# Streaming Maximum Coverage 

Hoa Vu<br>University of Massachusetts, Amherst<br>(joint work with Andrew McGregor)

## Max-Cover

Input: $m$ subsets of $U=\{1,2, \ldots, n\}$
Goal: find $k$ sets with maximum coverage
$k=2$


## Max-Cover

Input: $m$ subsets of $U=\{1,2, \ldots, n\}$
Goal: find $k$ sets with maximum coverage
$k=2$


Classical NP-Hard problem
Facility and sensor allocation, information retrieval, blog monitoring,...

## Max-Cover

Greedy: pick the sets with largest coverage gain at each step


## Max-Cover

Greedy: pick the sets with largest coverage gain at each step


## Max-Cover

Greedy: pick the sets with largest coverage gain at each step


## Streaming set model (Saha \& Getoor)

 m sets are encoded as (set ID, list of elements)Return $k$ set IDs as a solution to Max-Cover and a

$$
(1 \pm \epsilon) \mid \text { cover (solution }) \mid
$$

Set Cover and Max Cover well studied in this model


## Streaming set model (Saha \& Getoor)

m sets are encoded as (set ID, list of elements)

Return $k$ set IDs as a solution to Max-Cover and a

$$
(1 \pm \epsilon) \mid \text { cover (solution) } \mid
$$

Set Cover and Max Cover well studied in this model


Set Cover
Assadi et al, 16
Chakrabarti \& Wirth, 16
Indyk et al, 16
Assadi 17,...
Max Cover
Saha-Getoor, 08
McGregor-Vu, 17
Assadi, 17
Bateni et al., 17,...

## Main results

Use sublinear o(mn) space

Main results

| \# of passes | 1 | 1 | 1 | $O(1 / \epsilon)$ |
| :---: | :---: | :---: | :---: | :---: |
| space |  |  |  |  |
| approx. |  |  |  |  |

## Main results

Use sublinear o(mn) space

Main results

| \# of passes | 1 | 1 | 1 | $O(1 / \epsilon)$ |
| :---: | :---: | :---: | :---: | :---: |
| space | $\tilde{O}\left(\epsilon^{-3} m\right)$ |  |  |  |
| approx. | $1-\epsilon$ | $*$ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Main results

Use sublinear o(mn) space

Main results

| \# of passes | 1 | 1 | 1 | $O(1 / \epsilon)$ |
| :---: | :---: | :---: | :---: | :---: |
| space | $\tilde{O}\left(\epsilon^{-3} m\right)$ | $\tilde{O}\left(\epsilon^{-2} m\right)$ |  |  |
| approx. | $1-\epsilon \quad *$ | $1-1 / e-\epsilon$ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | * exponential time |  |  |  |

## Main results

Use sublinear o(mn) space

Main results

| \# of passes | 1 | 1 | 1 | $O(1 / \epsilon)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| space | $\tilde{O}\left(\epsilon^{-3} m\right)$ | $\tilde{O}\left(\epsilon^{-2} m\right)$ | $\tilde{O}\left(\epsilon^{-3} k\right)$ |  |  |
| approx. | $1-\epsilon$ | $*$ | $1-1 / e-\epsilon$ | $1 / 2-\epsilon$ |  |
|  |  |  |  |  |  |
|  | * exponential time |  |  |  |  |

## Main results

Use sublinear o(mn) space

Main results

| \# of passes | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $O(1 / \epsilon)$ |
| :---: | :---: | :---: | :---: | :---: |
| space | $\tilde{O}\left(\epsilon^{-3} m\right)$ | $\tilde{O}\left(\epsilon^{-2} m\right)$ | $\tilde{O}\left(\epsilon^{-3} k\right)$ | $\tilde{O}\left(\epsilon^{-2} k\right)$ |
| approx. | $1-\epsilon \quad *$ | $1-1 / e-\epsilon$ | $1 / 2-\epsilon$ | $1-1 / e-\epsilon$ |
|  |  |  |  |  |
|  |  |  |  |  |

## Main results

Use sublinear o(mn) space

Does not depend on $n$ (ignoring polylog factors)

Main results

| \# of passes | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $O(1 / \epsilon)$ |
| :---: | :---: | :---: | :---: | :---: |
| space | $\tilde{O}\left(\epsilon^{-3} m\right)$ | $\tilde{O}\left(\epsilon^{-2} m\right)$ | $\tilde{O}\left(\epsilon^{-3} k\right)$ | $\tilde{O}\left(\epsilon^{-2} k\right)$ |
| approx. | $1-\epsilon$ | $*$ | $1-1 / e-\epsilon$ | $1 / 2-\epsilon$ |

* exponential time


## Main results

## Independently discovered by Bateni et al.

Use sublinear o(mn) space

Main results

| \# of passes | $\mathbf{1}$ |  | 1 | 1 | $O(1 / \epsilon)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | space | $\tilde{O}\left(\epsilon^{-3} m\right)$ | $\tilde{O}\left(\epsilon^{-2} m\right)$ | $\tilde{O}\left(\epsilon^{-3} k\right)$ | $\tilde{O}\left(\epsilon^{-2} k\right)$ |
| approx. | $1-\epsilon$ | $*$ | $1-1 / e-\epsilon$ | $1 / 2-\epsilon$ | $1-1 / e-\epsilon$ |

* exponential time


## Main results

Lower bounds

Theorem (McGregor-Vu, 17): Any constant pass (randomized) algorithm with a 1-1/e+0.01 approximation requires

$$
\Omega\left(m / k^{2}\right)
$$

space.

## Main results

## Lower bounds

Theorem (McGregor-Vu, 17): Any constant pass (randomized) algorithm with a 1-1/e+0.01 approximation requires

$$
\Omega\left(m / k^{2}\right)
$$

space.
Theorem (Assadi, 17): For $k=O(1)$, any constant pass (randomized) algorithm with a $1-\epsilon$ approximation requires

$$
\Omega\left(\epsilon^{-2} m\right)
$$

space.

## Fo sketch algorithm



## Fo sketch algorithm



## Fo sketch algorithm



## Improvement

$$
\text { space }=\tilde{O}\left(\epsilon^{-2} k m\right)
$$

## Improvement

$$
\text { space }=\tilde{O}\left(\epsilon^{-2} / / m\right)
$$

$$
1-1 / e-\epsilon \text { approx. }
$$

## Improvement



$$
1-\epsilon \text { approx. }
$$

Algorithm ideas


$$
S^{*}=S \backslash C \text { coverage gain of } S
$$

$$
\text { If }\left|S^{*}\right| \text { is small, store } S^{*}
$$

$$
\text { If }\left|S^{*}\right| \text { is large, pick } S \text { and }
$$

update C.

Algorithm ideas

$S^{*}=S \backslash C$ coverage gain of $S$ If $\left|S^{*}\right|$ is small, store $S^{*}$.

If $\left|S^{*}\right|$ is large, pick $S$ and update $C$.

Algorithm ideas

$S^{*}=S \backslash C$ coverage gain of $S$

If $\left|S^{*}\right|$ is small, store $S^{*}$.

If $\left|S^{*}\right|$ is large, pick $S$ and update $C$.

## Algorithm ideas



$$
S^{*}=S \backslash C \text { coverage gain of } S
$$

If $\left|S^{*}\right|$ is small, store $S^{*}$.

If $\left|S^{*}\right|$ is large, pick $S$ and update $C$.

## Algorithm ideas

More formally:

For each set $S$ in the stream:


1) If $S$ covers more than $O P T /(k \varepsilon)$ new elements, $I=I U\{S\}$
and update $C<-C U S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the memory.

## Algorithm ideas

More formally:

For each set $S$ in the stream:


1) If $S$ covers more than $O P T /(k \varepsilon)$ new elements, $I=I U\{S\}$ and update $C<-C U S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the
memory.

## Algorithm ideas

More formally:

For each set $S$ in the stream:


1) If $S$ covers more than $O P T /(k \varepsilon)$ new elements, $I=I \cup\{S\}$ and update $C<-C \cup S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the memory.

## Algorithm ideas

More formally:

For each set $S$ in the stream:


1) If $S$ covers more than $O P T /(k \varepsilon)$ new elements, $I=I U\{S\}$ and update $C<-C \cup S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the memory.


## Algorithm ideas

More formally:

For each set $S$ in the stream:


1) If $S$ covers more than $O P T /(k \varepsilon)$ new elements, $I=I \cup\{S\}$ and update $C<-C \cup S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the memory.

## Algorithm ideas

Lemma: The algorithm is a $1-\varepsilon$ approximation.

Proof sketch: Suppose y sets (with coverage A) picked during the stream and k-y sets pick at post-processing.

The result coverage is at least

## Algorithm ideas

Lemma: The algorithm is a $1-\varepsilon$ approximation.

Proof sketch: Suppose y sets (with coverage A) picked during the stream and k-y sets pick at post-processing.

The result coverage is at least

## Algorithm ideas

Lemma: The algorithm is a $1-\varepsilon$ approximation.

Proof sketch: Suppose $y$ sets (with coverage A) picked during the stream and $k-y$ sets pick at post-processing.

The result coverage is at least

$$
\begin{aligned}
& |A|+\frac{k-y}{k}[O P T-|A|] \\
& =\left(1-\frac{y}{k}\right) O P T+\frac{y}{k}|A| \\
& \geq\left(1-\frac{y}{k}\right) O P T+\left(\frac{y}{k}\right)^{2} \frac{1}{\epsilon} O P T \\
& \geq(1-\epsilon / 4) O P T
\end{aligned}
$$

## Algorithm ideas

Challenge: OPT $=\mathrm{n}$ in the worst case.


## Algorithm ideas

Challenge: OPT $=\mathrm{n}$ in the worst case.


Subsampling: Subsample the universe $U$
with $p=\frac{c k \log m}{\epsilon^{2} O P T}$
Run the algorithm on $U^{\prime}$

## Algorithm ideas

Challenge: OPT $=\mathrm{n}$ in the worst case.


Subsampling: Subsample the universe $U$
with $\quad p=\frac{c k \log m}{\epsilon^{2} O P T}$
Run the algorithm on $U^{\prime}$.

Claim: Chernoff-Union argument

$$
O P T^{\prime}=\Theta\left(\epsilon^{-2} k \log m\right)
$$

A good approx. in $U^{\prime}$ is also a good approx. in $U$.

## Algorithm ideas

Challenge: OPT $=\mathrm{n}$ in the worst case.


Subsampling: Subsample the universe $U$
with $\quad p=\frac{c k \log m}{\epsilon^{2} O P T}$
Run the algorithm on $\mathrm{U}^{\prime}$.

Claim: Chernoff-Union argument

$$
O P T^{\prime}=\Theta\left(\epsilon^{-2} k \log m\right)
$$

A good approx. in $U^{\prime}$ is also a good approx. in $U$.

## Algorithm ideas

## Other challenges:

OPT is unknown. Need guessing.

$$
p=\frac{c k \log m}{\epsilon^{2} O P T}
$$

Small guesses - large space

Large guesses - inaccurate solution

Limited independent hash function analysis

## Polynomial time version

More formally:

For each set $S$ in the stream:


1) If $S$ covers more than $O P T /(k \&)$ new elements, $I=I \cup\{S\}$ and update $C<-C \cup S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the memory.

## Polynomial time version

1-1/e approx.
$\frac{m}{\epsilon^{2}}$ space after subsampling


1) If $S$ covers more than $O P T /(k \&)$ new elements, $I=I \cup\{S\}$ and update $C<-C \cup S$.
2) Otherwise, store $S^{*}=S \backslash C$ in the memory.
3) Post-processing: find the best remaining sets from the memory.

## Lower bound

For $k=O(1)$, any constant pass (randomized) algorithm with a 1-1/e+0.01 approximation requires
space.

$$
\Omega(m)
$$

k-player DISJOINTNESS: Each player i has a bit string $x_{i}$ of length $m$.

## Lower bound

k-player DISJOINTNESS: Each player i has a bit string $x_{i}$ of length $m$.

## Lower bound

## k-player DISJOINTNESS: Each player i has a bit string $x_{i}$ of length $m$.



## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |

at most one 1 in each column

## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |


| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | 1 | $\ldots$ | 1 |
| $k$ | 0 | 1 | $\ldots$ | 0 |
| one unique column with all 1 |  |  |  |  |

## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |


| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | 1 | $\ldots$ | 1 |
| $k$ | 0 | 1 | $\ldots$ | 0 |
|  |  | YES Instance |  |  |
| one unique column with all 1 |  |  |  |  | player 1 -> player 2 -> ... -> player K -> YES/NO Any randomized protocol requires $\Omega(\mathrm{m})$ communication.

## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |
|  | NO Instance |  |  |  |


| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | 1 | $\ldots$ | 1 |
| $k$ | 0 | 1 | $\ldots$ | 0 |

YES Instance
one unique column with all 1 player 1 -> player 2 -> ... -> player $\mathrm{K} \rightarrow$ YES/NO Any randomized protocol requires $\Omega(m)$ communication.

## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |
| no most one 1 in each column |  |  |  |  |


| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | 1 | $\ldots$ | 1 |
| k | 0 | 1 | $\ldots$ | 0 |

YES Instance
one unique column with all 1 player 1 -> player 2 -> ... -> player K -> YES/NO Any randomized protocol requires $\Omega(m)$ communication.

## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |
| at most one 1 in each column |  |  |  |  |


| player | bit 1 | bit 2 | ... | bit m |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | ... | 0 |
| 2 | 0 | 1 | ... | 0 |
| ... | ... | 1 | ... | 1 |
| k | 0 | 1 | ... | 0 |
| YES Instance |  |  |  |  | player 1 -> player 2 -> ... -> player $k$-> YES/NO Any randomized protocol requires $\Omega(m)$ communication.

## Lower bound

k-player DISJOINTNESS: Each player has a bit string of length $m$.

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| $k$ | 0 | 0 | $\ldots$ | 0 |
|  | NO Instance |  |  |  |

at most one 1 in each column

| player bit 1 | bit 2 | $\ldots$ | bit $m$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $\ldots$ | 0 |
| 2 | 0 | 1 | $\ldots$ | 0 |
| $\ldots$ | $\ldots$ | 1 | $\ldots$ | 1 |
| k | 0 | 1 | $\ldots$ | 0 |

YES Instance
one unique column with all 1 player 1 -> player 2 -> ... -> player k $\rightarrow$ YES/NO Any randomized protocol requires $\Omega(m)$ communication.

## Lower bound

k-player DISJOINTNESS: Use public randomness, generates $S(i, j)$

| player | bit 1 | bit 2 | ... | bit m | $S(1, j), S(2, j), \ldots, S(k, j)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | S(1,1) | $S(1,2)$ | ... | $S(1, m)$ | have the same size and partition [n] |
|  |  |  |  |  |  |
| 2 | S(2,1) | $S(2,2)$ | ... | S(2,m) |  |
| ... | ... | $\ldots$ | ... | ... | $\bigcup S(i, j)=[n]$ |
| k | S(k,1) | $s(k, 2)$ | ... | $S(k, m)$ | $J$ |

## Lower bound

k-player DISJOINTNESS: Use public randomness, generates $S(i, j)$

| player | bit 1 | bit 2 | ... | bit m | $S(1, j), S(2, j), \ldots, S(k, j)$ <br> have the same size and partition [ n ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} 1 \\ \mathrm{~S}(1,1) \end{gathered}$ | 0 | ... | 0 |  |
| 2 | 0 | $\begin{gathered} 1 \\ \mathrm{~S}(2,2) \end{gathered}$ | ... | $\begin{gathered} 1 \\ \mathrm{~S}(\mathrm{~m}, 2) \end{gathered}$ |  |
| ... | ... | ... | $\cdots$ | ... | $\bigcup S(i, j)=[n]$ |
| k | 0 | 0 | ... | 0 | j |

If $x_{i, j}=1$, player $i$ put $S(i, j)$ in the stream.

## Lower bound

## NO instance



## Lower bound

## YES instance

```
player bit 1 bit 2 ... bit m
    cccccc
\cdots
    The sets in the all-1 column cover
    [n].
    YES Instance
    max cover = n
```


## Lower bound

| player | bit 1 | bit 2 | $\ldots$ | bit $m$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  |  |
|  | $\mathrm{~S}(1,1)$ | $\mathrm{S}(1,2)$ | $\ldots$ | 0 |
| 2 | 0 | 1 |  | 1 |
|  |  | $\mathrm{~S}(2,2)$ | $\cdots$ | $\mathrm{S}(2, \mathrm{~m})$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $k$ | 0 | 1 |  | 0 |

YES Instance
max cover $=\mathbf{n}$


NO Instance
$\max$ cover $<(1-1 / e+0.01) n$

## Lower bound

| player | bit 1 | bit 2 | $\ldots$ | bit $m$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  | 0 |
|  | $S(1,1)$ | $S(1,2)$ | $\ldots$ | 0 |
| 2 | 0 | 1 |  | 1 |
|  |  | $S(2,2)$ | $\cdots$ | $S(2, m)$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $k$ | 0 | 1 |  | 0 |

YES Instance
max cover $=\mathbf{n}$


NO Instance
$\max$ cover $<(1-1 / e+0.01) n$

A streaming algorithm with $1-1 / e+0.01$ approx. provides a communication protocol
$\Longrightarrow \Omega(m)$ space

## Other results in the literature

## Multiple pass algorithm

Knapsack, matroid constraints
Sliding windows
Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

## Other results in the literature

Multiple pass algorithm
(idea: thresholding greedy)

Knapsack, matroid constraints
Sliding windows
Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

## Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints
Sliding windows (only consider the last w items/sets)

Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

## Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints
Sliding windows (only consider the last w items/sets)

Maximum k-vertex-cover

Streaming (monotone/non-monotone) submodular
maximization

## Other results in the literature

Multiple pass algorithm

Knapsack, matroid constraints
Sliding windows
Maximum k-vertex-cover (find $k$ vertices that cover the most number of edges)

Thank you!

