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Discrete Distributions

(chart by Srm038, CC BY-SA 4.0)

• Widespread in practice

• Sample tasks:
• Learn the distribution
• Test a property
• Estimate a parameter
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Learning Discrete Distributions
D = probability distribution on {1, . . . ,n}
Input: Independent samples from D

x1,x2,x3,x4, . . .

Goal:

Output a distribution D′ such that ‖D − D′‖1 < ε

Sample complexity: Θ(n/ε2)
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Communication Complexity
Distributed data: samples held by different players

Example: Samples in different data centers

How much do players have to communicate
to solve the problem?

Is sublinear communication possible?
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Sample Results

Unstructured distributions under `1-error ε:

• Upper bounds:

• log n bits to communicate samples
⇒ O((n/ε2) log n) bits suffice

• better upper bounds by compressing data
• more samples per player⇒ less communication

• Lower bounds:

• Ω(n · log(1/ε)) always needed

• One sample per player: Ω((n/ε2) · log n)
(Later in the talk: sketch of less general result)
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Structured distributions

• Monotone

• k -histograms
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Results for Structured Distributions
Monotone distributions:
• Some unstructured upper and lower bounds translate

to this setting
• How: use ideas of Birge (1987)
• distribution can be approximated with O(ε−1 log n)

uniform buckets

Upper bounds for k -histograms:
• Main challenge: unknown break points
• For `1-error, reuse ideas of Acharya, Diakonikolas, Li,

and Schmidt (2017)
• For `2-error, top-down strategy of partitioning the

range
• The algorithms are agnostic: good approximation

even if input distribution not exactly a k -histogram
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Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14,
SSZ14, DJWZ14, LSLT15, BGMNW15

• Both upper and lower bounds.
• Usually more continuous problems.
• Sample problem: estimating the mean of a Gaussian

distribution.
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Outline

1 Toy Example Presented Today

2 Warm-Up: Single Coin

3 O(n/ε2) Sample Complexity Review

4 Communication Complexity Lower Bound
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Simultaneous Communication Complexity
• Each player has one sample

and sends a single message to a referee
• The referee outputs solution

output

sample

sample

sample

sample

Player 2

Player 3

Player p

Referee

Player 1

• Each sample is Θ(log n) bits
• Can average communication be made o(log n)?
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Bias of a Single Coin

Input: Independent coin tosses

Goal: Estimate the probability of heads up to ±ε
using as few coin tosses as possible

Caveat:
• Can’t ever be completely sure
• Happy to answer correctly with probability 90%

Upper bound: O(1/ε2) via Hoeffding’s inequality

Is this bound optimal?
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Hard Instance

Difficult to distinguish:

heads: 1
2 − 2ε tails: 1

2 + 2ε

vs.

heads: 1
2 + 2ε tails: 1

2 − 2ε

More formally:

probability of heads =
1
2

+ δ · 2ε

where δ selected uniformly at random from {−1,+1}
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Information Approach

Single coin toss: X ∈ {heads, tails}

Mutual information: I(X ; δ) = H(X )− H(X |δ) = O(ε2)

k coin tosses: X1, X2, . . . , Xk∑
I(Xi ; δ) = O(ε2k)

• Is it true that I(X1 . . .Xk ; δ) ≤
∑

I(Xi ; δ)?
• If so and k = o(1/ε2):

• H(δ|X1 . . .Xk ) = H(δ)− I(X1 . . .Xk ; δ) = 1− o(1)
• Value of δ distributed almost uniformly on {−1,+1}
• Can predict δ given X1 . . .Xk with probability only

1
2 + o(1)
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Multivariate Mutual Information
(Focus on k = 2, larger k by induction)

I(X1X2; δ) = I(X1; δ) + I(X2; δ)− I(X1; X2; δ)

where I(X1; X2; δ) = I(X1; X2)− I(X1; X2|δ)

(In general, I(x ; y ; z) can be negative. Example: x ⊕ y = z.)

• I(X1; X2|δ) = 0
• Hence, I(X1; X2; δ) ≥ 0.
• This proves that I(X1X2; δ) ≤ I(X1; δ) + I(X2; δ).
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Outline

1 Toy Example Presented Today

2 Warm-Up: Single Coin

3 O(n/ε2) Sample Complexity Review

4 Communication Complexity Lower Bound
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Upper Bound Review

Solution: D′ = empirical distribution of O(n/ε2) samples

Why this works:

• For every subset of {1, . . . ,n} the probabilities under
D and D′ within ε/2 with probability 1− 2−2n

(via Hoeffding’s inequality)

• Union bound: ≤ε/2 difference for all subsets
with probability 1− o(1)

• Equivalent to ‖D − D′‖1 ≤ ε with probability 1− o(1))
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Lower Bound Review

Construction:

2 3 4 5 6 7 81

−10δ1ε/n

−10δ1ε/n

δ1 =+1 δ2 = −1 δ3 =+1 δ4 =+1

• Each pair randomly biased by 10ε
• Need to predict bias of more than 9

10 pairs
(via averaging/Markov’s bound)

• This requires Ω(n/ε2) samples
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Our Claim

No protocol with o
(

n
ε2

log n
)

communication on average
that succeeds learning the distribution

with probability 99/100.

(Can assume at most O
(
n/ε2 log n

)
players in the proof)
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Hard Distribution

Reuse the hard distribution for sampling:

2 3 4 5 6 7 81

−10δ1ε/n

−10δ1ε/n

δ1 =+1 δ2 = −1 δ3 =+1 δ4 =+1

Can assume the protocol is deterministic:
• Slight loss in the probability of success
• Expected communication goes up by constant factor
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The Proof Plan

• Assume o(nε−2 log n) communication protocol

• For random i , show that:
• Messages reveal very little about δi

(even if the referee knows all other δi ’s)
• The referee can predict δi with probability 1

2 + o(1)

• The original protocol correct only on 1
2 + o(1) fraction

of δi ’s most of the time

CONTRADICTION!!!
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Messages of Single Player
Modify protocol for each pair 2j − 1 and 2j :
• Before: x sent for 2j − 1 and y sent for 2j
• After: send xy for 2j − 1 and yx for 2j

1

2

3

4

5

6

7

8

x

y

Result:
• Communication complexity only doubles.
• This partitions pairs. Each message reveals bias on a

specific subset of pairs.
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Messages of Single Player

Three cases for a pair 2i − 1 and 2i
and corresponding messages xy and yx :

1 |xy | > log n
100

2 |xy | ≤ log n
100 & ≤

√
n pairs with these messages

3 |xy | ≤ log n
100 & >

√
n pairs with these messages

• Can happen always
• δi has little impact on probabilities of xy and yx
• I(sample; δi) = O(ε2/(n · #pairs)) = O(ε2/n1.5)
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• I(sample; δi) = O(ε2/(n · #pairs)) = O(ε2/n1.5)
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Messages of Single Player
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√
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Total Information about δi
Mj = message of the j-th player M = (M1,M2, . . . ,Mp)

For all but o(1) fraction of i ’s:

∑
j

I(δi ; Mj) = o
( n
ε2

)
·O
(
ε2

n

)
+ O

(
n0.52

ε2

)
·O
(
ε2

n

)

+ O
(

n log n
ε2

)
·O
(
ε2

n1.5

)
= o(1)

Then I(δi ; M) = o(1):
• Messages Mj independent once δi is fixed
• This implies that I(δi ; M) ≤

∑
j I(δi ,Mj)

And H(δi |M) = H(δi)− I(δi ; M) = 1− o(1)

Algorithm correct with probability 1
2 + o(1)
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Long term goals:
• Reinterpret known distribution testing and learning

results in this framework
• Design non-trivial protocols with sublinear amount of

communication

Questions?
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