal paths in \mathcal{T}_i



Lemma: Only intervals at distance $O(\frac{1}{\epsilon})$ from boundary cliques need to change colors to resolve all coloring conflicts

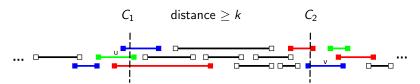
Coloring Interval Graphs with Precolored Boundary Cliques

Goal: Prove that color completion with few colors exists



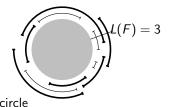
Coloring Interval Graphs with Precolored Boundary Cliques

Goal: Prove that color completion with few colors exists



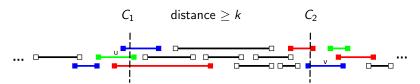
Circular Arc Graphs:

- Load L(G): Largest subset containing the same point
- Circular cover length I(G): cardinality of smallest subset of arcs covering the circle



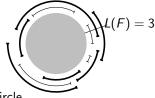
Coloring Interval Graphs with Precolored Boundary Cliques

Goal: Prove that color completion with few colors exists



Circular Arc Graphs:

- Load L(G): Largest subset containing the same point
- Circular cover length I(G): cardinality of smallest subset of arcs covering the circle



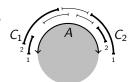
[Valencia-Pabon, 2003]:

 $\lfloor \left(1+\frac{1}{l(G)-2}\right)L(G)\rfloor+1$ colors suffice to color circular arc graph G

Pre-colored Interval Graph *G* **to Circular Arc Graph** *F*:

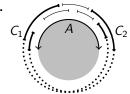
1.

2.

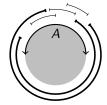


 C_1 C_2

3.



4.



Properties:

• Load: $L(F) \leq \chi(G)$

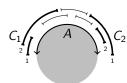
② Circular cover: $I(F) \ge k$

Valencia-Pabon: $\lfloor \left(1 + \frac{1}{k-2}\right) \chi(G) \rfloor + 1$ colors suffice

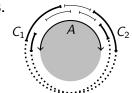
Pre-colored Interval Graph *G* **to Circular Arc Graph** *F*:

1.

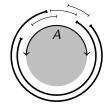
2.



3.



4.



Properties:

- Load: $L(F) \leq \chi(G)$
- ② Circular cover: $I(F) \ge k$

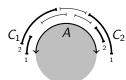
$$k \sim \frac{1}{\epsilon}$$
, $\epsilon \geq \frac{2}{\chi(G)}$

Valencia-Pabon: $\lfloor \left(1 + \frac{1}{k-2}\right) \chi(G) \rfloor + 1$ colors suffice

Pre-colored Interval Graph *G* **to Circular Arc Graph** *F*:

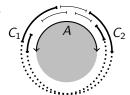
1.

2.

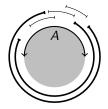


 C_1 C_2

3.



4.



Properties:

• Load: $L(F) \leq \chi(G)$

② Circular cover: $I(F) \ge k$

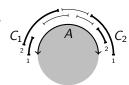
 $k \sim \frac{1}{\epsilon}$, $\epsilon \geq \frac{2}{\chi(G)}$

Valencia-Pabon: $\lfloor (1 + \frac{\epsilon}{2}) \chi(G) \rfloor + \frac{\epsilon}{2} \chi(G)$ colors suffice

Pre-colored Interval Graph *G* **to Circular Arc Graph** *F*:

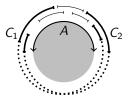
1.

2

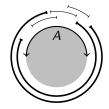


 C_1 C_2 C_2

3.



4.



Properties:

• Load: $L(F) \leq \chi(G)$

② Circular cover: $I(F) \ge k$

Valencia-Pabon: $(1 + \epsilon) \chi(G)$ colors suffice

$$k \sim \frac{1}{\epsilon}$$
, $\epsilon \geq \frac{2}{\chi(G)}$

Algorithm: Summary

Three phases:

- **1** Peeling Phase: $\log n$ iterations, each requiring $O(\frac{1}{\epsilon})$ rounds
- 2 Coloring Phase: $O(\frac{1}{\epsilon} \log^* n)$
- **②** Color Correction Phase: $\log n$ iterations, each requiring $O(\frac{1}{\epsilon})$ rounds

Adapt Technique to Maximum Independent Set: (MaxIS)

- $(1+\epsilon)$ -approximation to MaxIS on chordal graphs in $O(\frac{1}{\epsilon}\log(\frac{1}{\epsilon})\log^* n)$ rounds
- On the way: $(1+\epsilon)$ -approximation to MaxIS on interval graphs in $O(\frac{1}{\epsilon}\log^* n)$ rounds
- Lower Bound: $\Omega(\frac{1}{\epsilon})$

Outline:

- Introduction: LOCAL Model and Vertex Coloring
- Coloring Chordal Graphs
- Discussion: Tree Decomposition and Distributed Computing

Tree Decomposition in Distributed Computing

How useful are Tree Decompositions for Distributed Algorithms?

- Only few papers make use of tree decompositions
- Perfect tool for chordal graphs
- Can we handle other graph classes as well using tree decompositions?

Obstacle:

- Tree decomposition of cycle of length k contains bags that are at distance $\Omega(k)$ in the original graph
- Impossible for nodes to obtain coherent local views of global tree decomposition in o(k) rounds

Tree Length

- Graph of tree length k has tree decomposition where diameter of every bag is at most k
- Contains k-chordal graphs

Thank you very much.