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Finding frequent items

A (fake) search engine query log from Nov 7th:

18:58:02 gmail

18:59:12 mlb playoffs

19:07:40 wiki trump

19:07:42 cream of wheat wiki

19:07:58 p vs np

19:09:37 aa flight status 1597

19:10:14 halloween costumes

19:10:18 wiki van emde boas

19:11:28 edx wiki
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Finding heavy hitters
Problem: Given stream of items (e.g. words) coming from some
universe U (e.g. English dictionary), report a small list L ⊂ U
containing all “frequent” items

I “frequent/heavy” depends on some input parameter ε

I for word i ∈ U , “heavy” means xi > ε‖x‖2, where

x ∈ R|U| has xi equal to # occurrences of word i in stream

I trivial solution: use n = |U| words of memory

I Goal: using � n memory, output small such L

(e.g. |L| ≤ O(1/ε2), which is max possible # of heavy items)

I Henceforth: k := 1/ε2, want to find (`2-approximate)“top-k”

I Could define in terms of ‖x‖p for other p, but known
f (k) · no(1) space possible iff p ≤ 2 [BarYossef-Jayram-Kumar-Sivakumar’04],
and up to slight change in problem defn can black-box solve `p
HH optimally using optimal `q algo. if p < q [Jowhari-Sağlam-Tardos’11].
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Problem Statement

Problem name: “`2 heavy hitters in insertion-only streams”

Definition
Index i ∈ [n] is a k-heavy hitter (or k-HH) if |xi | > 1√

k
‖x‖2

query(): Must output L ⊆ [n] s.t.

(1) |L| = O(k), and

(2) L contains every k-HH
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Works on heavy hitters



I sampling (folklore)

I Frequent [Misra-Gries’82]

I LossyCounting [Singh-Motwani’02]

I SpaceSaving [Metwally-Agrawal-ElAbbadi’05]

I SampleAndHold [Estan-Varghese’03]

I Multi-stage bloom filters [Chabchoub-Fricker-Mohamed’09]

I Sketch-guided sampling [Kumar-Xu’06]

I CountMin sketch [Cormode-Muthukrishnan’05]

I CountMin sketch with dyadic trick [Cormode-Muthukrishnan’05]

I CountSketch [Charikar-Chen-FarachColton’02]

I CountSketch with codes [Pagh’13]

I HSS (Hierarchical CountSketch) [Cormode-Hadjieleftheriou’08]

I CountSieve [Braverman-Chestnut-Ivkin-Woodruff’16]

I BDW [Bhattacharyya-Dey-Woodruff’16]

I BPTree [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff’17]

I ExpanderSketch [Larsen-Nelson-Nguy˜̂en-Thorup’16]
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Bounds attained for `2-heavy hitters

(k denotes 1/ε2)

Insertion-only
reference data structure space (words)

[Charikar, Chen, Farach-Colton’02] CountSketch k log n

[Braverman, Chestnut, Ivkin, Woodruff’16] CountSieve k log k log log n

[BCIW+Nelson+Wang’17] BPTree k log k
(all for failure probability 1/100)

OPEN: O(k) words?
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Insertion-only `2 heavy
hitters: the BPTree

[Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff’17]



BPTree

Plan of attack

I Defn. H ∈ [n] is super-heavy if x2
H > 1000

∑
j 6=H x2

j

I We will reduce finding L ⊂ [n] containing all heavy hitters,
|L| = O(k), to the following problem:

if ∃i super-heavy, find it with probability 9/10

(if no super-heavy item exists, then arbitrary output allowed)

I If can solve “super-heavy” in space S , our final algorithm will
have space O(S · k log k) =⇒ want S = O(1)
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Reduction to finding super-heavy items
The reduction: h : [n]→ [q] from 2-wise indep. family, q = 5000k

B1 B2 Bq

i

Bh(i)

Let HH be set of ε-heavy hitters, and say i ∈ HH.

P
h

(∃j ∈ HH\{i}, h(j) = h(i)) ≤ 1

5000
(i isolated from rest of HH)

P
h

(
∑

j /∈HH
h(j)=h(i)

x2
j ≥

1

1000k
‖x‖2

2) ≤ 1

5
(very little non-HH mass in Bh(i))

=⇒ i is super-heavy in Bh(i) with at least ≈ 4/5 probability
I Each Br stores a data structure implementing a solution to

the “super-heavy” problem w/ success prob. ≥ 9/10, so we
find i w.p. ≥ 9

10 · (1− 1
5 − 1

5000 ) > 7
10
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Final reduction

The reduction: h1, . . . , hM : [n]→ [q] from 2-wise indep. family,
q = 5000k , M = Θ(log k)

i

B1
h1(i)

B2
h2(i)

B3
h3(i)

BM
hM (i)

...

M

B1
1 B1

2

B2
1

B3
1 B3

2

BM
2BM

1

Output
L = {i : i reported as super-heavy in at least half the rows}
Analysis: Use last slide + Chernoff and union bound



Solving “super-heavy” in
O(1) words of memory

Will make use of . . .

Core lemma: If 0 = y (0), . . . , y (T ) is the evolution of a vector
updated in an insertion-only stream and σ ∈ {−1, 1}n has 4-wise
independent entries, then

E
σ

sup
t∈[T ]

|
〈
σ, y (t)

〉
| . ‖y (T )‖2.

(y (t) is frequency vector after first t updates in stream)
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Basic idea to make use core lemma

I Wishful thinking: assume we know ‖x (m)‖2 exactly.

(m is the length of the stream)

I H ∈ {1, . . . , n} is the ID of the super-heavy item

we will try to learn H = H[0]H[1] · · ·H[log n] bit by bit

(will learn these bits iteratively, from j = 0 to log n)
I Learning H0:

I σ ∈ {−1, 1}n from 4-wise independent family
I instantiate two counters B0, B1

I when we see i ∈ [n] in stream, increment Bi [0] by σi

i = 14 = 1110

B0 B1

+σ14
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Basic idea to make use core lemma

i = 14 = 1110

B0 B1

+σ14

I For the sake of illustration, let’s say H[0] = 1

I =⇒ B1 = ±xH +
∑

i 6=H,H[0]=1σixi

B0 =
∑

H[0]=0σixi

I Super-heaviness:

x2
H > 1000

∑
i 6=H x2

i =⇒ x
(m)
H

‖x(m)‖2
>
√

1000
1001 > .999

I Remember we know ‖x (m)‖2. Wait until some
|Bj | > .1‖x (m)‖2, then we learn H[0] = j .

“Core Lemma” applied twice (once to each bucket) implies
two

∑
’s above probably never exceed .01‖x (m)‖2
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Basic idea: making it work

I We know how to learn H[0]. How about future bits? Iterate?

I Problem: learned H[0] after ≈ 10% of H’s occurrences. Can
only do that 10 times, but need to learn log n bits of H.

I Pseudofix: when learning H[j ], ignore any stream index whose
bits 1, . . . , j − 1 don’t match what we already learned

(idea: filtering cuts out ≈ 1
2j

fraction of noise, so can afford

to say we’ve learned H[j ] after some |Br | > ( 9
10 )j · .1‖x (m)‖2)

I Learn all bits after .1 ·∑j(
9

10 )j < 1 fraction of H’s occurrences

I Problem: Might not be that only 1
2j

fraction of mass matches
H’s length-j binary prefix. i.e. mass isn’t randomly distributed.

I Final fix: Pick 2-wise permutation π : [n3]→ [n3] and for each
stream update i , feed π(i) to algorithm. Then indices are
random, and we can learn H ′ = π(H). Then return π−1(H ′).
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bits 1, . . . , j − 1 don’t match what we already learned

(idea: filtering cuts out ≈ 1
2j

fraction of noise, so can afford

to say we’ve learned H[j ] after some |Br | > ( 9
10 )j · .1‖x (m)‖2)

I Learn all bits after .1 ·∑j(
9

10 )j < 1 fraction of H’s occurrences

I Problem: Might not be that only 1
2j

fraction of mass matches
H’s length-j binary prefix. i.e. mass isn’t randomly distributed.

I Final fix: Pick 2-wise permutation π : [n3]→ [n3] and for each
stream update i , feed π(i) to algorithm. Then indices are
random, and we can learn H ′ = π(H). Then return π−1(H ′).
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Final algorithm: removing the remaining assumption

I “Super-heavy” algorithm assumed we knew ‖x (m)‖2 exactly

(it’s actually enough to know it up to a factor of 2)

I Fix: guess ‖x (m)‖2 ≈ 1, 2, . . . , 2R−1 in parallel (R = 10, say)
I For each of R guesses in parallel, instantiate “super-heavy” alg
I Run tracker in parallel; continously outputs at ≈ ‖x (t)‖2

I Say currently running parallel algs for 2j , 2j+1, . . . , 2R+j−1

when at > 2j , kill 2j process and start new process for 2R+j

I The newly booted process missed out on some prefix of the
stream, but if ‖x (m)‖2 actually ends up ≈ 2R+j , we only missed
out on mass leading up to ‖x‖2 ≈ 2j , so only missed ≈ 2−R

fraction of the final xH occurrences. QED.
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How can we prove the
core lemma?

Core lemma: If 0 = y (0), . . . , y (T ) is the evolution of a vector
updated in an insertion-only stream and σ ∈ {−1, 1}n has 4-wise
independent entries, then

E
σ

sup
t∈[T ]

|
〈
σ, y (t)

〉
| . ‖y (T )‖2.

(y (t) is frequency vector after first t updates in stream)
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Warmup

Simple random walk on a line.

y (t) = (

t︷ ︸︸ ︷
1, . . . , 1,

n−t︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0)

I σ ∈ {−1, 1}n, row of Π, has 4-wise independent entries

I
〈
σ, y (t)

〉
: the location of a random walk on Z after t steps,

starting at 0, each step goes left/right with equal probability

I Kolmogorov/Lévy maximal inequalities:
Eσ supt∈[T ] |

〈
σ, y (t)

〉
| .
√
T

(if σ has independent entries)

I Will now show a proof (outline) of above standard result that
can be adapted to handle 4-wise independent σi
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Suprema of stochastic
processes



Suprema of stochastic processes

We have V ⊂ B`n2 and want to upper bound

α(V ) := E sup
v∈V
| 〈σ, v〉 |

(in our case V = { y (t)
√
T
}Tt=0 and want to show α(V ) . 1)



Suprema of stochastic processes

We have V ⊂ B`n2 and want to upper bound

α(V ) := E sup
v∈V
| 〈σ, v〉 |

Method 1 (union bound):

Khintchine inequality says
Pσ(| 〈σ, v〉 | > λ) ≤ 2e−λ

2/(2‖v‖2
2).

α(V ) =

∫ ∞

0
P(sup

v∈V
| 〈σ, v〉 | > λ)dλ

=

∫ τ

0

≤1︷ ︸︸ ︷
P(sup

v∈V
| 〈σ, v〉 | > λ) dλ+

∫ ∞

τ

≤∑v∈V P(|〈σ,v〉|>λ)
︷ ︸︸ ︷
P(sup

v∈V
| 〈σ, v〉 | > λ) dλ

≤ τ + |V | · 2e−τ2/2

.
√

lg |V | (set τ = C
√

lg |V |)
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Suprema of stochastic processes
We have V ⊂ B`n2 and want to upper bound

α(V ) := E sup
v∈V
| 〈σ, v〉 |

Method 2 (ε-net):

V ′ is an ε-net of V in `2 if
∀v ∈ V ∃v ′ ∈ V ′ such that ‖v − v ′‖2 ≤ ε

E sup
v∈V
| 〈σ, v〉 | = E sup

v∈V
|
〈
σ, v ′ + (v − v ′)

〉
|

≤ E sup
v ′∈V ′

|
〈
σ, v ′

〉
|+ E sup

v∈V
|
〈
σ, v − v ′

〉
|︸ ︷︷ ︸

≤ε√n

.
√

lg |V ′|+ ε
√
n

:= lg1/2N (V , `2, ε) + ε
√
n

=⇒ α(V ) . inf
ε>0

{
lg1/2N (V , `2, ε) + ε

√
n
}

For us: will show N (V , `2, ε) ' 1/ε2, so lg1/2(1/ε) + ε
√
n
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Net size for random walk on line

Recall for us: V = { y (t)
√
T
}Tt=0, v (t) = 1√

T
· y (t).

t1 t2 t3 t4

‖v(t2) − v(t1)‖2 =
√

t2−t1
T

optimal ε-net is: {v (sε2T )} for s = 1, 2, . . . , 1/ε2,
so N (V , `2, ε) = 1/ε2
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Suprema of stochastic processes
We have V ⊂ B`n2 and want to upper bound

α(V ) := E sup
v∈V
| 〈σ, v〉 |

Method 3 (Dudley chaining):

Net argument: v = v ′ + (v − v ′)
This time: Vk is a 2−k -net of V and v(k) closest to v in Vk

v = v(0) +
∞∑

k=1

(v(k)− v(k − 1))

E sup
v∈V
| 〈σ, v〉 | ≤

∞∑

k=1

E sup
v∈V
| 〈σ, v(k)− v(k − 1)〉 |

.
∞∑

k=1

sup
v
‖v(k)− v(k − 1)‖2

× lg1/2(N (V , `2,
1

2k
) · N (V , `2,

1

2k−1
))

.
∞∑

k=1

1

2k
· lg1/2N (V , `2,

1

2k
)
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We have V ⊂ B`n2 and want to upper bound

α(V ) := E sup
v∈V
| 〈σ, v〉 |

Method 3 (Dudley chaining): Net argument: v = v ′ + (v − v ′)
This time: Vk is a 2−k -net of V and v(k) closest to v in Vk

v = v(0) +
∞∑

k=1

(v(k)− v(k − 1))

E sup
v∈V
| 〈σ, v〉 | ≤

∞∑

k=1

E sup
v∈V
| 〈σ, v(k)− v(k − 1)〉 |

.
∞∑

k=1

sup
v
‖v(k)− v(k − 1)‖2

× lg1/2(N (V , `2,
1

2k
) · N (V , `2,

1

2k−1
))

.
∞∑

k=1

1

2k
· lg1/2N (V , `2,

1

2k
) (≤

∑

k

√
k

2k
= O(1))



What about the 4-wise
independence?



Dudley chaining with p-wise independence

Where it all started: Khintchine inequality says
Pσ(| 〈σ, v〉 | > λ) ≤ 2e−λ

2/(2‖v‖2
2).

Khintchine says E | 〈σ, v〉 |p ≤ (
√
p · ‖v‖2)p for all p ≥ 1

so by Markov, P(| 〈σ, v〉 | > λ) ≤ (
√
p·‖v‖2

λ )p

If use above new tail bound in Method 1 and push through the
Dudley argument, and note |{v(k)− v(k − 1) : v ∈ V }| ≤ 2|Vk |,
obtain a new “Dudley-esque” bound for our V :

α(V ) .
∞∑

k=1

1

2k
· √p · (N (V , `2,

1

2k
))1/p

≤
∞∑

k=1

√
p · 22k/p

2k

. 1 (for p ≥ 3)
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Yay – done with the
warmup!



Recap: what we showed (and what’s left)

Core lemma: If 0 = y (0), . . . , y (T ) is the evolution of a vector
updated in an insertion-only stream and σ ∈ {−1, 1}n has 4-wise
independent entries, then

E
σ

sup
t∈[T ]

|
〈
σ, v (t)

〉
| . ‖v (T )‖2 (where v (t) :=

y (t)

‖y (T )‖2
)

We showed: we proved core lemma in special case

v (t) = 1√
T
· (

t︷ ︸︸ ︷
1, . . . , 1,

n−t︷ ︸︸ ︷
0, 0, 0, 0, 0, 0, . . . , 0)

Missing to show general case? Need to bound N (V , `2, ε)
(and show |{v(k)− v(k − 1) : v ∈ V }| ≤ 2|Vk |)

Same proof works!
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s1 s2 s3 s4

‖v(t2) − v(t1)‖2 > ε

I Our ε-net will be V ′ = {v (0) := v (t0), v (t1), . . . , v (tR)}
I tj is smallest t > tj−1 s.t. ‖v (tj ) − v (tj−1)‖2 > ε
I Note, again |{v(k)− v(k − 1) : v ∈ V }| ≤ 2|Vk |

I V ′ is an ε-net by construction, but how big is R := |V ′| − 1?

1 ≥ ‖v (tR)‖2
2

= ‖
R∑

j=1

(v (tj ) − v (tj−1)
︸ ︷︷ ︸

wj

)‖2
2

≥
R∑

j=1

‖v (tj ) − v (tj−1)‖2
2 (since

〈
wj ,wj ′

〉
≥ 0)

> R · ε2
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Open Problems



Open Problems

I O(k) words of memory for insertion-only `2 heavy hitters?

I Does core lemma hold with 2-wise independence?


