Heat Kernels in Graphs:

A Journey from Random Walks to Geometry, and Back

He Sun
University of Edinburgh

Notation

Let G be an undirected d-regular graph with n vertices.

Notation

Let G be an undirected d-regular graph with n vertices.
Laplacian Matrix
The normalised Laplacian matrix of G is defined by

$$
\mathcal{L} \triangleq \mathbf{I}-\frac{1}{d} \cdot \mathbf{A},
$$

where \mathbf{A} is the adjacency matrix of G.

Notation

Let G be an undirected d-regular graph with n vertices.

Laplacian Matrix

The normalised Laplacian matrix of G is defined by

$$
\mathcal{L} \triangleq \mathbf{I}-\frac{1}{d} \cdot \mathbf{A},
$$

where \mathbf{A} is the adjacency matrix of G.

Example:

$$
\mathcal{L}_{G}=\left(\begin{array}{cccc}
1 & -1 / 3 & -1 / 3 & -1 / 3 \\
-1 / 3 & 1 & -1 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 1 & -1 / 3 \\
-1 / 3 & -1 / 3 & -1 / 3 & 1
\end{array}\right)
$$

Notation

Let G be an undirected d-regular graph with n vertices.

Laplacian Matrix

The normalised Laplacian matrix of G is defined by

$$
\mathcal{L} \triangleq \mathbf{I}-\frac{1}{d} \cdot \mathbf{A},
$$

where \mathbf{A} is the adjacency matrix of G.

Example:

$$
\mathcal{L}_{G}=\left(\begin{array}{cccc}
1 & -1 / 3 & -1 / 3 & -1 / 3 \\
-1 / 3 & 1 & -1 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 1 & -1 / 3 \\
-1 / 3 & -1 / 3 & -1 / 3 & 1
\end{array}\right)
$$

Matrix \mathcal{L} has eigenvalues $0=\lambda_{1} \leq \ldots \leq \lambda_{n}$ with corresponding eigenvectors

$$
f_{1}, \ldots, f_{n} .
$$

Heat Kernel: a Fundamental Solution of a PDE

Let \mathcal{M} be a compact Riemannian manifold, and

$$
u: \mathcal{M} \times[0, \infty) \rightarrow \mathbb{R}
$$

be a smooth function describing the temperature at a point in \mathcal{M} and time t.

Heat Kernel: a Fundamental Solution of a PDE

Let \mathcal{M} be a compact Riemannian manifold, and

$$
u: \mathcal{M} \times[0, \infty) \rightarrow \mathbb{R}
$$

be a smooth function describing the temperature at a point in \mathcal{M} and time t.

Heat Kernel

Let \mathcal{M} be a compact Riemannian manifold and Δ the Laplacian operator. Then the heat kernel is the fundament solution of the following PDE:

$$
\frac{\partial u}{\partial t}+\Delta u=0
$$

Heat Kernel: a Fundamental Solution of a PDE

Let \mathcal{M} be a compact Riemannian manifold, and

$$
u: \mathcal{M} \times[0, \infty) \rightarrow \mathbb{R}
$$

be a smooth function describing the temperature at a point in \mathcal{M} and time t.
Heat Kernel
Let \mathcal{M} be a compact Riemannian manifold and Δ the Laplacian operator. Then the heat kernel is the fundament solution of the following PDE:

$$
\frac{\partial u}{\partial t}+\Delta u=0
$$

Heat Kernel Defines a Continuous-Time Random Walk

Heat Kernel in Graphs

When Δ is the Laplacian matrix \mathcal{L} of graph G, for any $t \geq 0$ the heat kernel of G can be written as

$$
\mathbf{H}_{t}=\mathrm{e}^{-t \mathcal{L}}=\sum_{k=0}^{\infty} \frac{t^{k} \mathrm{e}^{-t}}{k!} \mathbf{P}^{k}
$$

where P is the random walk matrix of G.

Heat Kernel Defines a Continuous-Time Random Walk

Heat Kernel in Graphs

When Δ is the Laplacian matrix \mathcal{L} of graph G, for any $t \geq 0$ the heat kernel of G can be written as

$$
\mathbf{H}_{t}=\mathrm{e}^{-t \mathcal{L}}=\sum_{k=0}^{\infty} \frac{t^{k} \mathrm{e}^{-t}}{k!} \mathbf{P}^{k}
$$

where \mathbf{P} is the random walk matrix of G.

Heat kernel defines a continuous-time random walk:

- Vertices choose a neighbour according to P;
- Jumps occur after Poison(1) waiting times.

Heat Kernel Defines a Continuous-Time Random Walk

Heat Kernel in Graphs

When Δ is the Laplacian matrix \mathcal{L} of graph G, for any $t \geq 0$ the heat kernel of G can be written as

$$
\mathbf{H}_{t}=\mathrm{e}^{-t \mathcal{L}}=\sum_{k=0}^{\infty} \frac{t^{k} \mathrm{e}^{-t}}{k!} \mathbf{P}^{k}
$$

where P is the random walk matrix of G.

Heat kernel defines a continuous-time random walk:

- Vertices choose a neighbour according to P;
- Jumps occur after Poison(1) waiting times.

Continuous-time Random Walks \approx Discrete-time Random Walks!

Heat Kernel Defines a Continuous-Time Random Walk

Heat Kernel in Graphs

When Δ is the Laplacian matrix \mathcal{L} of graph G, for any $t \geq 0$ the heat kernel of
G can be written as

$$
\mathbf{H}_{t}=\mathrm{e}^{-t \mathcal{L}}=\sum_{k=0}^{\infty} \frac{t^{k} \mathrm{e}^{-t}}{k!} \mathbf{P}^{k}
$$

where P is the random walk matrix of G.

Heat kernel defines a continuous-time random walk:

- Vertices choose a neighbour according to P;
- Jumps occur after Poison(1) waiting times.

Continuous-time Random Walks \approx Discrete-time Random Walks!

The heat kernel defines a semi-group, i.e.,

$$
\mathbf{H}_{t+s}=\mathbf{H}_{t} \cdot \mathbf{H}_{s}, \forall t, s \geq 0 \quad \text { and } \quad \lim _{t \rightarrow 0} \mathbf{H}_{t}=\mathbf{I}
$$

Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step $t \geq 0$, define an embedding $\psi_{t}: V \mapsto \mathbb{R}^{n}$ by

$$
\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \mathrm{e}^{-t \lambda_{2}} f_{2}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)
$$

Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step $t \geq 0$, define an embedding $\psi_{t}: V \mapsto \mathbb{R}^{n}$ by

$$
\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \mathrm{e}^{-t \lambda_{2}} f_{2}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)
$$

Let the heat kernel distance between vertices u and v be

$$
d_{t}(u, v)=\left\|\psi_{t}(u)-\psi_{t}(v)\right\|^{2}
$$

Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step $t \geq 0$, define an embedding $\psi_{t}: V \mapsto \mathbb{R}^{n}$ by

$$
\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \mathrm{e}^{-t \lambda_{2}} f_{2}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)
$$

Let the heat kernel distance between vertices u and v be

$$
d_{t}(u, v)=\left\|\psi_{t}(u)-\psi_{t}(v)\right\|^{2}
$$

Heat kernel distance can be viewed as the derivative of the effective resistance of the same edge, i.e.,

$$
\int_{0}^{\infty} d_{t}(u, v) \mathrm{d} t=R(u, v)
$$

Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step $t \geq 0$, define an embedding $\psi_{t}: V \mapsto \mathbb{R}^{n}$ by

$$
\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \mathrm{e}^{-t \lambda_{2}} f_{2}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)
$$

Let the heat kernel distance between vertices u and v be

$$
d_{t}(u, v)=\left\|\psi_{t}(u)-\psi_{t}(v)\right\|^{2}
$$

Heat kernel distance can be viewed as the derivative of the effective resistance of the same edge, i.e.,

$$
\int_{0}^{\infty} d_{t}(u, v) \mathrm{d} t=R(u, v)
$$

A simple calculation shows that $d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

edge $\{u, v\}$ is at one side of a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

edge $\{u, v\}$ is at one side of a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

edge $\{u, v\}$ is at one side of a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

edge $\{u, v\}$ is at one side of a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.
- The values of two $\mathbf{H}_{t}(w,$.$) s are$ close to each other.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

edge $\{u, v\}$ is at one side of a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- The values of two $\mathbf{H}_{t}(w,$.$) s are$ close to each other.
- Hence, $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is small for any vertex w.
- Hence, $d_{t}(u, v)$ is big.

Heat Kernel Distance: From Geometry to Random Walks

Assume that $t \approx$ local mixing time, which can will be found by binary search.

$$
d_{t}(u, v)=\sum_{w \in V}\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}
$$

edge $\{u, v\}$ is along a sparse cut

edge $\{u, v\}$ is at one side of a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is big.
- Hence, $d_{t}(u, v)$ is big.
- The values of two $\mathbf{H}_{t}(w,$.$) s are$ close to each other.
- Hence, $\left(\mathbf{H}_{t}(w, u)-\mathbf{H}_{t}(w, v)\right)^{2}$ is small for any vertex w.
- Hence, $d_{t}(u, v)$ is small.

Key Questions

- Are our intuitions based on random walks correct?

Key Questions

- Are our intuitions based on random walks correct?
- How do we apply these intuitions to design algorithms?

Key Questions

- Are our intuitions based on random walks correct?
- How do we apply these intuitions to design algorithms?
- Do heat kernels give us an entirely new technique to design algorithms for large datasets?

Graph Clustering

Applications in clustering:

Graph Conductance

The conductance of a set S is defined by

$$
\phi_{G}(S) \triangleq \frac{|E(S, V \backslash S)|}{d \cdot|S|} .
$$

Graph Conductance

The conductance of a set S is defined by

$$
\phi_{G}(S) \triangleq \frac{|E(S, V \backslash S)|}{d \cdot|S|} .
$$

$$
\phi_{G}(S)=\frac{2}{4 \cdot 6}=\frac{1}{12}
$$

Graph Conductance

The conductance of a set S is defined by

$$
\phi_{G}(S) \triangleq \frac{|E(S, V \backslash S)|}{d \cdot|S|} .
$$

The conductance of a graph G is defined by

$$
\phi_{G} \triangleq \min _{S:|S| \leq|V| / 2} \phi_{G}(S) .
$$

$$
\phi_{G}(S)=\frac{2}{4 \cdot 6}=\frac{1}{12}
$$

Graph Conductance

The conductance of a set S is defined by

$$
\phi_{G}(S) \triangleq \frac{|E(S, V \backslash S)|}{d \cdot|S|} .
$$

The conductance of a graph G is defined by

$$
\phi_{G} \triangleq \min _{S:|S| \leq|V| / 2} \phi_{G}(S) .
$$

Cheeger's Inequality

$$
\frac{\lambda_{2}}{2} \leq \phi_{G} \leq \sqrt{2 \lambda_{2}} .
$$

$$
\phi_{G}(S)=\frac{2}{4 \cdot 6}=\frac{1}{12}
$$

k-Way Expansion

The k-way expansion constant is defined by

$$
\rho(k)=\min _{\text {partition } A_{1}, \ldots, A_{k}} \max _{1 \leq i \leq k} \phi_{G}\left(A_{i}\right) .
$$

k-Way Expansion

The k-way expansion constant is defined by

$$
\rho(k)=\min _{\text {partition } A_{1}, \ldots, A_{k}} \max _{1 \leq i \leq k} \phi_{G}\left(A_{i}\right) .
$$

k-Way Expansion

The k-way expansion constant is defined by

$$
\rho(k)=\min _{\text {partition } A_{1}, \ldots, A_{k}} \max _{1 \leq i \leq k} \phi_{G}\left(A_{i}\right) .
$$

Higher-Order Cheeger's Inequality

$$
\frac{\lambda_{k}}{2} \leq \rho(k) \leq O\left(k^{3}\right) \sqrt{\lambda_{k}} .
$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.

k-Way Expansion

The k-way expansion constant is defined by

$$
\rho(k)=\min _{\text {partition } A_{1}, \ldots, A_{k}} \max _{1 \leq i \leq k} \phi_{G}\left(A_{i}\right) .
$$

Higher-Order Cheeger's Inequality

$$
\frac{\lambda_{k}}{2} \leq \rho(k) \leq O\left(k^{3}\right) \sqrt{\lambda_{k}} .
$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.
- any $(k+1)$-way partition contains a set with conductance at least $\lambda_{k+1} / 2$.

k-Way Expansion

The k-way expansion constant is defined by

$$
\rho(k)=\min _{\text {partition } A_{1}, \ldots, A_{k}} \max _{1 \leq i \leq k} \phi_{G}\left(A_{i}\right) .
$$

Higher-Order Cheeger's Inequality

$$
\frac{\lambda_{k}}{2} \leq \rho(k) \leq O\left(k^{3}\right) \sqrt{\lambda_{k}}
$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.
- any $(k+1)$-way partition contains a set with conductance at least $\lambda_{k+1} / 2$.
- Graph G has exactly k clusters.

k-Way Expansion

The k-way expansion constant is defined by

$$
\rho(k)=\min _{\text {partition }}^{A_{1}, \ldots, A_{k}} \max _{1 \leq i \leq k} \phi_{G}\left(A_{i}\right) .
$$

Higher-Order Cheeger's Inequality

$$
\frac{\lambda_{k}}{2} \leq \rho(k) \leq O\left(k^{3}\right) \sqrt{\lambda_{k}}
$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.
- any $(k+1)$-way partition contains a set with conductance at least $\lambda_{k+1} / 2$.
- Graph G has exactly k clusters.

The key parameter: $\Upsilon \triangleq \frac{\lambda_{k+1}}{\rho(k)}$.

The Structure Theorem

Let G be a d-regular graph with $k \underline{\text { disjoint }}$ components S_{1}, \ldots, S_{k}.

The Structure Theorem

Let G be a d-regular graph with k disjoint components S_{1}, \ldots, S_{k}. For any $\overline{1 \leq i \leq k}$ let

$$
\chi_{i}(v)= \begin{cases}1 & \text { if } v \in S_{i} \\ 0 & \text { otherwise }\end{cases}
$$

The Structure Theorem

Let G be a d-regular graph with k disjoint components S_{1}, \ldots, S_{k}. For any $\overline{1 \leq i \leq k}$ let

$$
\chi_{i}(v)= \begin{cases}1 & \text { if } v \in S_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\}=\operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\}
$$

The Structure Theorem

Let G be a d-regular graph with k disjoint components S_{1}, \ldots, S_{k}. For any $1 \leq i \leq k$ let

$$
\chi_{i}(v)= \begin{cases}1 & \text { if } v \in S_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\}=\operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\}
$$

Lemma (Peng-S.-Zanetti, 2017)

$$
\Upsilon=\Omega(k) \text { implies that } \operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\} \approx \operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\} .
$$

The Structure Theorem

Let G be a d-regular graph with k disjoint components S_{1}, \ldots, S_{k}. For any $\overline{1 \leq i \leq k}$ let

$$
\chi_{i}(v)= \begin{cases}1 & \text { if } v \in S_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\}=\operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\}
$$

Lemma (Peng-S.-Zanetti, 2017)

$$
\Upsilon=\Omega(k) \text { implies that } \operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\} \approx \operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\} .
$$

Define $F(v)=\left(f_{1}(v), \ldots, f_{k}(v)\right)$.

The Structure Theorem

Let G be a d-regular graph with k disjoint components S_{1}, \ldots, S_{k}. For any $1 \leq i \leq k$ let

$$
\chi_{i}(v)= \begin{cases}1 & \text { if } v \in S_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\}=\operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\} .
$$

Lemma (Peng-S.-Zanetti, 2017)
$\Upsilon=\Omega(k)$ implies that $\operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\} \approx \operatorname{span}\left\{\chi_{1}, \ldots, \chi_{k}\right\}$.

Define $F(v)=\left(f_{1}(v), \ldots, f_{k}(v)\right)$.

There are points $p^{(1)}, \ldots, p^{(k)}$, s.t. cluster S_{i} is concentrated around $p^{(i)}$.

Corollaries of the Structure Theorem

$$
\sum_{i=1}^{k} \sum_{u \in S_{i}}\left\|F(u)-p^{(i)}\right\|^{2} \leq k^{2} / \Upsilon
$$

Points from S_{i} concentrate around $p^{(i)} s$.

Corollaries of the Structure Theorem

$$
\sum_{i=1}^{k} \sum_{u \in S_{i}}\left\|F(u)-p^{(i)}\right\|^{2} \leq k^{2} / \Upsilon
$$

Points from S_{i} concentrate around $p^{(i)} s$.

$$
\left\|p^{(i)}\right\|^{2} \in\left(\frac{9}{10}, \frac{11}{10}\right) \cdot \frac{1}{\left|S_{i}\right|}
$$

"Bigger" clusters are closer to the origin.

Corollaries of the Structure Theorem

$$
\sum_{i=1}^{k} \sum_{u \in S_{i}}\left\|F(u)-p^{(i)}\right\|^{2} \leq k^{2} / \Upsilon
$$

Points from S_{i} concentrate around $p^{(i)} s$.

$$
\left\|p^{(i)}\right\|^{2} \in\left(\frac{9}{10}, \frac{11}{10}\right) \cdot \frac{1}{\left|S_{i}\right|}
$$

"Bigger" clusters are closer to the origin.

$$
\left\|p^{(i)}-p^{(j)}\right\|^{2} \geq \frac{1}{k \min \left\{\left|S_{i}\right|,\left|S_{j}\right|\right\}}
$$

Distance between different clusters inversely \approx the smaller cluster.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm
for $i=1$ to $K=\Theta(k \log k)$ do
set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

$$
\text { for } i=1 \text { to } K=\Theta(k \log k) \text { do }
$$

set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

With const. prob., each S_{i} has at least one vertex sampled.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

$$
\text { for } i=1 \text { to } K=\Theta(k \log k) \text { do }
$$

set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

With const. prob., each S_{i} has at least one vertex sampled.
2. Delete points in C "close" to each other, until $|C|=k$.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

$$
\text { for } i=1 \text { to } K=\Theta(k \log k) \text { do }
$$

set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

With const. prob., each S_{i} has at least one vertex sampled.
2. Delete points in C "close" to each other, until $|C|=k$.

With const. prob., each S_{i} has exactly one vertex remaining in C.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm
for $i=1$ to $K=\Theta(k \log k)$ do
set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

With const. prob., each S_{i} has at least one vertex sampled.
2. Delete points in C "close" to each other, until $|C|=k$.

With const. prob., each S_{i} has exactly one vertex remaining in C.
3. The other $n-k$ vertices find their closest neighbours in C.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm
for $i=1$ to $K=\Theta(k \log k)$ do
set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

With const. prob., each S_{i} has at least one vertex sampled.
2. Delete points in C "close" to each other, until $|C|=k$.

With const. prob., each S_{i} has exactly one vertex remaining in C.
3. The other $n-k$ vertices find their closest neighbours in C.
apply approximate nearest neighbour data structures.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

$$
\text { for } i=1 \text { to } K=\Theta(k \log k) \text { do }
$$

set $c_{i}=v$ with prob. proportional to $\|F(v)\|^{2}$.
return $C \triangleq\left\{c_{1}, \ldots, c_{K}\right\}$.

With const. prob., each S_{i} has at least one vertex sampled.
2. Delete points in C "close" to each other, until $|C|=k$.

With const. prob., each S_{i} has exactly one vertex remaining in C.
3. The other $n-k$ vertices find their closest neighbours in C.
apply approximate nearest neighbour data structures.
Runtime is $O(n \cdot$ poly $\log n)$, even for a large value of k !

Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

- $F(v)=\left(f_{1}(v), \ldots, f_{k}(v)\right)$
- $\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)$

Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

- $F(v)=\left(f_{1}(v), \ldots, f_{k}(v)\right)$
- $\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)$

Lemma (Peng-S.-Zanetti, 2017)

We can compute in $O\left(n d \cdot \log ^{10} n\right)$ time an embedding such that, with hight probability, it holds that

$$
(1-\varepsilon)\|F(u)-F(v)\|^{2} \leq\left\|\psi_{t}(u)-\psi_{t}(v)\right\|^{2} \leq\|F(u)-F(v)\|^{2}
$$

Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

- $F(v)=\left(f_{1}(v), \ldots, f_{k}(v)\right)$
- $\psi_{t}(v)=\left(\mathrm{e}^{-t \lambda_{1}} f_{1}(v), \ldots, \mathrm{e}^{-t \lambda_{n}} f_{n}(v)\right)$

Lemma (Peng-S.-Zanetti, 2017)
We can compute in $O\left(n d \cdot \log ^{10} n\right)$ time an embedding such that, with hight probability, it holds that

$$
(1-\varepsilon)\|F(u)-F(v)\|^{2} \leq\left\|\psi_{t}(u)-\psi_{t}(v)\right\|^{2} \leq\|F(u)-F(v)\|^{2} .
$$

Proof Sketch

- Johnson-Lindenstrauss transformation
- Algorithm for approximating matrix exponential.

Main Result

Theorem (Peng-S.-Zanetti, 2017)
There is a linear-time algorithm that, for a graph G with k clusters S_{1}, \ldots, S_{k} and $\Upsilon=\Omega\left(k^{3}\right)$, outputs a partition A_{1}, \ldots, A_{k} such that

$$
\left|A_{i} \triangle S_{i}\right|=O\left(k^{3} \cdot \Upsilon^{-1} \cdot\left|S_{i}\right|\right)
$$

Main Result

Theorem (Peng-S.-Zanetti, 2017)
There is a linear-time algorithm that, for a graph G with k clusters S_{1}, \ldots, S_{k} and $\Upsilon=\Omega\left(k^{3}\right)$, outputs a partition A_{1}, \ldots, A_{k} such that

$$
\left|A_{i} \triangle S_{i}\right|=O\left(k^{3} \cdot \Upsilon^{-1} \cdot\left|S_{i}\right|\right) .
$$

- The heat kernel distances

$$
d_{t}(u, v)=\sum_{w}\left(H_{t}(w, u)-H_{t}(w, v)\right)^{2}
$$

indeed behave differently among edges inside a cluster and edges crossing different clusters.

Main Result

Theorem (Peng-S.-Zanetti, 2017)
There is a linear-time algorithm that, for a graph G with k clusters S_{1}, \ldots, S_{k} and $\Upsilon=\Omega\left(k^{3}\right)$, outputs a partition A_{1}, \ldots, A_{k} such that

$$
\left|A_{i} \triangle S_{i}\right|=O\left(k^{3} \cdot \Upsilon^{-1} \cdot\left|S_{i}\right|\right) .
$$

- The heat kernel distances

$$
d_{t}(u, v)=\sum_{w}\left(H_{t}(w, u)-H_{t}(w, v)\right)^{2}
$$

indeed behave differently among edges inside a cluster and edges crossing different clusters.

- This gives us the first linear-time algorithm for graph clustering.

Main Result

Theorem (Peng-S.-Zanetti, 2017)
There is a linear-time algorithm that, for a graph G with k clusters S_{1}, \ldots, S_{k} and $\Upsilon=\Omega\left(k^{3}\right)$, outputs a partition A_{1}, \ldots, A_{k} such that

$$
\left|A_{i} \triangle S_{i}\right|=O\left(k^{3} \cdot \Upsilon^{-1} \cdot\left|S_{i}\right|\right)
$$

- The heat kernel distances

$$
d_{t}(u, v)=\sum_{w}\left(H_{t}(w, u)-H_{t}(w, v)\right)^{2}
$$

indeed behave differently among edges inside a cluster and edges crossing different clusters.

- This gives us the first linear-time algorithm for graph clustering.
- Our intuitions are from random walk theory, but our analysis is based on geometry.

Main Result

Theorem (Peng-S.-Zanetti, 2017)
There is a linear-time algorithm that, for a graph G with k clusters S_{1}, \ldots, S_{k} and $\Upsilon=\Omega\left(k^{3}\right)$, outputs a partition A_{1}, \ldots, A_{k} such that

$$
\left|A_{i} \triangle S_{i}\right|=O\left(k^{3} \cdot \Upsilon^{-1} \cdot\left|S_{i}\right|\right)
$$

- The heat kernel distances

$$
d_{t}(u, v)=\sum_{w}\left(H_{t}(w, u)-H_{t}(w, v)\right)^{2}
$$

indeed behave differently among edges inside a cluster and edges crossing different clusters.

- This gives us the first linear-time algorithm for graph clustering.
- Our intuitions are from random walk theory, but our analysis is based on geometry.
- BUT, our analysis only holds when there is an eigengap.

Beyond Graph Clustering

Could heat kernels be a general tool for designing fast algorithms?

Revisit the Graph Expansion Problem

Graph Expansion

Given a d-regular graph $G=(V, E)$ as input, find a set $S \subseteq V$ of size $|S| \leq n / 2$ of minimum conductance, i.e.,

$$
\phi_{G}(S)=\min _{S^{\prime}:\left|S^{\prime}\right| \leq n / 2} \phi_{G}\left(S^{\prime}\right) .
$$

Revisit the Graph Expansion Problem

_Graph Expansion
Given a d-regular graph $G=(V, E)$ as input, find a set $S \subseteq V$ of size $|S| \leq n / 2$ of minimum conductance, i.e.,

$$
\phi_{G}(S)=\min _{S^{\prime}:\left|S^{\prime}\right| \leq n / 2} \phi_{G}\left(S^{\prime}\right) .
$$

- This is the simplified version of graph clustering ($k=2$ clusters).
- NP-hard to approximate, and there is no constant-factor approximation algorithms assuming the small-set expansion conjecture holds.
- The current best approximation algorithm is based on SDP + geometric embedding.

Revisit the Graph Expansion Problem

_Graph Expansion
Given a d-regular graph $G=(V, E)$ as input, find a set $S \subseteq V$ of size $|S| \leq n / 2$ of minimum conductance, i.e.,

$$
\phi_{G}(S)=\min _{S^{\prime}:\left|S^{\prime}\right| \leq n / 2} \phi_{G}\left(S^{\prime}\right) .
$$

- This is the simplified version of graph clustering ($k=2$ clusters).
- NP-hard to approximate, and there is no constant-factor approximation algorithms assuming the small-set expansion conjecture holds.
- The current best approximation algorithm is based on SDP + geometric embedding.

Improve the state-of-the-art algorithm by heat kernels?

Grid Graphs

We define a family of graphs $\{G\}_{n}$ as follows:

- Every G_{n} has $3 n$ vertices, which form a grid of size $\sqrt{n} \times 3 \sqrt{n}$.
- The weight of every edge in the middle row has weight $1 / \sqrt{n}$, and all the other edges have weight 1.

Grid Graphs

We define a family of graphs $\{G\}_{n}$ as follows:

- Every G_{n} has $3 n$ vertices, which form a grid of size $\sqrt{n} \times 3 \sqrt{n}$.
- The weight of every edge in the middle row has weight $1 / \sqrt{n}$, and all the other edges have weight 1.

Grid Graphs

We define a family of graphs $\{G\}_{n}$ as follows:

- Every G_{n} has $3 n$ vertices, which form a grid of size $\sqrt{n} \times 3 \sqrt{n}$.
- The weight of every edge in the middle row has weight $1 / \sqrt{n}$, and all the other edges have weight 1.

The proposed algorithm

Run the following for $t=2^{i}, i=1,2, \ldots, c \log n$

- Compute heat kernel distances $h_{t}(u, v)$ for all edges $u \sim v$
- Construct a new graph $Q_{t}=(V, E, w)$ where $w(u, v)=\exp \left(-h_{t}(u, v)\right)$

The proposed algorithm

Run the following for $t=2^{i}, i=1,2, \ldots, c \log n$

- Compute heat kernel distances $h_{t}(u, v)$ for all edges $u \sim v$
- Construct a new graph $Q_{t}=(V, E, w)$ where $w(u, v)=\exp \left(-h_{t}(u, v)\right)$
- Find a sparse cut of Q_{t} by the sweep set algorithm, i.e. the proof from Cheeger inequality
- Store the set $S \subseteq V$ with minimum conductance found so far. Output S

The proposed algorithm

Run the following for $t=2^{i}, i=1,2, \ldots, c \log n$

- Compute heat kernel distances $h_{t}(u, v)$ for all edges $u \sim v$
- Construct a new graph $Q_{t}=(V, E, w)$ where $w(u, v)=\exp \left(-h_{t}(u, v)\right)$
- Find a sparse cut of Q_{t} by the sweep set algorithm, i.e. the proof from Cheeger inequality
- Store the set $S \subseteq V$ with minimum conductance found so far. Output S

This algorithm finds the optimal cut for the Grid Graph.

The proposed algorithm

Run the following for $t=2^{i}, i=1,2, \ldots, c \log n$

- Compute heat kernel distances $h_{t}(u, v)$ for all edges $u \sim v$
- Construct a new graph $Q_{t}=(V, E, w)$ where $w(u, v)=\exp \left(-h_{t}(u, v)\right)$
- Find a sparse cut of Q_{t} by the sweep set algorithm, i.e. the proof from Cheeger inequality
- Store the set $S \subseteq V$ with minimum conductance found so far. Output S

This algorithm finds the optimal cut for the Grid Graph.

What is the approximate ratio of this algorithm?

Summary

- Heat kernel is a basic notion in spectral geometry.

Summary

- Heat kernel is a basic notion in spectral geometry.
- We studied its connections to random walks and geometry, which allows us to design the first linear-time algorithm for graph clustering.

Summary

- Heat kernel is a basic notion in spectral geometry.
- We studied its connections to random walks and geometry, which allows us to design the first linear-time algorithm for graph clustering.
- This leaves us a number of interesting questions, including the powers and limits of heat kernels for designing fast algorithms.

Summary

- Heat kernel is a basic notion in spectral geometry.
- We studied its connections to random walks and geometry, which allows us to design the first linear-time algorithm for graph clustering.
- This leaves us a number of interesting questions, including the powers and limits of heat kernels for designing fast algorithms.

THANK YOU!

Reference: Richard Peng, He Sun, and Luca Zanetti: Partitioning Well-Clustered Graphs: Spectral Clustering Works! SIAM Journal on Computing, 46(2):710-743, 2017.

