BPTree: improved space for insertion-only ℓ_{2} heavy hitters

Jelani Nelson
Harvard

March 19, 2018
joint work with Vladimir Braverman (Johns Hopkins), Stephen Chestnut (G-Research), Nikita Ivkin (Johns Hopkins), Zhengyu Wang (Harvard), and David Woodruff (CMU)

Finding frequent items

A (fake) search engine query log from Nov 7th:

$18: 58: 02$	gmail
$18: 59: 12$	ml.b playoffs
$19: 07: 40$	wiki trump
19:07:42	cream of wheat wiki
$19: 07: 58$	p vs np
$19: 09: 37$	aa flight status 1597
$19: 10: 14$	halloween costumes
$19: 10: 18$	wiki van emde boas
$19: 11: 28$	edx wiki

Finding frequent items

A (fake) search engine query log from Nov 7th:

$18: 58: 02$	gmail
$18: 59: 12$	ml.b playoffs
$19: 07: 40$	wiki trump
19:07:42	cream of wheat wiki
$19: 07: 58$	p vs np
$19: 09: 37$	aa flight status 1597
$19: 10: 14$	halloween costumes
$19: 10: 18$	wiki van emde boas
$19: 11: 28$	edx wiki

Finding heavy hitters

Problem: Given stream of items (e.g. words) coming from some universe \mathcal{U} (e.g. English dictionary), report a small list $L \subset \mathcal{U}$ containing all "frequent" items
> "frequent/heavy" depends on some input parameter ε

- for word $i \in \mathcal{U}$, "heavy" means $x_{i}>\varepsilon\|x\|_{2}$, where $x \in \mathbb{R}^{|\mathcal{U}|}$ has x_{i} equal to $\#$ occurrences of word i in stream

Finding heavy hitters

Problem: Given stream of items (e.g. words) coming from some universe \mathcal{U} (e.g. English dictionary), report a small list $L \subset \mathcal{U}$ containing all "frequent" items
> "frequent/heavy" depends on some input parameter ε

- for word $i \in \mathcal{U}$, "heavy" means $x_{i}>\varepsilon\|x\|_{2}$, where $x \in \mathbb{R}^{|\mathcal{U}|}$ has x_{i} equal to $\#$ occurrences of word i in stream
- trivial solution: use $n=|\mathcal{U}|$ words of memory

Finding heavy hitters

Problem: Given stream of items (e.g. words) coming from some universe \mathcal{U} (e.g. English dictionary), report a small list $L \subset \mathcal{U}$ containing all "frequent" items
> "frequent/heavy" depends on some input parameter ε

- for word $i \in \mathcal{U}$, "heavy" means $x_{i}>\varepsilon\|x\|_{2}$, where $x \in \mathbb{R}^{\mid \mathcal{U |}}$ has x_{i} equal to \# occurrences of word i in stream
- trivial solution: use $n=|\mathcal{U}|$ words of memory
- Goal: using $\ll n$ memory, output small such L (e.g. $|L| \leq O\left(1 / \varepsilon^{2}\right)$, which is max possible \# of heavy items)

Finding heavy hitters

Problem: Given stream of items (e.g. words) coming from some universe \mathcal{U} (e.g. English dictionary), report a small list $L \subset \mathcal{U}$ containing all "frequent" items
> "frequent/heavy" depends on some input parameter ε

- for word $i \in \mathcal{U}$, "heavy" means $x_{i}>\varepsilon\|x\|_{2}$, where $x \in \mathbb{R}^{|\mathcal{U}|}$ has x_{i} equal to $\#$ occurrences of word i in stream
- trivial solution: use $n=|\mathcal{U}|$ words of memory
- Goal: using $\ll n$ memory, output small such L (e.g. $|L| \leq O\left(1 / \varepsilon^{2}\right)$, which is max possible \# of heavy items)
- Henceforth: $k:=1 / \varepsilon^{2}$, want to find (ℓ_{2}-approximate) "top- k "

Finding heavy hitters

Problem: Given stream of items (e.g. words) coming from some universe \mathcal{U} (e.g. English dictionary), report a small list $L \subset \mathcal{U}$ containing all "frequent" items
> "frequent/heavy" depends on some input parameter ε

- for word $i \in \mathcal{U}$, "heavy" means $x_{i}>\varepsilon\|x\|_{2}$, where $x \in \mathbb{R}^{|\mathcal{U}|}$ has x_{i} equal to $\#$ occurrences of word i in stream
- trivial solution: use $n=|\mathcal{U}|$ words of memory
- Goal: using $\ll n$ memory, output small such L (e.g. $|L| \leq O\left(1 / \varepsilon^{2}\right)$, which is max possible \# of heavy items)
- Henceforth: $k:=1 / \varepsilon^{2}$, want to find (ℓ_{2}-approximate) "top- k "
- Could define in terms of $\|x\|_{p}$ for other p, but known $f(k) \cdot n^{o(1)}$ space possible iff $p \leq 2$ [BarYossef-_Jayram-Kumar-Sivakumar'04], and up to slight change in problem defn can black-box solve ℓ_{p} HH optimally using optimal $\ell_{\boldsymbol{q}}$ algo. if $p<q$ [Jowhari-Sağlam-Tardos'11].

Problem Statement

Problem name: " ℓ_{2} heavy hitters in insertion-only streams"
Definition
Index $i \in[n]$ is a k-heavy hitter (or k-HH) if $\left|x_{i}\right|>\frac{1}{\sqrt{k}}\|x\|_{2}$

Problem Statement

Problem name: " ℓ_{2} heavy hitters in insertion-only streams"
Definition
Index $i \in[n]$ is a k-heavy hitter (or k-HH) if $\left|x_{i}\right|>\frac{1}{\sqrt{k}}\|x\|_{2}$
query(): Must output $L \subseteq[n]$ s.t.
(1) $|L|=O(k)$, and
(2) L contains every $k-\mathrm{HH}$

Works on heavy hitters

- sampling (folklore)
- Frequent [Misra-Gries'82]
- LossyCounting [Singh-Motwani'02]
- SpaceSaving [Metwally-Agrawal-EIAbbadi'05]
- SampleAndHold [Estan-Varghese'03]
- Multi-stage bloom filters [Chabchoub-Fricker-Mohamed'09]
- Sketch-guided sampling [Kumar-Xu'06]
- CountMin sketch [Cormode-Muthukrishnan'05]
- CountMin sketch with dyadic trick [Cormode-Muthukrishnan'05]
- CountSketch [Charikar-Chen-FarachColton'02]
- CountSketch with codes [Pagh'13]
- HSS (Hierarchical CountSketch) [Cormode-Hadjieleftheriou'08]
- CountSieve [Braverman-Chestnut-Ivkin-Woodruff'16]
- BDW [Bhattacharyya-Dey-Woodruff'16]
- BPTree [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff'17]
- ExpanderSketch [Larsen-Nelson-Nguyễn-Thorup'16]
- sampling (folklore)
- Frequent [Misra-Gries'82]
- LossyCounting [Singh-Motwani'02]
- SpaceSaving [Metwally-Agrawal-EIAbbadi'05]
- SampleAndHold [Estan-Varghese'03]
- Multi-stage bloom filters [Chabchoub-Fricker-Mohamed'09]
- Sketch-guided sampling [Kumar-Xu'06]
- CountMin sketch [Cormode-Muthukrishnan'05]
- CountMin sketch with dyadic trick [Cormode-Muthukrishnan'05]
- CountSketch [Charikar-Chen-FarachColton'02]
- CountSketch with codes [Pagh'13]
- HSS (Hierarchical CountSketch) [Cormode-Hadjieleftheriou'08]
- CountSieve [Braverman-Chestnut-Ivkin-Woodruff'16]
- BDW [Bhattacharyya-Dey-Woodruff'16]
- BPTree [Braverman-Chestrnut-Ivkin-Nelson-Wang-Woodruff'17]
- ExpanderSketch [Larsen-Nelson-Nguyễn-Thorup'16]

Bounds attained for ℓ_{2}-heavy hitters

(k denotes $1 / \varepsilon^{2}$)
Insertion-only

reference	data structure	space (words)
[Charikar, Chen, Farach-Colton'02]	CountSketch	$k \log n$
$[B r a v e r m a n, ~ C h e s t n u t, ~ I v k i n, ~ W o o d r u f f ' 16] ~$	CountSieve	$k \log k \log \log n$
$[B C I W+$ Nelson+Wang'17]	BPTree	$k \log k$

(all for failure probability $1 / 100$)

Bounds attained for ℓ_{2}-heavy hitters

(k denotes $\left.1 / \varepsilon^{2}\right)$

Insertion-only | reference | data structure | space (words) |
| :--- | :---: | ---: |
| $[$ Charikar, Chen, Farach-Colton'02] | CountSketch | $k \log n$ |
| $[$ Braverman, Chestnut, Ivkin, Woodruff'16] | CountSieve | $k \log k \log \log n$ |
| $[B C I W+$ Nelson+Wang'17] | BPTree | $k \log k$ |

(all for failure probability $1 / 100$)
OPEN: $O(k)$ words?

Insertion-only ℓ_{2} heavy hitters: the BPTree

[Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff'17]

BPTree

Plan of attack

- Defn. $H \in[n]$ is super-heavy if $x_{H}^{2}>1000 \sum_{j \neq H} x_{j}^{2}$
- We will reduce finding $L \subset[n]$ containing all heavy hitters, $|L|=O(k)$, to the following problem:

BPTree

Plan of attack

- Defn. $H \in[n]$ is super-heavy if $x_{H}^{2}>1000 \sum_{j \neq H} x_{j}^{2}$
- We will reduce finding $L \subset[n]$ containing all heavy hitters, $|L|=O(k)$, to the following problem:
if $\exists i$ super-heavy, find it with probability $9 / 10$
(if no super-heavy item exists, then arbitrary output allowed)

BPTree

Plan of attack

- Defn. $H \in[n]$ is super-heavy if $x_{H}^{2}>1000 \sum_{j \neq H} x_{j}^{2}$
- We will reduce finding $L \subset[n]$ containing all heavy hitters, $|L|=O(k)$, to the following problem:
if $\exists i$ super-heavy, find it with probability $9 / 10$
(if no super-heavy item exists, then arbitrary output allowed)
- If can solve "super-heavy" in space S, our final algorithm will have space $O(S \cdot k \log k) \Longrightarrow$ want $S=O(1)$

Reduction to finding super-heavy items

The reduction: $h:[n] \rightarrow[q]$ from 2-wise indep. family, $q=5000 k$

Reduction to finding super-heavy items

The reduction: $h:[n] \rightarrow[q]$ from 2-wise indep. family, $q=5000 k$

Let $H H$ be set of ε-heavy hitters, and say $i \in H H$.

Reduction to finding super-heavy items

The reduction: $h:[n] \rightarrow[q]$ from 2-wise indep. family, $q=5000 k$

Let $H H$ be set of ε-heavy hitters, and say $i \in H H$.

$$
\begin{aligned}
& \underset{h}{\mathbb{P}}(\exists j \in H H \backslash\{i\}, h(j)=h(i)) \leq \frac{1}{5000}(i \text { isolated from rest of } \mathrm{HH}) \\
& \underset{\substack{\mathbb{P}}}{\mathbb{P}\left(\sum_{\substack{j \notin H H \\
h(j)=h(i)}} x_{j}^{2} \geq \frac{1}{1000 k}\|x\|_{2}^{2}\right) \leq \frac{1}{5}\left(\text { very little non-HH mass in } B_{h(i)}\right)} \text {) }
\end{aligned}
$$

Reduction to finding super-heavy items

The reduction: $h:[n] \rightarrow[q]$ from 2-wise indep. family, $q=5000 k$

Let $H H$ be set of ε-heavy hitters, and say $i \in H H$.

$$
\begin{aligned}
& \underset{h}{\mathbb{P}}(\exists j \in H H \backslash\{i\}, h(j)=h(i)) \leq \frac{1}{5000}(i \text { isolated from rest of } \mathrm{HH}) \\
& \underset{\substack{\mathbb{P}}}{\mathbb{P}\left(\sum_{\substack{j \notin H H \\
h(j)=h(i)}} x_{j}^{2} \geq \frac{1}{1000 k}\|x\|_{2}^{2}\right) \leq \frac{1}{5}\left(\text { very little non-HH mass in } B_{h(i)}\right)} \text {) }
\end{aligned}
$$

$\Longrightarrow i$ is super-heavy in $B_{h(i)}$ with at least $\approx 4 / 5$ probability

Reduction to finding super-heavy items

The reduction: $h:[n] \rightarrow[q]$ from 2-wise indep. family, $q=5000 k$

Let $H H$ be set of ε-heavy hitters, and say $i \in H H$.

$$
\begin{aligned}
& \underset{P}{\mathbb{P}}(\exists j \in H H \backslash\{i\}, h(j)=h(i)) \leq \frac{1}{5000}(i \text { isolated from rest of } \mathrm{HH}) \\
& \underset{\substack{\mathrm{P}}}{\mathbb{P}}\left(\sum_{\substack{j \notin H H \\
h(j)=h(i)}} x_{j}^{2} \geq \frac{1}{1000 k}\|x\|_{2}^{2}\right) \leq \frac{1}{5}\left(\text { very little non-HH mass in } B_{h(i)}\right)
\end{aligned}
$$

$\Longrightarrow i$ is super-heavy in $B_{h(i)}$ with at least $\approx 4 / 5$ probability

- Each B_{r} stores a data structure implementing a solution to the "super-heavy" problem $w /$ success prob. $\geq 9 / 10$, so we find i w.p. $\geq \frac{9}{10} \cdot\left(1-\frac{1}{5}-\frac{1}{5000}\right)>\frac{7}{10}$

Final reduction

The reduction: $h_{1}, \ldots, h_{M}:[n] \rightarrow[q]$ from 2-wise indep. family, $q=5000 k, M=\Theta(\log k)$

Output

$L=\{i: i$ reported as super-heavy in at least half the rows $\}$
Analysis: Use last slide + Chernoff and union bound

Solving "super-heavy" in $O(1)$ words of memory

Solving "super-heavy" in $O(1)$ words of memory

Will make use of ...
Core lemma: If $0=y^{(0)}, \ldots, y^{(T)}$ is the evolution of a vector updated in an insertion-only stream and $\sigma \in\{-1,1\}^{n}$ has 4 -wise independent entries, then

$$
\underset{\sigma}{\mathbb{E}} \sup _{t \in[T]}\left|\left\langle\sigma, y^{(t)}\right\rangle\right| \lesssim\left\|y^{(T)}\right\|_{2} .
$$

$\left(y^{(t)}\right.$ is frequency vector after first t updates in stream)

Basic idea to make use core lemma

- Wishful thinking: assume we know $\left\|x^{(m)}\right\|_{2}$ exactly. (m is the length of the stream)

Basic idea to make use core lemma

$>$ Wishful thinking: assume we know $\left\|x^{(m)}\right\|_{2}$ exactly. (m is the length of the stream)

- $H \in\{1, \ldots, n\}$ is the ID of the super-heavy item we will try to learn $H=H[0] H[1] \cdots H[\log n]$ bit by bit (will learn these bits iteratively, from $j=0$ to $\log n$)

Basic idea to make use core lemma

- Wishful thinking: assume we know $\left\|x^{(m)}\right\|_{2}$ exactly. (m is the length of the stream)
- $H \in\{1, \ldots, n\}$ is the ID of the super-heavy item we will try to learn $H=H[0] H[1] \cdots H[\log n]$ bit by bit (will learn these bits iteratively, from $j=0$ to $\log n$)
- Learning H_{0} :
- $\sigma \in\{-1,1\}^{n}$ from 4 -wise independent family
- instantiate two counters B_{0}, B_{1}

Basic idea to make use core lemma

- Wishful thinking: assume we know $\left\|x^{(m)}\right\|_{2}$ exactly. (m is the length of the stream)
- $H \in\{1, \ldots, n\}$ is the ID of the super-heavy item we will try to learn $H=H[0] H[1] \cdots H[\log n]$ bit by bit (will learn these bits iteratively, from $j=0$ to $\log n$)
- Learning H_{0} :
- $\sigma \in\{-1,1\}^{n}$ from 4 -wise independent family
- instantiate two counters B_{0}, B_{1}
- when we see $i \in[n]$ in stream, increment $B_{i[0]}$ by σ_{i}

$$
i=14=1110
$$

$+\hat{\sigma_{14}}$
B_{0}

$$
B_{1}
$$

Basic idea to make use core lemma

- For the sake of illustration, let's say $H[0]=1$
$>\Longrightarrow B_{1}= \pm x_{H}+\sum_{i \neq H, H[0]=1} \sigma_{i} x_{i}$

$$
B_{0}=\sum_{H[0]=0} \sigma_{i} x_{i}
$$

Basic idea to make use core lemma

- For the sake of illustration, let's say $H[0]=1$
$>\Longrightarrow B_{1}= \pm x_{H}+\sum_{i \neq H, H[0]=1} \sigma_{i} x_{i}$

$$
B_{0}=\sum_{H[0]=0} \sigma_{i} x_{i}
$$

- Super-heaviness:

$$
x_{H}^{2}>1000 \sum_{i \neq H} x_{i}^{2} \Longrightarrow \frac{x_{H}^{(m)}}{\left\|x^{(m)}\right\|_{2}}>\sqrt{\frac{1000}{1001}}>.999
$$

Basic idea to make use core lemma

- For the sake of illustration, let's say $H[0]=1$
$>\Longrightarrow B_{1}= \pm x_{H}+\sum_{i \neq H, H[0]=1} \sigma_{i} x_{i}$

$$
B_{0}=\sum_{H[0]=0} \sigma_{i} x_{i}
$$

- Super-heaviness:
$x_{H}^{2}>1000 \sum_{i \neq H} x_{i}^{2} \Longrightarrow \frac{x_{H}^{(m)}}{\left\|x^{(m)}\right\|_{2}}>\sqrt{\frac{1000}{1001}}>.999$
$>$ Remember we know $\left\|x^{(m)}\right\|_{2}$. Wait until some $\left|B_{j}\right|>.1\left\|x^{(m)}\right\|_{2}$, then we learn $H[0]=j$.
"Core Lemma" applied twice (once to each bucket) implies two \sum 's above probably never exceed $.01\left\|x^{(m)}\right\|_{2}$

Basic idea: making it work

- We know how to learn H[0]. How about future bits? Iterate?

Basic idea: making it work

- We know how to learn $H[0]$. How about future bits? Iterate?
- Problem: learned $H[0]$ after $\approx 10 \%$ of H's occurrences. Can only do that 10 times, but need to learn $\log n$ bits of H.

Basic idea: making it work

- We know how to learn H[0]. How about future bits? Iterate?
- Problem: learned $H[0]$ after $\approx 10 \%$ of H 's occurrences. Can only do that 10 times, but need to learn $\log n$ bits of H.
- Pseudofix: when learning $H[j]$, ignore any stream index whose bits $1, \ldots, j-1$ don't match what we already learned (idea: filtering cuts out $\approx \frac{1}{2 j}$ fraction of noise, so can afford to say we've learned $H[j]$ after some $\left.\left|B_{r}\right|>\left(\frac{9}{10}\right)^{j} \cdot .1\left\|x^{(m)}\right\|_{2}\right)$

Basic idea: making it work

- We know how to learn $H[0]$. How about future bits? Iterate?
- Problem: learned $H[0]$ after $\approx 10 \%$ of H 's occurrences. Can only do that 10 times, but need to learn $\log n$ bits of H.
- Pseudofix: when learning $H[j]$, ignore any stream index whose bits $1, \ldots, j-1$ don't match what we already learned (idea: filtering cuts out $\approx \frac{1}{2 j}$ fraction of noise, so can afford to say we've learned $H[j]$ after some $\left.\left|B_{r}\right|>\left(\frac{9}{10}\right)^{j} \cdot .1\left\|x^{(m)}\right\|_{2}\right)$
- Learn all bits after . $1 \cdot \sum_{j}\left(\frac{9}{10}\right)^{j}<1$ fraction of H^{\prime} 's occurrences

Basic idea: making it work

- We know how to learn $H[0]$. How about future bits? Iterate?
- Problem: learned $H[0]$ after $\approx 10 \%$ of H 's occurrences. Can only do that 10 times, but need to learn $\log n$ bits of H.
- Pseudofix: when learning $H[j]$, ignore any stream index whose bits $1, \ldots, j-1$ don't match what we already learned (idea: filtering cuts out $\approx \frac{1}{2 j}$ fraction of noise, so can afford to say we've learned $H[j]$ after some $\left.\left|B_{r}\right|>\left(\frac{9}{10}\right)^{j} \cdot .1\left\|x^{(m)}\right\|_{2}\right)$
- Learn all bits after . $1 \cdot \sum_{j}\left(\frac{9}{10}\right)^{j}<1$ fraction of H^{\prime} s occurrences
- Problem: Might not be that only $\frac{1}{2^{j}}$ fraction of mass matches H 's length- j binary prefix. i.e. mass isn't randomly distributed.

Basic idea: making it work

\downarrow We know how to learn H[0]. How about future bits? Iterate?

- Problem: learned $H[0]$ after $\approx 10 \%$ of H 's occurrences. Can only do that 10 times, but need to learn $\log n$ bits of H.
- Pseudofix: when learning $H[j]$, ignore any stream index whose bits $1, \ldots, j-1$ don't match what we already learned (idea: filtering cuts out $\approx \frac{1}{2^{j}}$ fraction of noise, so can afford to say we've learned $H[j]$ after some $\left.\left|B_{r}\right|>\left(\frac{9}{10}\right)^{j} \cdot .1\left\|x^{(m)}\right\|_{2}\right)$
- Learn all bits after . $1 \cdot \sum_{j}\left(\frac{9}{10}\right)^{j}<1$ fraction of H^{\prime} 's occurrences
- Problem: Might not be that only $\frac{1}{2^{j}}$ fraction of mass matches H's length-j binary prefix. i.e. mass isn't randomly distributed.
- Final fix: Pick 2-wise permutation $\pi:\left[n^{3}\right] \rightarrow\left[n^{3}\right]$ and for each stream update i, feed $\pi(i)$ to algorithm. Then indices are random, and we can learn $H^{\prime}=\pi(H)$. Then return $\pi^{-1}\left(H^{\prime}\right)$.

Final algorithm: removing the remaining assumption

- "Super-heavy" algorithm assumed we knew $\left\|x^{(m)}\right\|_{2}$ exactly (it's actually enough to know it up to a factor of 2)

Final algorithm: removing the remaining assumption

- "Super-heavy" algorithm assumed we knew $\left\|x^{(m)}\right\|_{2}$ exactly (it's actually enough to know it up to a factor of 2)
- Fix: guess $\left\|x^{(m)}\right\|_{2} \approx 1,2, \ldots, 2^{R-1}$ in parallel $(R=10$, say $)$

Final algorithm: removing the remaining assumption

- "Super-heavy" algorithm assumed we knew $\left\|x^{(m)}\right\|_{2}$ exactly (it's actually enough to know it up to a factor of 2)
- Fix: guess $\left\|x^{(m)}\right\|_{2} \approx 1,2, \ldots, 2^{R-1}$ in parallel ($R=10$, say)
- For each of R guesses in parallel, instantiate "super-heavy" alg

Final algorithm: removing the remaining assumption

- "Super-heavy" algorithm assumed we knew $\left\|x^{(m)}\right\|_{2}$ exactly (it's actually enough to know it up to a factor of 2)
- Fix: guess $\left\|x^{(m)}\right\|_{2} \approx 1,2, \ldots, 2^{R-1}$ in parallel ($R=10$, say)
- For each of R guesses in parallel, instantiate "super-heavy" alg
- Run tracker in parallel; continously outputs $a_{t} \approx\left\|x^{(t)}\right\|_{2}$

Final algorithm: removing the remaining assumption

- "Super-heavy" algorithm assumed we knew $\left\|x^{(m)}\right\|_{2}$ exactly (it's actually enough to know it up to a factor of 2)
- Fix: guess $\left\|x^{(m)}\right\|_{2} \approx 1,2, \ldots, 2^{R-1}$ in parallel $(R=10$, say $)$
- For each of R guesses in parallel, instantiate "super-heavy" alg
- Run tracker in parallel; continously outputs $a_{t} \approx\left\|x^{(t)}\right\|_{2}$
- Say currently running parallel algs for $2^{j}, 2^{j+1}, \ldots, 2^{R+j-1}$ when $a_{t}>2^{j}$, kill 2^{j} process and start new process for 2^{R+j}

Final algorithm: removing the remaining assumption

- "Super-heavy" algorithm assumed we knew $\left\|x^{(m)}\right\|_{2}$ exactly (it's actually enough to know it up to a factor of 2)
- Fix: guess $\left\|x^{(m)}\right\|_{2} \approx 1,2, \ldots, 2^{R-1}$ in parallel ($R=10$, say)
- For each of R guesses in parallel, instantiate "super-heavy" alg
- Run tracker in parallel; continously outputs $a_{t} \approx\left\|x^{(t)}\right\|_{2}$
- Say currently running parallel algs for $2^{j}, 2^{j+1}, \ldots, 2^{R+j-1}$ when $a_{t}>2^{j}$, kill 2^{j} process and start new process for 2^{R+j}
- The newly booted process missed out on some prefix of the stream, but if $\left\|x^{(m)}\right\|_{2}$ actually ends up $\approx 2^{R+j}$, we only missed out on mass leading up to $\|x\|_{2} \approx 2^{j}$, so only missed $\approx 2^{-R}$ fraction of the final x_{H} occurrences. QED.

How can we prove the core lemma?

How can we prove the core lemma?

Core lemma: If $0=y^{(0)}, \ldots, y^{(T)}$ is the evolution of a vector updated in an insertion-only stream and $\sigma \in\{-1,1\}^{n}$ has 4 -wise independent entries, then

$$
\underset{\sigma}{\mathbb{E}} \sup _{t \in[T]}\left|\left\langle\sigma, y^{(t)}\right\rangle\right| \lesssim\left\|y^{(T)}\right\|_{2}
$$

$\left(y^{(t)}\right.$ is frequency vector after first t updates in stream)

Warmup

Simple random walk on a line.

$$
y^{(t)}=(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0, \ldots, 0}^{n-t})
$$

- $\sigma \in\{-1,1\}^{n}$, row of Π, has 4 -wise independent entries

Warmup

Simple random walk on a line.
$y^{(t)}=(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0, \ldots, 0}^{n-t})$

- $\sigma \in\{-1,1\}^{n}$, row of Π, has 4 -wise independent entries
- $\left\langle\sigma, y^{(t)}\right\rangle$: the location of a random walk on \mathbb{Z} after t steps, starting at 0 , each step goes left/right with equal probability

Warmup

Simple random walk on a line.
$y^{(t)}=(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0, \ldots, 0}^{n-t})$

- $\sigma \in\{-1,1\}^{n}$, row of Π, has 4 -wise independent entries
- $\left\langle\sigma, y^{(t)}\right\rangle$: the location of a random walk on \mathbb{Z} after t steps, starting at 0 , each step goes left/right with equal probability
- Kolmogorov/Lévy maximal inequalities:
$\mathbb{E}_{\sigma} \sup _{t \in[T]}\left|\left\langle\sigma, y^{(t)}\right\rangle\right| \lesssim \sqrt{T}$
(if σ has independent entries)

Warmup

Simple random walk on a line.
$y^{(t)}=(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0, \ldots, 0}^{n-t})$

- $\sigma \in\{-1,1\}^{n}$, row of Π, has 4 -wise independent entries
- $\left\langle\sigma, y^{(t)}\right\rangle$: the location of a random walk on \mathbb{Z} after t steps, starting at 0 , each step goes left/right with equal probability
- Kolmogorov/Lévy maximal inequalities:
$\mathbb{E}_{\sigma} \sup _{t \in[T]}\left|\left\langle\sigma, y^{(t)}\right\rangle\right| \lesssim \sqrt{T}$
(if σ has independent entries)
- Will now show a proof (outline) of above standard result that can be adapted to handle 4-wise independent σ_{i}

Suprema of stochastic processes

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

(in our case $V=\left\{\frac{y^{(t)}}{\sqrt{T}}\right\}_{t=0}^{T}$ and want to show $\alpha(V) \lesssim 1$)

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 1 (union bound):

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 1 (union bound): Khintchine inequality says $\mathbb{P}_{\sigma}(|\langle\sigma, v\rangle|>\lambda) \leq 2 e^{-\lambda^{2} /\left(2\|v\|_{2}^{2}\right)}$.

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 1 (union bound): Khintchine inequality says
$\mathbb{P}_{\sigma}(|\langle\sigma, v\rangle|>\lambda) \leq 2 e^{-\lambda^{2} /\left(2\|v\|_{2}^{2}\right)}$.

$$
\begin{aligned}
\alpha(V) & =\int_{0}^{\infty} \mathbb{P}\left(\sup _{v \in V}|\langle\sigma, v\rangle|>\lambda\right) d \lambda \\
& =\int_{0}^{\tau} \overbrace{\mathbb{P}\left(\sup _{v \in V}|\langle\sigma, v\rangle|>\lambda\right)}^{\leq 1} d \lambda+\int_{\tau}^{\infty} \overbrace{\mathbb{P}\left(\sup _{v \in V}|\langle\sigma, v\rangle|>\lambda\right)}^{\leq \sum_{v \in V} \mathbb{P}(|\langle\sigma, v\rangle|>\lambda)} d \lambda \\
& \leq \tau+|V| \cdot 2 e^{-\tau^{2} / 2} \\
& \lesssim \sqrt{|g| V \mid}(\text { set } \tau=C \sqrt{\lg |V|})
\end{aligned}
$$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 2 (ε-net):

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 2 (ε-net): V^{\prime} is an ε-net of V in ℓ_{2} if
$\forall v \in V \exists v^{\prime} \in V^{\prime}$ such that $\left\|v-v^{\prime}\right\|_{2} \leq \varepsilon$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 2 (ε-net): V^{\prime} is an ε-net of V in ℓ_{2} if
$\forall v \in V \exists v^{\prime} \in V^{\prime}$ such that $\left\|v-v^{\prime}\right\|_{2} \leq \varepsilon$

$$
\begin{aligned}
\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle| & =\mathbb{E} \sup _{v \in V}\left|\left\langle\sigma, v^{\prime}+\left(v-v^{\prime}\right)\right\rangle\right| \\
& \leq \mathbb{E} \sup _{v^{\prime} \in V^{\prime}}\left|\left\langle\sigma, v^{\prime}\right\rangle\right|+\mathbb{E} \sup _{v \in V}^{\mid\langle\underbrace{\left\langle\sigma, v-v^{\prime}\right\rangle \mid}_{\leq \varepsilon \sqrt{n}}} \\
& \lesssim \sqrt{\lg \left|V^{\prime}\right|}+\varepsilon \sqrt{n} \\
& :=\lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \varepsilon\right)+\varepsilon \sqrt{n}
\end{aligned}
$$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 2 (ε-net): V^{\prime} is an ε-net of V in ℓ_{2} if
$\forall v \in V \exists v^{\prime} \in V^{\prime}$ such that $\left\|v-v^{\prime}\right\|_{2} \leq \varepsilon$

$$
\begin{aligned}
\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle| & =\mathbb{E} \sup _{v \in V}\left|\left\langle\sigma, v^{\prime}+\left(v-v^{\prime}\right)\right\rangle\right| \\
& \leq \mathbb{E} \sup _{v^{\prime} \in V^{\prime}}\left|\left\langle\sigma, v^{\prime}\right\rangle\right|+\mathbb{E} \sup _{v \in V} \underbrace{\left|\left\langle\sigma, v-v^{\prime}\right\rangle\right|}_{\leq \varepsilon \sqrt{n}} \\
& \lesssim \sqrt{|g| V^{\prime} \mid}+\varepsilon \sqrt{n} \\
& :=\lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \varepsilon\right)+\varepsilon \sqrt{n} \\
\Longrightarrow \alpha(V) & \lesssim \inf _{\varepsilon>0}\left\{\lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \varepsilon\right)+\varepsilon \sqrt{n}\right\}
\end{aligned}
$$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 2 (ε-net): V^{\prime} is an ε-net of V in ℓ_{2} if
$\forall v \in V \exists v^{\prime} \in V^{\prime}$ such that $\left\|v-v^{\prime}\right\|_{2} \leq \varepsilon$

$$
\begin{aligned}
\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle| & =\mathbb{E} \sup _{v \in V}\left|\left\langle\sigma, v^{\prime}+\left(v-v^{\prime}\right)\right\rangle\right| \\
& \leq \mathbb{E} \sup _{v^{\prime} \in V^{\prime}}\left|\left\langle\sigma, v^{\prime}\right\rangle\right|+\mathbb{E} \sup _{v \in V}^{\mid} \underbrace{\left|\left\langle\sigma, v-v^{\prime}\right\rangle\right|}_{\leq \varepsilon \sqrt{n}} \\
& \lesssim \sqrt{|g| V^{\prime} \mid}+\varepsilon \sqrt{n} \\
& :=\lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \varepsilon\right)+\varepsilon \sqrt{n} \\
\Longrightarrow \alpha(V) & \lesssim \inf _{\varepsilon>0}\left\{\lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \varepsilon\right)+\varepsilon \sqrt{n}\right\}
\end{aligned}
$$

For us: will show $\mathcal{N}\left(V, \ell_{2}, \varepsilon\right) \simeq 1 / \varepsilon^{2}$, so $\lg ^{1 / 2}(1 / \varepsilon)+\varepsilon \sqrt{n}$

Net size for random walk on line

Recall for us: $V=\left\{\frac{y^{(t)}}{\sqrt{T}}\right\}_{t=0}^{T}, v^{(t)}=\frac{1}{\sqrt{T}} \cdot y^{(t)}$.

Net size for random walk on line

Recall for us: $V=\left\{\frac{y^{(t)}}{\sqrt{T}}\right\}_{t=0}^{T}, v^{(t)}=\frac{1}{\sqrt{T}} \cdot y^{(t)}$.

optimal ε-net is: $\left\{v^{\left(s \varepsilon^{2} T\right)}\right\}$ for $s=1,2, \ldots, 1 / \varepsilon^{2}$,
so $\mathcal{N}\left(V, \ell_{2}, \varepsilon\right)=1 / \varepsilon^{2}$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 3 (Dudley chaining):

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 3 (Dudley chaining): Net argument: $v=v^{\prime}+\left(v-v^{\prime}\right)$

Suprema of stochastic processes

We have $V \subset B_{\ell 2}^{n}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in \mathbb{V}}|\langle\sigma, v\rangle|
$$

Method 3 (Dudley chaining): Net argument: $v=v^{\prime}+\left(v-v^{\prime}\right)$ This time: V_{k} is a 2^{-k}-net of V and $v(k)$ closest to v in V_{k}

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle|
$$

Method 3 (Dudley chaining): Net argument: $v=v^{\prime}+\left(v-v^{\prime}\right)$ This time: V_{k} is a 2^{-k}-net of V and $v(k)$ closest to v in V_{k}

$$
v=v(0)+\sum_{k=1}^{\infty}(v(k)-v(k-1))
$$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup |\langle\sigma, v\rangle|
$$

Method 3 (Dudley chaining): Net argument: $v=v^{\prime}+\left(v-v^{\prime}\right)$ This time: V_{k} is a 2^{-k}-net of V and $v(k)$ closest to v in V_{k}

$$
\begin{aligned}
v & =v(0)+\sum_{k=1}^{\infty}(v(k)-v(k-1)) \\
\mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle| & \leq \sum_{k=1}^{\infty} \mathbb{E} \sup _{v \in V}|\langle\sigma, v(k)-v(k-1)\rangle| \\
& \lesssim \sum_{k=1}^{\infty} \sup _{v}\|v(k)-v(k-1)\|_{2} \\
& \times \lg ^{1 / 2}\left(\mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k}}\right) \cdot \mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k-1}}\right)\right) \\
& \lesssim \sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k}}\right)
\end{aligned}
$$

Suprema of stochastic processes

We have $V \subset B_{\ell_{2}^{n}}$ and want to upper bound

$$
\alpha(V):=\mathbb{E} \sup |\langle\sigma, v\rangle|
$$

Method 3 (Dudley chaining): Net argument: $v=v^{\prime}+\left(v-v^{\prime}\right)$ This time: V_{k} is a 2^{-k}-net of V and $v(k)$ closest to v in V_{k}

$$
\begin{aligned}
& v=v(0)+\sum_{k=1}^{\infty}(v(k)-v(k-1)) \\
& \mathbb{E} \sup _{v \in V}|\langle\sigma, v\rangle| \leq \sum_{k=1}^{\infty} \mathbb{E} \sup _{v \in V}|\langle\sigma, v(k)-v(k-1)\rangle| \\
& \lesssim \sum_{k=1}^{\infty} \sup _{v}\|v(k)-v(k-1)\|_{2} \\
& \times \lg ^{1 / 2}\left(\mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k}}\right) \cdot \mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k-1}}\right)\right) \\
& \lesssim \sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \lg ^{1 / 2} \mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k}}\right)\left(\leq \sum_{k} \frac{\sqrt{k}}{2^{k}}=O(1)\right)
\end{aligned}
$$

What about the 4-wise independence?

Dudley chaining with p-wise independence

Where it all started: Khintchine inequality says $\mathbb{P}_{\sigma}(|\langle\sigma, v\rangle|>\lambda) \leq 2 e^{-\lambda^{2} /\left(2\|v\|_{2}^{2}\right)}$.

Dudley chaining with p-wise independence

Where it all started: Khintchine inequality says
$\mathbb{P}_{o}(|\langle\sigma, v\rangle|>\lambda) \leq 2 e^{-\lambda^{2} /\left(2\|v\|_{2}^{2}\right)}$.
Khintchine says $\mathbb{E}|\langle\sigma, v\rangle|^{p} \leq\left(\sqrt{p} \cdot\|v\|_{2}\right)^{p}$ for all $p \geq 1$
so by Markov, $\mathbb{P}(|\langle\sigma, v\rangle|>\lambda) \leq\left(\frac{\sqrt{p} \cdot\|v\|_{2}}{\lambda}\right)^{p}$

Dudley chaining with p-wise independence

Where it all started: Khintchine inequality says
$\mathbb{P}_{o}(|\langle\sigma, v\rangle|>\lambda) \leq 2 e^{-\lambda^{2} /\left(2\|v\|_{2}^{2}\right)}$.
Khintchine says $\mathbb{E}|\langle\sigma, v\rangle|^{p} \leq\left(\sqrt{p} \cdot\|v\|_{2}\right)^{p}$ for all $p \geq 1$
so by Markov, $\mathbb{P}(|\langle\sigma, v\rangle|>\lambda) \leq\left(\frac{\sqrt{p} \cdot\|v\|_{2}}{\lambda}\right)^{p}$
If use above new tail bound in Method 1 and push through the Dudley argument, and note $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$, obtain a new "Dudley-esque" bound for our V :

Dudley chaining with p-wise independence

Where it all started: Khintchine inequality says
$\mathbb{P}_{\sigma}(|\langle\sigma, v\rangle|>\lambda) \leq 2 e^{-\lambda^{2} /\left(2\|v\|_{2}^{2}\right)}$.
Khintchine says $\mathbb{E}|\langle\sigma, v\rangle|^{p} \leq\left(\sqrt{p} \cdot\|v\|_{2}\right)^{p}$ for all $p \geq 1$
so by Markov, $\mathbb{P}(|\langle\sigma, v\rangle|>\lambda) \leq\left(\frac{\sqrt{P} \cdot\|v\|_{2}}{\lambda}\right)^{p}$
If use above new tail bound in Method 1 and push through the Dudley argument, and note $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$, obtain a new "Dudley-esque" bound for our V :

$$
\begin{aligned}
\alpha(V) & \lesssim \sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \sqrt{p} \cdot\left(\mathcal{N}\left(V, \ell_{2}, \frac{1}{2^{k}}\right)\right)^{1 / p} \\
& \leq \sum_{k=1}^{\infty} \sqrt{p} \cdot \frac{2^{2 k / p}}{2^{k}} \\
& \lesssim 1(\text { for } p \geq 3)
\end{aligned}
$$

Yay - done with the warmup!

Recap: what we showed (and what's left)

Core lemma: If $0=y^{(0)}, \ldots, y^{(T)}$ is the evolution of a vector updated in an insertion-only stream and $\sigma \in\{-1,1\}^{n}$ has 4 -wise independent entries, then

$$
\underset{\sigma}{\mathbb{E}} \sup _{t \in[T]}\left|\left\langle\sigma, v^{(t)}\right\rangle\right| \lesssim\left\|v^{(T)}\right\|_{2}\left(\text { where } v^{(t)}:=\frac{y^{(t)}}{\left\|y^{(T)}\right\|_{2}}\right)
$$

Recap: what we showed (and what's left)

Core lemma: If $0=y^{(0)}, \ldots, y^{(T)}$ is the evolution of a vector updated in an insertion-only stream and $\sigma \in\{-1,1\}^{n}$ has 4 -wise independent entries, then

$$
\underset{\sigma}{\mathbb{E}} \sup _{t \in[T]}\left|\left\langle\sigma, v^{(t)}\right\rangle\right| \lesssim\left\|v^{(T)}\right\|_{2}\left(\text { where } v^{(t)}:=\frac{y^{(t)}}{\left\|y^{(T)}\right\|_{2}}\right)
$$

We showed: we proved core lemma in special case
$v^{(t)}=\frac{1}{\sqrt{T}} \cdot(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0,0,0, \ldots, 0}^{n-t})$

Recap: what we showed (and what's left)

Core lemma: If $0=y^{(0)}, \ldots, y^{(T)}$ is the evolution of a vector updated in an insertion-only stream and $\sigma \in\{-1,1\}^{n}$ has 4 -wise independent entries, then

$$
\underset{\sigma}{\mathbb{E}} \sup _{t \in[T]}\left|\left\langle\sigma, v^{(t)}\right\rangle\right| \lesssim\left\|v^{(T)}\right\|_{2}\left(\text { where } v^{(t)}:=\frac{y^{(t)}}{\left\|y^{(T)}\right\|_{2}}\right)
$$

We showed: we proved core lemma in special case
$v^{(t)}=\frac{1}{\sqrt{T}} \cdot(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0,0,0, \ldots, 0}^{n-t})$
Missing to show general case? Need to bound $\mathcal{N}\left(V, \ell_{2}, \varepsilon\right)$
(and show $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$)

Recap: what we showed (and what's left)

Core lemma: If $0=y^{(0)}, \ldots, y^{(T)}$ is the evolution of a vector updated in an insertion-only stream and $\sigma \in\{-1,1\}^{n}$ has 4 -wise independent entries, then

$$
\underset{\sigma}{\mathbb{E}} \sup _{t \in[T]}\left|\left\langle\sigma, v^{(t)}\right\rangle\right| \lesssim\left\|v^{(T)}\right\|_{2}\left(\text { where } v^{(t)}:=\frac{y^{(t)}}{\left\|y^{(T)}\right\|_{2}}\right)
$$

We showed: we proved core lemma in special case
$v^{(t)}=\frac{1}{\sqrt{T}} \cdot(\overbrace{1, \ldots, 1}^{t}, \overbrace{0,0,0,0,0,0, \ldots, 0}^{n-t})$
Missing to show general case? Need to bound $\mathcal{N}\left(V, \ell_{2}, \varepsilon\right)$
(and show $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$)

Same proof works!

- Our ε-net will be $V^{\prime}=\left\{v^{(0)}:=v^{\left(t_{0}\right)}, v^{\left(t_{1}\right)}, \ldots, v^{\left(t_{R}\right)}\right\}$
$>t_{j}$ is smallest $t>t_{j-1}$ s.t. $\left\|v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}\right\|_{2}>\varepsilon$
- Note, again $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$

- Our ε-net will be $V^{\prime}=\left\{v^{(0)}:=v^{\left(t_{0}\right)}, v^{\left(t_{1}\right)}, \ldots, v^{\left(t_{R}\right)}\right\}$
$>t_{j}$ is smallest $t>t_{j-1}$ s.t. $\left\|v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}\right\|_{2}>\varepsilon$
- Note, again $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$
$\downarrow V^{\prime}$ is an ε-net by construction, but how big is $R:=\left|V^{\prime}\right|-1$?

- Our ε-net will be $V^{\prime}=\left\{v^{(0)}:=v^{\left(t_{0}\right)}, v^{\left(t_{1}\right)}, \ldots, v^{\left(t_{R}\right)}\right\}$
$>t_{j}$ is smallest $t>t_{j-1}$ s.t. $\left\|v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}\right\|_{2}>\varepsilon$
- Note, again $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$
$\downarrow V^{\prime}$ is an ε-net by construction, but how big is $R:=\left|V^{\prime}\right|-1$?

$$
\begin{aligned}
1 & \geq\left\|v^{\left(t_{R}\right)}\right\|_{2}^{2} \\
& =\|\sum_{j=1}^{R}(\underbrace{v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}}_{w_{j}})\|_{2}^{2} \\
& \geq \sum_{j=1}^{R}\left\|v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}\right\|_{2}^{2} \quad\left(\text { since }\left\langle w_{j}, w_{j^{\prime}}\right\rangle \geq 0\right) \\
& >R \cdot \varepsilon^{2}
\end{aligned}
$$

- Our ε-net will be $V^{\prime}=\left\{v^{(0)}:=v^{\left(t_{0}\right)}, v^{\left(t_{1}\right)}, \ldots, v^{\left(t_{R}\right)}\right\}$
$>t_{j}$ is smallest $t>t_{j-1}$ s.t. $\left\|v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}\right\|_{2}>\varepsilon$
- Note, again $|\{v(k)-v(k-1): v \in V\}| \leq 2\left|V_{k}\right|$
$\downarrow V^{\prime}$ is an ε-net by construction, but how big is $R:=\left|V^{\prime}\right|-1$?

$$
\begin{aligned}
1 & \geq\left\|v^{\left(t_{R}\right)}\right\|_{2}^{2} \\
& =\|\sum_{j=1}^{R}(\underbrace{v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}}_{w_{j}})\|_{2}^{2} \\
& \geq \sum_{j=1}^{R}\left\|v^{\left(t_{j}\right)}-v^{\left(t_{j-1}\right)}\right\|_{2}^{2} \quad\left(\text { since }\left\langle w_{j}, w_{j^{\prime}}\right\rangle \geq 0\right) \\
& >R \cdot \varepsilon^{2} \quad\left(\Longrightarrow R<1 / \varepsilon^{2}\right)
\end{aligned}
$$

Open Problems

Open Problems

- $O(k)$ words of memory for insertion-only ℓ_{2} heavy hitters?
- Does core lemma hold with 2-wise independence?

