Streaming Maximum Coverage

Hoa Vu University of Massachusetts, Amherst (joint work with Andrew McGregor)

Input: **m** subsets of U = {1,2,...,**n**} Goal: find **k** sets with maximum coverage

Input: **m** subsets of U = {1,2,...,**n**} Goal: find **k** sets with maximum coverage

k=2

Classical NP-Hard problem

Facility and sensor allocation, information retrieval, blog monitoring,...

Greedy: pick the sets with largest coverage gain at each step

Greedy: pick the sets with largest coverage gain at each step

Greedy: pick the sets with largest coverage gain at each step

Streaming set model (Saha & Getoor)

m sets are encoded as (set ID, list of elements)

Return k set IDs as a solution to Max-Cover and a

 $(1 \pm \epsilon) |cover(solution)|$

Set Cover and Max Cover well studied in this model

Streaming set model (Saha & Getoor)

m sets are encoded as (set ID, list of elements)

Return k set IDs as a solution to Max-Cover and a

 $(1 \pm \epsilon) |cover(solution)|$

Set Cover and Max Cover well studied in this model

Set Cover Assadi et al, 16 Chakrabarti & Wirth, 16 Indyk et al, 16 Assadi 17,... Max Cover Saha-Getoor, 08 McGregor-Vu, 17 Assadi, 17 Bateni et al., 17,...

Use sublinear o(mn) space

# of passes	1	1	1	$O(1/\epsilon)$
space				
approx.				

Use sublinear o(mn) space

# of passes	1	1	1	$O(1/\epsilon)$
space	$\tilde{O}(\epsilon^{-3}m)$			
approx.	$1-\epsilon$ *			
	* exponential time			

Use sublinear o(mn) space

# of passes	1	1	1	$O(1/\epsilon)$
space	$\tilde{O}(\epsilon^{-3}m)$	$\tilde{O}(\epsilon^{-2}m)$		
approx.	$1-\epsilon$ *	$1 - 1/e - \epsilon$		
	* exponential time			

Use sublinear o(mn) space

# of passes	1	1	1	$O(1/\epsilon)$
space	$\tilde{O}(\epsilon^{-3}m)$	$\tilde{O}(\epsilon^{-2}m)$	$\tilde{O}(\epsilon^{-3}k)$	
approx.	$1-\epsilon$ *	$1 - 1/e - \epsilon$	$1/2 - \epsilon$	
	* exponential time			

Use sublinear o(mn) space

# of passes	1	1	1	$O(1/\epsilon)$
space	$\tilde{O}(\epsilon^{-3}m)$	$\tilde{O}(\epsilon^{-2}m)$	$\tilde{O}(\epsilon^{-3}k)$	$\tilde{O}(\epsilon^{-2}k)$
approx.	$1-\epsilon$ *	$1 - 1/e - \epsilon$	$1/2 - \epsilon$	$1 - 1/e - \epsilon$
	* exponential time			

Use sublinear o(mn) space

Main results

Does not depend on n (ignoring polylog factors)

# of passes	1	1	1	$O(1/\epsilon)$
space	$\tilde{O}(\epsilon^{-3}m)$	$\tilde{O}(\epsilon^{-2}m)$	$\tilde{O}(\epsilon^{-3}k)$	$\tilde{O}(\epsilon^{-2}k)$
approx.	$1-\epsilon$ *	$1 - 1/e - \epsilon$	$1/2 - \epsilon$	$1 - 1/e - \epsilon$
	* exponential time			

Lower bounds

Theorem (McGregor–Vu, 17): Any constant pass (randomized) algorithm with a 1–1/e+0.01 approximation requires $\Omega(m/k^2)$

space.

Lower bounds

Theorem (McGregor–Vu, 17): Any constant pass (randomized) algorithm with a 1–1/e+0.01 approximation requires $\Omega(m/k^2)$

space.

Theorem (Assadi, 17): For k = O(1), any constant pass (randomized) algorithm with a $1 - \epsilon$ approximation requires

$$\Omega(\epsilon^{-2}m)$$

space.

F₀ sketch algorithm

Sk

Fo sketch size $\tilde{O}(\epsilon^{-2}\log(\delta^{-1}))$

Fo sketch algorithm

F₀ sketch algorithm

Improvement

space =
$$\tilde{O}(\epsilon^{-2}km)$$

Improvement

space =
$$\tilde{O}(\epsilon^{-2}km)$$

$$1 - 1/e - \epsilon$$
 approx.

Improvement

space =
$$\tilde{O}(\epsilon^{-2}km)$$

 ϵ^{-1}

$$1 - \epsilon$$
 approx.

 $S^* = S \setminus C$ coverage gain of S

If |S*| is small, store S*.

 $S^* = S \setminus C$ coverage gain of S

If |S*| is small, store S*.

 $S^* = S \setminus C$ coverage gain of S

If |S*| is small, store S*.

 $S^* = S \setminus C$ coverage gain of S

If |S*| is small, store S*.

2) Otherwise, store $S^* = S \setminus C$ in the memory.

2) Otherwise, store $S^* = S \setminus C$ in the memory.

2) Otherwise, store $S^* = S \setminus C$ in the memory.

2) Otherwise, store $S^* = S \setminus C$ in the memory.

2) Otherwise, store $S^* = S \setminus C$ in the memory.

Lemma: The algorithm is a $1-\varepsilon$ approximation.

Proof sketch: Suppose y sets (with coverage A) picked during the stream and k-y sets pick at post-processing.

The result coverage is at least

Lemma: The algorithm is a $1-\varepsilon$ approximation.

Proof sketch: Suppose y sets (with coverage A) picked during the stream and k-y sets pick at post-processing.

The result coverage is at least

Lemma: The algorithm is a $1-\varepsilon$ approximation.

Proof sketch: Suppose y sets (with coverage A) picked during the stream and k-y sets pick at post-processing.

The result coverage is at least

$$\begin{aligned} |A| + \frac{k - y}{k} [OPT - |A|] \\ &= \left(1 - \frac{y}{k}\right) OPT + \frac{y}{k} |A| \end{aligned} \qquad |A| > y \cdot \frac{OPT}{k\epsilon} \\ &\geq \left(1 - \frac{y}{k}\right) OPT + \left(\frac{y}{k}\right)^2 \frac{1}{\epsilon} OPT \\ &\geq (1 - \epsilon/4) OPT \end{aligned}$$

Challenge: OPT = n in the worst case.

Challenge: OPT = n in the worst case.

Subsampling: Subsample the universe U with $p = \frac{ck \log m}{\epsilon^2 OPT}$

Run the algorithm on U'

Challenge: OPT = n in the worst case.

Subsampling: Subsample the universe U with $p = \frac{ck \log m}{\epsilon^2 OPT}$

Run the algorithm on U'.

Claim: Chernoff-Union argument

$$OPT' = \Theta(\epsilon^{-2}k\log m)$$

A good approx. in U' is also a good approx. in U.

Challenge: OPT = n in the worst case.

use
$$OPT' + \frac{mOPT'}{k\epsilon}$$

= $\frac{m}{\epsilon^3}$ space

Subsampling: Subsample the universe U with $p = \frac{ck\log m}{\epsilon^2 OPT}$

Run the algorithm on U'.

Claim: Chernoff-Union argument

$$OPT' = \Theta(\epsilon^{-2}k\log m)$$

A good approx. in U' is also a good approx. in U.

Other challenges:

OPT is unknown. Need guessing.

$$p = \frac{ck\log m}{\epsilon^2 OPT}$$

Small guesses — large space

Large guesses — inaccurate solution

Limited independent hash function analysis

Polynomial time version

2) Otherwise, store $S^* = S \setminus C$ in the memory.

3) Post-processing: find the best remaining sets from the memory.

Polynomial time version

2) Otherwise, store $S^* = S \setminus C$ in the memory.

3) Post-processing: find the best remaining sets from the memory.

For k = O(1), any constant pass (randomized) algorithm with a 1-1/e+0.01 approximation requires

 $\Omega(m)$

space.

k-player DISJOINTNESS: Each player i has a bit string $x_{\rm i}$ of length m.

k-player DISJOINTNESS: Each player i has a bit string x_i of length m.

k-player DISJOINTNESS: Each player i has a bit string x_i of length m.

k-player DISJOINTNESS: Each player has a bit string of length m.

player	bit 1	bit 2	•••	bit m
1	1	0	•••	0
2	0	1		0
				1
k	0	0	•••	0

NO Instance at most one 1 in each column

k-player DISJOINTNESS: Each player has a bit string of length m.

player	bit 1	bit 2		bit m
1	1	0	•••	0
2	0	1		0
				1
k	0	0	•••	0

NO Instance at most one 1 in each column

player	bit 1	bit 2		bit m
1	1	1	•••	0
2	0	1		0
		1		1
k	0	1	•••	0

YES Instance one unique column with all 1

k-player DISJOINTNESS: Each player has a bit string of length m.

player	bit 1	bit 2	•••	bit m
1	1	0	•••	0
2	0	1	•••	0
	•••	•••		1
k	0	0	•••	0

NO Instance at most one 1 in each column YES Instance one unique column with all 1

k-player DISJOINTNESS: Each player has a bit string of length m.

NO Instance at most one 1 in each column YES Instance one unique column with all 1

k-player DISJOINTNESS: Each player has a bit string of length m.

player	bit 1	bit 2	 bit m
1	1	0	 0
2	0	1	 0
•••	•••	•••	 1
k	0	0	 0

NO Instance at most one 1 in each column YES Instance one unique column with all 1

k-player DISJOINTNESS: Each player has a bit string of length m.

player	bit 1	bit 2	 bit m
1	1	0	 0
2	0	1	 0
•••	•••	•••	 1
k	0	0	 0

NO Instance at most one 1 in each column YES Instance one unique column with all 1

k-player DISJOINTNESS: Each player has a bit string of length m.

player	bit 1	bit 2	•••	bit m
1	1	0		0
2	0	1	•••	0
•••	•••	•••	•••	1
k	0	0	•••	0

NO Instance at most one 1 in each column YES Instance one unique column with all 1

k-player DISJOINTNESS: Use public randomness, generates S(i,j)

player	bit 1	bit 2	•••	bit m
1	S(1,1)	S(1,2)		S(1,m)
2	S(2,1)	S(2,2)	•••	S(2,m)
•••	•••			
k	S(k,1)	S(k,2)		S(k,m)

$$S(1, j), S(2, j), \dots, S(k, j)$$

have the same size and partition [n]

$$\bigcup_{j} S(i,j) = [n]$$

k-player DISJOINTNESS: Use public randomness, generates S(i,j)

player	bit 1	bit 2	 bit m
1	1 S(1,1)	0	 0
2	0	1 S(2,2)	 1 S(m,2)
•••	•••	•••	
k	0	0	 0

$$S(1, j), S(2, j), \dots, S(k, j)$$

have the same size and partition [n]

$$\bigcup_{j} S(i,j) = [n]$$

If $x_{i,j}=1$, player i put S(i,j) in the stream.

NO instance

player	bit 1	bit 2		bit m
1	1 S(1,1)	0	•••	0
2	0	1 S(2,2)		1 S(m,2)
•••	•••	•••		•••
k	0	0	•••	0

NO Instance max cover < (1-1/e+0.01)n

Chernoff-Union bound argument

Sets are random subsets of size n/k.

The expected coverage of k sets is $(1-(1-1/k)^k)n < (1-1/e+0.01)n$

YES instance

YES Instance max cover = n The sets in the all-1 column cover [n].

max cover = n

player	bit 1	bit 2		bit m
1	1 S(1,1)	0		0
2	0	1 S(2,2)	•••	1 S(m,2)
	•••		•••	•••
k	0	0		0

NO Instance max cover < (1-1/e+0.01)n

max cover = n

player bit 1 bit 2 ••• bit m 0 0 1 ••• S(1,1) 0 1 1 2 ••• S(2,2) S(m,2) ... ••• ••• ... 0 0 0 k •••

NO Instance max cover < (1-1/e+0.01)n

A streaming algorithm with 1–1/e+0.01 approx. provides a communication protocol $\implies \Omega(m) \text{ space}$

Multiple pass algorithm

Knapsack, matroid constraints

Sliding windows

Maximum k-vertex-cover

Multiple pass algorithm (idea: thresholding greedy)

Knapsack, matroid constraints

Sliding windows

Maximum k-vertex-cover

Multiple pass algorithm

Knapsack, matroid constraints

Sliding windows (only consider the last w items/sets)

Maximum k-vertex-cover

Multiple pass algorithm

Knapsack, matroid constraints

Sliding windows (only consider the last w items/sets)

Maximum k-vertex-cover

Multiple pass algorithm

Knapsack, matroid constraints

Sliding windows

Maximum k-vertex-cover (find k vertices that cover the most number of edges)

Thank you!