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Classical NP-Hard problem  

Facility and sensor allocation,

information retrieval, blog monitoring,…

Input: m subsets of U = {1,2,…,n}  
Goal: find k sets with maximum coverage
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Optimal

Greedy

Greedy: pick the sets with largest coverage 
gain at each step

1-1/e = 0.63…approximation

No better polynomial time  
approximation unless P=NP



Streaming set model (Saha & Getoor)
m sets are encoded as (set ID, list of elements)
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Return k set IDs as a solution to Max-Cover and a 


 
Set Cover and Max Cover well studied in this model

(1± ✏)|cover(solution)|

Set Cover

Assadi et al, 16


Chakrabarti & Wirth, 16

Indyk et al, 16

Assadi 17,…

Max Cover


Saha-Getoor, 08

McGregor-Vu, 17


Assadi, 17

Bateni et al., 17,…
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Main results


# of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

Õ(✏�3k)

1/2� ✏

O(1/✏)

1� 1/e� ✏

Õ(✏�2k)Õ(✏�3m)

 Does not depend on n  
(ignoring polylog factors)
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Main results

# of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

Õ(✏�3k)

1/2� ✏

O(1/✏)

1� 1/e� ✏

Õ(✏�2k)

This talk

Õ(✏�3m)

Independently discovered 
by Bateni et al.
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Main results

Lower bounds


Theorem (McGregor-Vu, 17): Any constant pass (randomized) 
algorithm with a 1-1/e+0.01 approximation requires 


space.

Theorem (Assadi, 17):  For k = O(1), any constant pass 
(randomized) algorithm with a          approximation requires 


space.

1� ✏

⌦(✏�2m)

⌦(m/k2)
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F0 sketch algorithm

M(S1)S1

M(S2)S2

M(Sk)Sk

…

(1± ✏)|S1 [ S2 [ ... [ Sk|

with probability1� �

Fo sketch size

space = Õ(✏�2km)

� =
1

100
�m
k

�

˜O(✏�2
log(��1

))
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Improvement

space = Õ(✏�2km)
✏�1

1� ✏ approx.
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S* = S \ C coverage gain of S


If |S*| is small, store S*.


If |S*| is large, pick S and 
update C.
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More formally:


For each set S in the stream:


1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.


2) Otherwise, store S* = S \ C in the memory.


3) Post-processing: find the best remaining sets from the 
memory. 
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Algorithm ideas

current  
coverage C

S*S

use OPT +
mOPT

k✏
space

More formally:


For each set S in the stream:


1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S. 


2) Otherwise, store S* = S \ C in the memory.


3) Post-processing: find the best remaining sets from the 
memory. 
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Lemma: The algorithm is a 1-ε approximation.


Proof sketch: Suppose y sets (with coverage A) picked during 
the stream and k-y sets pick at post-processing.


The result coverage is at least
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k
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=
⇣
1� y
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⌘
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⌘
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⌘2 1

✏
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� (1� ✏/4)OPT

|A| > y · OPT
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Subsampling: Subsample the universe U  
 
with


Run the algorithm on U’. 


Claim: Chernoff-Union argument  

A good approx. in U’ is also a good 
approx. in U.

p =

ck logm

✏2OPT

OPT 0
= ⇥(✏�2k logm)

use OPT 0 +
mOPT 0

k✏

=
m

✏3
space



Algorithm ideas

Other challenges: 


OPT is unknown. Need guessing.


Small guesses —— large space


Large guesses —— inaccurate solution


Limited independent hash function 
analysis 

 


 

p =

ck logm

✏2OPT



Polynomial time version

current  
coverage C

S*S

using greedy.

More formally:


For each set S in the stream:


1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S. 


2) Otherwise, store S* = S \ C in the memory.


3) Post-processing: find the best remaining sets from the 
memory. 



Polynomial time version

current  
coverage C

S*S

using greedy.

More formally:


For each set S in the stream:


1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S. 


2) Otherwise, store S* = S \ C in the memory.


3) Post-processing: find the best remaining sets from the 
memory. 

 1-1/e approx.  

m

✏2
space after subsampling



Lower bound

For k = O(1), any constant pass (randomized) algorithm 
with a 1-1/e+0.01 approximation requires 


space.


k-player DISJOINTNESS: Each player i has a bit string 
xi of length m.


⌦(m)
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k-player DISJOINTNESS: Use public randomness,  
generates S(i,j)


player bit 1 bit 2 … bit m

1 1 
S(1,1)

0
 … 0


2 0
 1

S(2,2)

… 1  
S(m,2)


… … … … …

k 0
 0
 … 0


S(1, j), S(2, j), . . . , S(k, j)

have the same size and partition [n]

[

j

S(i, j) = [n]

If xi,j=1, player i put S(i,j) in the stream.
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NO instance


player bit 1 bit 1 … bit m

1 1

S(1,1)

0 … 0

2 0 1

S(2,2)

… 0

… … … … …

k 0 0 … 0

NO Instance 
max cover < (1-1/e+0.01)n

Sets are random subsets of size  
n/k.  
 
The expected coverage of k sets is
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(1� (1� 1/k)k)n < (1� 1/e+ 0.01)n

Chernoff-Union bound 
argument
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The sets in the all-1 column cover 
[n].
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A streaming algorithm with 1-1/e+0.01 approx. 
provides a communication protocol 

=) ⌦(m) space
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Multiple pass algorithm 


Knapsack, matroid constraints 
 
Sliding windows 
 
Maximum k-vertex-cover (find k vertices that cover the 
most number of edges)


Other results in the literature



Thank you!



