Communication–Efficient Distributed Learning of Discrete Probability Distributions

Krzysztof Onak

IBM T.J. Watson Research Center

Joint work with Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, and Ludwig Schmidt.

Krzysztof Onak (IBM Research)

Discrete Distributions

Population by Province/Territory Canada, 2011 Census

(chart by Srm038, CC BY-SA 4.0)

Widespread in practice

Discrete Distributions

Population by Province/Territory Canada, 2011 Census

(chart by Srm038, CC BY-SA 4.0)

Learning Discrete Distributions

 $\mathcal{D} =$ probability distribution on $\{1, \dots, n\}$ Input: Independent samples from \mathcal{D}

Goal: Output a distribution \mathcal{D}' such that $\|\mathcal{D} - \mathcal{D}'\|_1 < \epsilon$

Learning Discrete Distributions

 $\mathcal{D} =$ probability distribution on $\{1, \dots, n\}$ Input: Independent samples from \mathcal{D}

Goal:

Output a distribution \mathcal{D}' such that $\|\mathcal{D} - \mathcal{D}'\|_1 < \epsilon$

Sample complexity:
$$\Theta(n/\epsilon^2)$$

Krzysztof Onak (IBM Research)

Communication Complexity Distributed data: samples held by different players Example: Samples in different data centers

Communication Complexity Distributed data: samples held by different players Example: Samples in different data centers

How much do players have to communicate to solve the problem?

Is sublinear communication possible?

Krzysztof Onak (IBM Research)

- Upper bounds:
 - log *n* bits to communicate samples $\Rightarrow O((n/\epsilon^2) \log n)$ bits suffice

- Upper bounds:
 - log *n* bits to communicate samples $\Rightarrow O((n/\epsilon^2) \log n)$ bits suffice
 - better upper bounds by compressing data
 - more samples per player \Rightarrow less communication

- Upper bounds:
 - log *n* bits to communicate samples $\Rightarrow O((n/\epsilon^2) \log n)$ bits suffice
 - better upper bounds by compressing data
 - more samples per player \Rightarrow less communication
- Lower bounds:
 - $\Omega(n \cdot \log(1/\epsilon))$ always needed

- Upper bounds:
 - log *n* bits to communicate samples $\Rightarrow O((n/\epsilon^2) \log n)$ bits suffice
 - better upper bounds by compressing data
 - more samples per player \Rightarrow less communication
- Lower bounds:
 - $\Omega(n \cdot \log(1/\epsilon))$ always needed
 - One sample per player: Ω((n/ε²) · log n) (Later in the talk: sketch of less general result)

Structured distributions

Monotone

Structured distributions

Monotone

• k-histograms

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with O(*ϵ*⁻¹ log *n*) uniform buckets

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with O(*ϵ*⁻¹ log *n*) uniform buckets

Upper bounds for *k*-histograms:

• Main challenge: unknown break points

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with O(*ϵ*⁻¹ log *n*) uniform buckets

Upper bounds for *k*-histograms:

- Main challenge: unknown break points
- For l₁-error, reuse ideas of Acharya, Diakonikolas, Li, and Schmidt (2017)
- For $\ell_2\text{-}error,$ top-down strategy of partitioning the range

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with O(*ϵ*⁻¹ log *n*) uniform buckets

Upper bounds for *k*-histograms:

- Main challenge: unknown break points
- For l₁-error, reuse ideas of Acharya, Diakonikolas, Li, and Schmidt (2017)
- For $\ell_2\text{-}error,$ top-down strategy of partitioning the range
- The algorithms are agnostic: good approximation even if input distribution not exactly a *k*-histogram

Krzysztof Onak (IBM Research)

Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14, SSZ14, DJWZ14, LSLT15, BGMNW15

- Both upper and lower bounds.
- Usually more continuous problems.
- Sample problem: estimating the mean of a Gaussian distribution.

Outline

1 Toy Example Presented Today

- 2 Warm-Up: Single Coin
- **3** $O(n/\epsilon^2)$ Sample Complexity Review
- 4 Communication Complexity Lower Bound

Outline

1 Toy Example Presented Today

2 Warm-Up: Single Coin

3 $O(n/\epsilon^2)$ Sample Complexity Review

4 Communication Complexity Lower Bound

Krzysztof Onak (IBM Research)

Simultaneous Communication Complexity

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

Simultaneous Communication Complexity

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

- Each sample is $\Theta(\log n)$ bits
- Can average communication be made $o(\log n)$?

Krzysztof Onak (IBM Research)

Outline

1 Toy Example Presented Today

- 2 Warm-Up: Single Coin
- **3** $O(n/\epsilon^2)$ Sample Complexity Review
- 4 Communication Complexity Lower Bound

Outline

Toy Example Presented Today

2 Warm-Up: Single Coin

3 $O(n/\epsilon^2)$ Sample Complexity Review

4 Communication Complexity Lower Bound

Krzysztof Onak (IBM Research)

Input: Independent coin tosses

Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Input: Independent coin tosses

Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Caveat:

- Can't ever be completely sure
- Happy to answer correctly with probability 90%

Input: Independent coin tosses

Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Caveat:

Can't ever be completely sure

Happy to answer correctly with probability 90%

Upper bound: $O(1/\epsilon^2)$ via Hoeffding's inequality

Input: Independent coin tosses

Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Caveat:

Can't ever be completely sure

Happy to answer correctly with probability 90%

Upper bound: $O(1/\epsilon^2)$ via Hoeffding's inequality

Is this bound optimal?

Hard Instance

Difficult to distinguish:

heads: $\frac{1}{2} - 2\epsilon$ tails: $\frac{1}{2} + 2\epsilon$ vs. heads: $\frac{1}{2} + 2\epsilon$ tails: $\frac{1}{2} - 2\epsilon$

Hard Instance

Difficult to distinguish:

heads:
$$\frac{1}{2} - 2\epsilon$$
 tails: $\frac{1}{2} + 2\epsilon$
vs.
heads: $\frac{1}{2} + 2\epsilon$ tails: $\frac{1}{2} - 2\epsilon$

More formally:

probability of heads
$$= \frac{1}{2} + \delta \cdot 2\epsilon$$

where δ selected uniformly at random from $\{-1, +1\}$

Krzysztof Onak (IBM Research)

Single coin toss: $X \in \{\text{heads}, \text{tails}\}$

Mutual information: $I(X; \delta) = H(X) - H(X|\delta) = O(\epsilon^2)$

Single coin toss: $X \in \{\text{heads}, \text{tails}\}$ Mutual information: $I(X; \delta) = H(X) - H(X|\delta) = O(\epsilon^2)$

k coin tosses: $X_1, X_2, ..., X_k$ $\sum I(X_i; \delta) = O(\epsilon^2 k)$

Single coin toss: $X \in \{\text{heads}, \text{tails}\}$ Mutual information: $I(X; \delta) = H(X) - H(X|\delta) = O(\epsilon^2)$

k coin tosses: $X_1, X_2, ..., X_k$ $\sum I(X_i; \delta) = O(\epsilon^2 k)$

• Is it true that $I(X_1 \dots X_k; \delta) \leq \sum I(X_i; \delta)$?

Single coin toss: $X \in \{\text{heads}, \text{tails}\}$ Mutual information: $I(X; \delta) = H(X) - H(X|\delta) = O(\epsilon^2)$

k coin tosses: X_1, X_2, \ldots, X_k

$$\sum I(X_i;\delta) = O(\epsilon^2 k)$$

- Is it true that $I(X_1 \dots X_k; \delta) \leq \sum I(X_i; \delta)$?
- If so and $k = o(1/\epsilon^2)$:
 - $H(\delta|X_1\ldots X_k) = H(\delta) I(X_1\ldots X_k; \delta) = 1 o(1)$
 - Value of δ distributed almost uniformly on {−1, +1}
 - Can predict δ given $X_1 \dots X_k$ with probability only $\frac{1}{2} + o(1)$

Multivariate Mutual Information

(Focus on k = 2, larger k by induction)

Multivariate Mutual Information

(Focus on k = 2, larger k by induction)

(In general, I(x; y; z) can be negative. Example: $x \oplus y = z$.)

Krzysztof Onak (IBM Research)

Multivariate Mutual Information

(Focus on k = 2, larger k by induction)

(In general, I(x; y; z) can be negative. Example: $x \oplus y = z$.)

- $I(X_1; X_2 | \delta) = 0$
- Hence, $I(X_1; X_2; \delta) \ge 0$.
- This proves that $I(X_1X_2; \delta) \leq I(X_1; \delta) + I(X_2; \delta)$.

Krzysztof Onak (IBM Research)

Outline

1 Toy Example Presented Today

- 2 Warm-Up: Single Coin
- **3** $O(n/\epsilon^2)$ Sample Complexity Review
- 4 Communication Complexity Lower Bound

Outline

1 Toy Example Presented Today

2 Warm-Up: Single Coin

3 $O(n/\epsilon^2)$ Sample Complexity Review

4 Communication Complexity Lower Bound

Solution: D' = empirical distribution of $O(n/\epsilon^2)$ samples

Solution: \mathcal{D}' = empirical distribution of $O(n/\epsilon^2)$ samples

Why this works:

 For every subset of {1,..., n} the probabilities under *D* and *D'* within *ε*/2 with probability 1 − 2⁻²ⁿ (via Hoeffding's inequality)

Solution: \mathcal{D}' = empirical distribution of $O(n/\epsilon^2)$ samples

Why this works:

- For every subset of {1,..., n} the probabilities under *D* and *D'* within *ε*/2 with probability 1 − 2⁻²ⁿ (via Hoeffding's inequality)
- Union bound: $\leq \epsilon/2$ difference for all subsets with probability 1 o(1)

Solution: \mathcal{D}' = empirical distribution of $O(n/\epsilon^2)$ samples

Why this works:

- For every subset of {1,..., n} the probabilities under *D* and *D'* within *ε*/2 with probability 1 − 2⁻²ⁿ (via Hoeffding's inequality)
- Union bound: $\leq \epsilon/2$ difference for all subsets with probability 1 o(1)
- Equivalent to $\|\mathcal{D} \mathcal{D}'\|_1 \le \epsilon$ with probability 1 o(1))

• Each pair randomly biased by 10ϵ

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than ⁹/₁₀ pairs (via averaging/Markov's bound)

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than ⁹/₁₀ pairs (via averaging/Markov's bound)
- This requires $\Omega(n/\epsilon^2)$ samples

Outline

Toy Example Presented Today

- 2 Warm-Up: Single Coin
- **3** $O(n/\epsilon^2)$ Sample Complexity Review

4 Communication Complexity Lower Bound

Our Claim

No protocol with $o\left(\frac{n}{\epsilon^2}\log n\right)$ communication on average that succeeds learning the distribution with probability 99/100.

Our Claim

No protocol with $o\left(\frac{n}{\epsilon^2}\log n\right)$ communication on average that succeeds learning the distribution with probability 99/100.

(Can assume at most $O(n/\epsilon^2 \log n)$ players in the proof)

Krzysztof Onak (IBM Research)

Hard Distribution

Reuse the hard distribution for sampling:

Hard Distribution

Reuse the hard distribution for sampling:

Can assume the protocol is deterministic:

- · Slight loss in the probability of success
- Expected communication goes up by constant factor

• Assume $o(n\epsilon^{-2} \log n)$ communication protocol

- Assume $o(n\epsilon^{-2} \log n)$ communication protocol
- For random *i*, show that:
 - Messages reveal very little about δ_i (even if the referee knows all other δ_i's)
 - The referee can predict δ_i with probability $\frac{1}{2} + o(1)$

- Assume $o(n\epsilon^{-2} \log n)$ communication protocol
- For random *i*, show that:
 - Messages reveal very little about δ_i
 (even if the referee knows all other δ_i's)
 - The referee can predict δ_i with probability $\frac{1}{2} + o(1)$
- The original protocol correct only on $\frac{1}{2} + o(1)$ fraction of δ_i 's most of the time

- Assume $o(n\epsilon^{-2} \log n)$ communication protocol
- For random *i*, show that:
 - Messages reveal very little about δ_i
 (even if the referee knows all other δ_i's)
 - The referee can predict δ_i with probability $\frac{1}{2} + o(1)$
- The original protocol correct only on ¹/₂ + o(1) fraction of δ_i's most of the time

CONTRADICTION!!!

Modify protocol for each pair 2j - 1 and 2j:

- Before: x sent for 2j 1 and y sent for 2j
- After: send xy for 2j 1 and yx for 2j

Modify protocol for each pair 2j - 1 and 2j:

- Before: x sent for 2j 1 and y sent for 2j
- After: send xy for 2j 1 and yx for 2j

Modify protocol for each pair 2j - 1 and 2j:

- Before: x sent for 2j 1 and y sent for 2j
- After: send xy for 2j 1 and yx for 2j

Result:

- Communication complexity only doubles.
- This partitions pairs. Each message reveals bias on a specific subset of pairs.

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

1
$$|xy| > \frac{\log n}{100}$$

- Happens for $o(n/\epsilon^2)$ fraction of players
- · Can assume the message reveals the sample
- $I(\text{message}; \delta_i) \leq I(\text{sample}; \delta_i) = O(\epsilon^2/n)$

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

- |xy| > log n/100
 |xy| ≤ log n/100 & ≤√n pairs with these messages
 Random *i*: happens with probability n^{0.01}√n/n
 Can assume the message reveals the sample
 - $I(\text{message}; \delta_i) \leq I(\text{sample}; \delta_i) = O(\epsilon^2/n)$

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

 $|xy| > \frac{\log n}{100}$ $|xy| \le \frac{\log n}{100}$ & $\le \sqrt{n}$ pairs with these messages $|xy| \le \frac{\log n}{100}$ & $>\sqrt{n}$ pairs with these messages • Can happen always

- δ_i has little impact on probabilities of xy and yx
- $I(\text{sample}; \delta_i) = O(\epsilon^2 / (n \cdot \# \text{pairs})) = O(\epsilon^2 / n^{1.5})$

Total Information about δ_i

 M_j = message of the *j*-th player $M = (M_1, M_2, \dots, M_p)$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{i}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{j}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

Then $I(\delta_i; M) = o(1)$:

- Messages M_i independent once δ_i is fixed
- This implies that $I(\delta_i; M) \leq \sum_j I(\delta_i, M_j)$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{i}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

Then $I(\delta_i; M) = o(1)$:

- Messages M_i independent once δ_i is fixed
- This implies that $I(\delta_i; M) \leq \sum_j I(\delta_i, M_j)$

And
$$H(\delta_i|M) = H(\delta_i) - I(\delta_i; M) = 1 - o(1)$$

Krzysztof Onak (IBM Research)

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{i}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

Then $I(\delta_i; M) = o(1)$:

- Messages M_i independent once δ_i is fixed
- This implies that $I(\delta_i; M) \leq \sum_j I(\delta_i, M_j)$

And
$$H(\delta_i|M) = H(\delta_i) - I(\delta_i; M) = 1 - o(1)$$

Algorithm correct with probability $\frac{1}{2} + o(1)$

Krzysztof Onak (IBM Research)

Long term goals:

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

Long term goals:

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

Questions?