
Streaming Maximum
Coverage

Hoa Vu

University of Massachusetts, Amherst

(joint work with Andrew McGregor)

Input: m subsets of U = {1,2,…,n}  
Goal: find k sets with maximum coverage

k=2

Max-Cover

Max-Cover

k=2

Classical NP-Hard problem  

Facility and sensor allocation,

information retrieval, blog monitoring,…

Input: m subsets of U = {1,2,…,n}  
Goal: find k sets with maximum coverage

Max-Cover

k=2

Greedy

Greedy: pick the sets with largest coverage
gain at each step

Max-Cover

k=2

Optimal

Greedy

Greedy: pick the sets with largest coverage
gain at each step

Max-Cover

k=2

Optimal

Greedy

Greedy: pick the sets with largest coverage
gain at each step

1-1/e = 0.63…approximation

No better polynomial time  
approximation unless P=NP

Streaming set model (Saha & Getoor)
m sets are encoded as (set ID, list of elements)

Return k set IDs as a solution to Max-Cover and a

 
Set Cover and Max Cover well studied in this model

(1± ✏)|cover(solution)|

Streaming set model (Saha & Getoor)
m sets are encoded as (set ID, list of elements)

Return k set IDs as a solution to Max-Cover and a

 
Set Cover and Max Cover well studied in this model

(1± ✏)|cover(solution)|

Set Cover

Assadi et al, 16

Chakrabarti & Wirth, 16

Indyk et al, 16

Assadi 17,…

Max Cover

Saha-Getoor, 08

McGregor-Vu, 17

Assadi, 17

Bateni et al., 17,…

Main results

Use sublinear o(mn) space

Main results

of passes 1 1 1

space

approx.

O(1/✏)

Main results

Use sublinear o(mn) space

Main results

of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

O(1/✏)

Õ(✏�3m)

Main results

Use sublinear o(mn) space

Main results

of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

O(1/✏)

Õ(✏�3m)

Main results

Use sublinear o(mn) space

Main results

of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

Õ(✏�3k)

1/2� ✏

O(1/✏)

Õ(✏�3m)

Main results

Use sublinear o(mn) space

Main results

of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

Õ(✏�3k)

1/2� ✏

O(1/✏)

1� 1/e� ✏

Õ(✏�2k)Õ(✏�3m)

Main results

Use sublinear o(mn) space

Main results

of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

Õ(✏�3k)

1/2� ✏

O(1/✏)

1� 1/e� ✏

Õ(✏�2k)Õ(✏�3m)

 Does not depend on n  
(ignoring polylog factors)

Use sublinear o(mn) space

Main results

Main results

of passes 1 1 1

space

approx.

* exponential time

1� ✏ *

Õ(✏�2m)

1� 1/e� ✏

Õ(✏�3k)

1/2� ✏

O(1/✏)

1� 1/e� ✏

Õ(✏�2k)

This talk

Õ(✏�3m)

Independently discovered
by Bateni et al.

Main results

Lower bounds

Theorem (McGregor-Vu, 17): Any constant pass (randomized)
algorithm with a 1-1/e+0.01 approximation requires

space.
⌦(m/k2)

Main results

Lower bounds

Theorem (McGregor-Vu, 17): Any constant pass (randomized)
algorithm with a 1-1/e+0.01 approximation requires

space.

Theorem (Assadi, 17): For k = O(1), any constant pass
(randomized) algorithm with a approximation requires

space.

1� ✏

⌦(✏�2m)

⌦(m/k2)

F0 sketch algorithm

M(S1)S1

M(S2)S2

M(Sk)Sk

…

Fo sketch size
˜O(✏�2

log(��1
))

F0 sketch algorithm

M(S1)S1

M(S2)S2

M(Sk)Sk

…

(1± ✏)|S1 [S2 [... [Sk|

with probability1� �

Fo sketch size
˜O(✏�2

log(��1
))

F0 sketch algorithm

M(S1)S1

M(S2)S2

M(Sk)Sk

…

(1± ✏)|S1 [S2 [... [Sk|

with probability1� �

Fo sketch size

space = Õ(✏�2km)

� =
1

100
�m
k

�

˜O(✏�2
log(��1

))

Improvement

space = Õ(✏�2km)

Improvement

space = Õ(✏�2km)

1� 1/e� ✏ approx.

Improvement

space = Õ(✏�2km)
✏�1

1� ✏ approx.

Algorithm ideas

current  
coverage C

S*S

S* = S \ C coverage gain of S

If |S*| is small, store S*.

If |S*| is large, pick S and
update C.

Algorithm ideas

current  
coverage C

S*S

S* = S \ C coverage gain of S

If |S*| is small, store S*.

If |S*| is large, pick S and
update C.

Algorithm ideas

current  
coverage C

S*S

S* = S \ C coverage gain of S

If |S*| is small, store S*.

If |S*| is large, pick S and
update C.

Algorithm ideas

current  
coverage C

S*S

S* = S \ C coverage gain of S

If |S*| is small, store S*.

If |S*| is large, pick S and
update C.

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.

2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

Algorithm ideas

current  
coverage C

S*S

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.

2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

Algorithm ideas

current  
coverage C

S*S

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.  
 
2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

Algorithm ideas

current  
coverage C

S*S

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.

2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

Algorithm ideas

current  
coverage C

S*S

Algorithm ideas

current  
coverage C

S*S

use OPT +
mOPT

k✏
space

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.

2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

Algorithm ideas

Lemma: The algorithm is a 1-ε approximation.

Proof sketch: Suppose y sets (with coverage A) picked during
the stream and k-y sets pick at post-processing.

The result coverage is at least

 
 

Algorithm ideas

Lemma: The algorithm is a 1-ε approximation.

Proof sketch: Suppose y sets (with coverage A) picked during
the stream and k-y sets pick at post-processing.

The result coverage is at least

 
 

Algorithm ideas

Lemma: The algorithm is a 1-ε approximation.

Proof sketch: Suppose y sets (with coverage A) picked during
the stream and k-y sets pick at post-processing.

The result coverage is at least

 
 

|A|+ k � y

k
[OPT � |A|]

=
⇣
1� y

k

⌘
OPT +

y

k
|A|

�
⇣
1� y

k

⌘
OPT +

⇣y
k

⌘2 1

✏
OPT

� (1� ✏/4)OPT

|A| > y · OPT

k✏

Algorithm ideas

Challenge: OPT = n in the worst case.  
 

 
 

Algorithm ideas

Challenge: OPT = n in the worst case.  
 

 
 

Subsampling: Subsample the universe U  
 
with

Run the algorithm on U’

 

p =

ck logm

✏2OPT

Algorithm ideas

Challenge: OPT = n in the worst case.  
 

 
 

Subsampling: Subsample the universe U  
 
with

Run the algorithm on U’.

Claim: Chernoff-Union argument  

A good approx. in U’ is also a good
approx. in U.

p =

ck logm

✏2OPT

OPT 0
= ⇥(✏�2k logm)

Algorithm ideas

Challenge: OPT = n in the worst case.  
 

 
 

Subsampling: Subsample the universe U  
 
with

Run the algorithm on U’.

Claim: Chernoff-Union argument  

A good approx. in U’ is also a good
approx. in U.

p =

ck logm

✏2OPT

OPT 0
= ⇥(✏�2k logm)

use OPT 0 +
mOPT 0

k✏

=
m

✏3
space

Algorithm ideas

Other challenges:

OPT is unknown. Need guessing.

Small guesses —— large space

Large guesses —— inaccurate solution

Limited independent hash function
analysis 

 

p =

ck logm

✏2OPT

Polynomial time version

current  
coverage C

S*S

using greedy.

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.

2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

Polynomial time version

current  
coverage C

S*S

using greedy.

More formally:

For each set S in the stream:

1) If S covers more than OPT/(kε) new elements, I = I U {S}  
and update C <- C U S.

2) Otherwise, store S* = S \ C in the memory.

3) Post-processing: find the best remaining sets from the
memory.

 1-1/e approx.  

m

✏2
space after subsampling

Lower bound

For k = O(1), any constant pass (randomized) algorithm
with a 1-1/e+0.01 approximation requires

space.

k-player DISJOINTNESS: Each player i has a bit string
xi of length m.

⌦(m)

Lower bound

k-player DISJOINTNESS: Each player i has a bit string
xi of length m.

k-player DISJOINTNESS: Each player i has a bit string
xi of length m.

Lower bound

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

x1

x2

xk

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

NO Instance 
at most one 1 in each column

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

player bit 1 bit 2 … bit m

1 1 1 … 0

2 0 1 … 0

… … 1 … 1

k 0 1 … 0

NO Instance 
at most one 1 in each column

YES Instance  
one unique column with all 1  

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

player bit 1 bit 2 … bit m

1 1 1 … 0

2 0 1 … 0

… … 1 … 1

k 0 1 … 0

NO Instance 
at most one 1 in each column

YES Instance  
one unique column with all 1

player 1 -> player 2 -> … -> player k -> YES/NO 
Any randomized protocol requires Ω(m) communication.

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

player bit 1 bit 2 … bit m

1 1 1 … 0

2 0 1 … 0

… … 1 … 1

k 0 1 … 0

NO Instance 
at most one 1 in each column

YES Instance  
one unique column with all 1

player 1 -> player 2 -> … -> player k -> YES/NO 
Any randomized protocol requires Ω(m) communication.

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

player bit 1 bit 2 … bit m

1 1 1 … 0

2 0 1 … 0

… … 1 … 1

k 0 1 … 0

NO Instance 
at most one 1 in each column

YES Instance  
one unique column with all 1

player 1 -> player 2 -> … -> player k -> YES/NO 
Any randomized protocol requires Ω(m) communication.

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

player bit 1 bit 2 … bit m

1 1 1 … 0

2 0 1 … 0

… … 1 … 1

k 0 1 … 0

NO Instance 
at most one 1 in each column

YES Instance  
one unique column with all 1

player 1 -> player 2 -> … -> player k -> YES/NO 
Any randomized protocol requires Ω(m) communication.

Lower bound

k-player DISJOINTNESS: Each player has a bit string
of length m.

player bit 1 bit 2 … bit m

1 1 0 … 0

2 0 1 … 0

… … … … 1

k 0 0 … 0

player bit 1 bit 2 … bit m

1 1 1 … 0

2 0 1 … 0

… … 1 … 1

k 0 1 … 0

NO Instance 
at most one 1 in each column

YES Instance  
one unique column with all 1

player 1 -> player 2 -> … -> player k -> YES/NO 
Any randomized protocol requires Ω(m) communication.

Lower bound

k-player DISJOINTNESS: Use public randomness,
generates S(i,j)

player bit 1 bit 2 … bit m

1 S(1,1) S(1,2) … S(1,m)

2 S(2,1) S(2,2) … S(2,m)

… … … … …

k S(k,1) S(k,2) … S(k,m)

S(1, j), S(2, j), . . . , S(k, j)

have the same size and partition [n]

[

j

S(i, j) = [n]

Lower bound

k-player DISJOINTNESS: Use public randomness,
generates S(i,j)

player bit 1 bit 2 … bit m

1 1
S(1,1)

0
 … 0

2 0
 1

S(2,2)

… 1  
S(m,2)

… … … … …

k 0
 0
 … 0

S(1, j), S(2, j), . . . , S(k, j)

have the same size and partition [n]

[

j

S(i, j) = [n]

If xi,j=1, player i put S(i,j) in the stream.

Lower bound

NO instance

player bit 1 bit 1 … bit m

1 1

S(1,1)

0 … 0

2 0 1

S(2,2)

… 0

… … … … …

k 0 0 … 0

NO Instance 
max cover < (1-1/e+0.01)n

Sets are random subsets of size  
n/k.  
 
The expected coverage of k sets is

player bit 1 bit 2 … bit m

1 1
S(1,1)

0
 … 0

2 0
 1

S(2,2)

… 1  
S(m,2)

… … … … …

k 0
 0
 … 0

(1� (1� 1/k)k)n < (1� 1/e+ 0.01)n

Chernoff-Union bound
argument

Lower bound

player bit 1 bit 2 … bit m

1 1

S(1,1)

1

S(1,2)

… 0

2 0 1

S(2,2)

… 1

S(2,m)

… … … … …

k 0 1

S(k,2)

… 0

YES Instance  
max cover = n

YES instance

The sets in the all-1 column cover 
[n].

Lower bound

player bit 1 bit 2 … bit m

1 1

S(1,1)

1

S(1,2)

… 0

2 0 1

S(2,2)

… 1

S(2,m)

… … … … …

k 0 1

S(k,2)

… 0

YES Instance  
max cover = n

player bit 1 bit 1 … bit m

1 1

S(1,1)

0 … 0

2 0 1

S(2,2)

… 0

… … … … …

k 0 0 … 0

NO Instance 
max cover < (1-1/e+0.01)n

player bit 1 bit 2 … bit m

1 1
S(1,1)

0
 … 0

2 0
 1

S(2,2)

… 1  
S(m,2)

… … … … …

k 0
 0
 … 0

Lower bound

player bit 1 bit 2 … bit m

1 1

S(1,1)

1

S(1,2)

… 0

2 0 1

S(2,2)

… 1

S(2,m)

… … … … …

k 0 1

S(k,2)

… 0

YES Instance  
max cover = n

player bit 1 bit 1 … bit m

1 1

S(1,1)

0 … 0

2 0 1

S(2,2)

… 0

… … … … …

k 0 0 … 0

NO Instance 
max cover < (1-1/e+0.01)n

player bit 1 bit 2 … bit m

1 1
S(1,1)

0
 … 0

2 0
 1

S(2,2)

… 1  
S(m,2)

… … … … …

k 0
 0
 … 0

A streaming algorithm with 1-1/e+0.01 approx.
provides a communication protocol

=) ⌦(m) space

Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints 
 
Sliding windows 
 
Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

Multiple pass algorithm  
(idea: thresholding greedy)

Knapsack, matroid constraints 
 
Sliding windows 
 
Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints 
 
Sliding windows (only consider the last w items/sets)  
 
Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints 
 
Sliding windows (only consider the last w items/sets)  
 
Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints 
 
Sliding windows 
 
Maximum k-vertex-cover (find k vertices that cover the
most number of edges)

Other results in the literature

Thank you!

