Communication-Efficient

 Distributed Learningof Discrete Probability Distributions

Krzysztof Onak
IBM T.J. Watson Research Center
Joint work with Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, and Ludwig Schmidt.

Discrete Distributions

- Widespread in practice

Population by Province/Territory
Canada, 2011 Census

(chart by Srm038, CC BY-SA 4.0)

Discrete Distributions

- Widespread in practice
- Sample tasks:
- Learn the distribution
- Test a property
- Estimate a parameter

Population by Province/Territory
Canada, 2011 Census

(chart by Srm038, CC BY-SA 4.0)

Learning Discrete Distributions

$\mathcal{D}=$ probability distribution on $\{1, \ldots, n\}$
Input: Independent samples from \mathcal{D}

Goal:
Output a distribution \mathcal{D}^{\prime} such that $\left\|\mathcal{D}-\mathcal{D}^{\prime}\right\|_{1}<\epsilon$

Learning Discrete Distributions

$\mathcal{D}=$ probability distribution on $\{1, \ldots, n\}$
Input: Independent samples from \mathcal{D}

Goal:
Output a distribution \mathcal{D}^{\prime} such that $\left\|\mathcal{D}-\mathcal{D}^{\prime}\right\|_{1}<\epsilon$
Sample complexity: $\Theta\left(n / \epsilon^{2}\right)$

Communication Complexity

Distributed data: samples held by different players
Example: Samples in different data centers

Communication Complexity

Distributed data: samples held by different players
Example: Samples in different data centers

How much do players have to communicate to solve the problem?
Is sublinear communication possible?

Sample Results

Unstructured distributions under ℓ_{1}-error ϵ :

- Upper bounds:
- $\log n$ bits to communicate samples
$\Rightarrow O\left(\left(n / \epsilon^{2}\right) \log n\right)$ bits suffice

Sample Results

Unstructured distributions under ℓ_{1}-error ϵ :

- Upper bounds:
- $\log n$ bits to communicate samples
$\Rightarrow O\left(\left(n / \epsilon^{2}\right) \log n\right)$ bits suffice
- better upper bounds by compressing data
- more samples per player \Rightarrow less communication

Sample Results

Unstructured distributions under ℓ_{1}-error ϵ :

- Upper bounds:
- $\log n$ bits to communicate samples $\Rightarrow O\left(\left(n / \epsilon^{2}\right) \log n\right)$ bits suffice
- better upper bounds by compressing data
- more samples per player \Rightarrow less communication
- Lower bounds:
- $\Omega(n \cdot \log (1 / \epsilon))$ always needed

Sample Results

Unstructured distributions under ℓ_{1}-error ϵ :

- Upper bounds:
- $\log n$ bits to communicate samples $\Rightarrow O\left(\left(n / \epsilon^{2}\right) \log n\right)$ bits suffice
- better upper bounds by compressing data
- more samples per player \Rightarrow less communication
- Lower bounds:
- $\Omega(n \cdot \log (1 / \epsilon))$ always needed
- One sample per player: $\Omega\left(\left(n / \epsilon^{2}\right) \cdot \log n\right)$ (Later in the talk: sketch of less general result)

Structured distributions

- Monotone

Structured distributions

- Monotone

- k-histograms

Results for Structured Distributions

Monotone distributions:

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with $O\left(\epsilon^{-1} \log n\right)$ uniform buckets

Results for Structured Distributions

Monotone distributions:

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with $O\left(\epsilon^{-1} \log n\right)$ uniform buckets

Upper bounds for k-histograms:

- Main challenge: unknown break points

Results for Structured Distributions

Monotone distributions:

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with $O\left(\epsilon^{-1} \log n\right)$ uniform buckets

Upper bounds for k-histograms:

- Main challenge: unknown break points
- For ℓ_{1}-error, reuse ideas of Acharya, Diakonikolas, Li, and Schmidt (2017)
- For ℓ_{2}-error, top-down strategy of partitioning the range

Results for Structured Distributions

Monotone distributions:

- Some unstructured upper and lower bounds translate to this setting
- How: use ideas of Birge (1987)
- distribution can be approximated with $O\left(\epsilon^{-1} \log n\right)$ uniform buckets

Upper bounds for k-histograms:

- Main challenge: unknown break points
- For ℓ_{1}-error, reuse ideas of Acharya, Diakonikolas, Li, and Schmidt (2017)
- For ℓ_{2}-error, top-down strategy of partitioning the range
- The algorithms are agnostic: good approximation even if input distribution not exactly a k-histogram

Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14, SSZ14, DJWZ14, LSLT15, BGMNW15

- Both upper and lower bounds.
- Usually more continuous problems.
- Sample problem: estimating the mean of a Gaussian distribution.

Outline

(1) Toy Example Presented Today

(2) Warm-Up: Single Coin
(3) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review
(4) Communication Complexity Lower Bound

Outline

(1) Toy Example Presented Today

2 Warm-Up: Single Coin

(3) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

4 Communication Complexity Lower Bound

Simultaneous Communication Complexity

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

Simultaneous Communication Complexity

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

- Each sample is $\Theta(\log n)$ bits
- Can average communication be made $o(\log n)$?

Outline

(1) Toy Example Presented Today

(2) Warm-Up: Single Coin
(3) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review
(4) Communication Complexity Lower Bound

Outline

(1) Toy Example Presented Today

(2) Warm-Up: Single Coin

(3) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

4. Communication Complexity Lower Bound

Bias of a Single Coin

Input: Independent coin tosses
Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Bias of a Single Coin

Input: Independent coin tosses
Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Caveat:

- Can't ever be completely sure
- Happy to answer correctly with probability 90%

Bias of a Single Coin

Input: Independent coin tosses
Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Caveat:

- Can't ever be completely sure
- Happy to answer correctly with probability 90%

Upper bound: $O\left(1 / \epsilon^{2}\right)$ via Hoeffding's inequality

Bias of a Single Coin

Input: Independent coin tosses
Goal: Estimate the probability of heads up to $\pm \epsilon$ using as few coin tosses as possible

Caveat:

- Can't ever be completely sure
- Happy to answer correctly with probability 90%

Upper bound: $O\left(1 / \epsilon^{2}\right)$ via Hoeffding's inequality

Is this bound optimal?

Hard Instance

Difficult to distinguish:
heads: $\frac{1}{2}-2 \epsilon \quad$ tails: $\frac{1}{2}+2 \epsilon$
VS.
heads: $\frac{1}{2}+2 \epsilon \quad$ tails: $\frac{1}{2}-2 \epsilon$

Hard Instance

Difficult to distinguish:

$$
\text { heads: } \frac{1}{2}-2 \epsilon \quad \text { tails: } \frac{1}{2}+2 \epsilon
$$

VS.
heads: $\frac{1}{2}+2 \epsilon \quad$ tails: $\frac{1}{2}-2 \epsilon$

More formally:

$$
\text { probability of heads }=\frac{1}{2}+\delta \cdot 2 \epsilon
$$

where δ selected uniformly at random from $\{-1,+1\}$

Information Approach

Single coin toss: $X \in\{$ heads, tails $\}$
Mutual information: $I(X ; \delta)=H(X)-H(X \mid \delta)=O\left(\epsilon^{2}\right)$

Information Approach

Single coin toss: $X \in\{$ heads, tails $\}$
Mutual information: $I(X ; \delta)=H(X)-H(X \mid \delta)=O\left(\epsilon^{2}\right)$
k coin tosses: $X_{1}, X_{2}, \ldots, X_{k}$

$$
\sum I\left(X_{i} ; \delta\right)=O\left(\epsilon^{2} k\right)
$$

Information Approach

Single coin toss: $X \in\{$ heads, tails $\}$
Mutual information: $I(X ; \delta)=H(X)-H(X \mid \delta)=O\left(\epsilon^{2}\right)$
k coin tosses: $X_{1}, X_{2}, \ldots, X_{k}$

$$
\sum I\left(X_{i} ; \delta\right)=O\left(\epsilon^{2} k\right)
$$

- Is it true that $I\left(X_{1} \ldots X_{k} ; \delta\right) \leq \sum I\left(X_{i} ; \delta\right)$?

Information Approach

Single coin toss: $X \in\{$ heads, tails $\}$
Mutual information: $I(X ; \delta)=H(X)-H(X \mid \delta)=O\left(\epsilon^{2}\right)$
k coin tosses: $X_{1}, X_{2}, \ldots, X_{k}$

$$
\sum I\left(X_{i} ; \delta\right)=O\left(\epsilon^{2} k\right)
$$

- Is it true that $I\left(X_{1} \ldots X_{k} ; \delta\right) \leq \sum I\left(X_{i} ; \delta\right)$?
- If so and $k=o\left(1 / \epsilon^{2}\right)$:
- $H\left(\delta \mid X_{1} \ldots X_{k}\right)=H(\delta)-I\left(X_{1} \ldots X_{k} ; \delta\right)=1-o(1)$
- Value of δ distributed almost uniformly on $\{-1,+1\}$
- Can predict δ given $X_{1} \ldots X_{k}$ with probability only $\frac{1}{2}+o(1)$

Multivariate Mutual Information

(Focus on $k=2$, larger k by induction)

Multivariate Mutual Information

(Focus on $k=2$, larger k by induction)

(In general, $I(x ; y ; z)$ can be negative. Example: $x \oplus y=z$.)

Multivariate Mutual Information

(Focus on $k=2$, larger k by induction)

(In general, $I(x ; y ; z)$ can be negative. Example: $x \oplus y=z$.)

- $I\left(X_{1} ; X_{2} \mid \delta\right)=0$
- Hence, $I\left(X_{1} ; X_{2} ; \delta\right) \geq 0$.
- This proves that $I\left(X_{1} X_{2} ; \delta\right) \leq I\left(X_{1} ; \delta\right)+I\left(X_{2} ; \delta\right)$.

Outline

(1) Toy Example Presented Today

(2) Warm-Up: Single Coin
(3) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review
(4) Communication Complexity Lower Bound

Outline

(1) Toy Example Presented Today

(2) Warm-Up: Single Coin
(3) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

4. Communication Complexity Lower Bound

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples
Why this works:

- For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}^{\prime} within $\epsilon / 2$ with probability $1-2^{-2 n}$ (via Hoeffding's inequality)

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples
Why this works:

- For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}^{\prime} within $\epsilon / 2$ with probability $1-2^{-2 n}$ (via Hoeffding's inequality)
- Union bound: $\leq \epsilon / 2$ difference for all subsets with probability $1-o(1)$

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples
Why this works:

- For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}^{\prime} within $\epsilon / 2$ with probability $1-2^{-2 n}$ (via Hoeffding's inequality)
- Union bound: $\leq \epsilon / 2$ difference for all subsets with probability $1-o(1)$
- Equivalent to $\left\|\mathcal{D}-\mathcal{D}^{\prime}\right\|_{1} \leq \epsilon$ with probability $\left.1-o(1)\right)$

Lower Bound Review

Construction:

$$
\delta_{1}=+1 \quad \delta_{2}=-1 \quad \delta_{3}=+1 \quad \delta_{4}=+1
$$

Lower Bound Review

Construction:

$$
\delta_{1}=+1 \quad \delta_{2}=-1 \quad \delta_{3}=+1 \quad \delta_{4}=+1
$$

- Each pair randomly biased by 10ϵ

Lower Bound Review

Construction:

$$
\delta_{1}=+1 \quad \delta_{2}=-1 \quad \delta_{3}=+1 \quad \delta_{4}=+1
$$

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than $\frac{9}{10}$ pairs (via averaging/Markov's bound)

Lower Bound Review

Construction:

$$
\delta_{1}=+1 \quad \delta_{2}=-1 \quad \delta_{3}=+1 \quad \delta_{4}=+1
$$

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than $\frac{9}{10}$ pairs (via averaging/Markov's bound)
- This requires $\Omega\left(n / \epsilon^{2}\right)$ samples

Outline

(1) Toy Example Presented Today

(2) Warm-Up: Single Coin

(4) Communication Complexity Lower Bound

Our Claim

> No protocol with o $\left(\frac{n}{\epsilon^{2}} \log n\right)$ communication on average that succeeds learning the distribution with probability $99 / 100$.

Our Claim

No protocol with $o\left(\frac{n}{\epsilon^{2}} \log n\right)$ communication on average that succeeds learning the distribution with probability 99/100.

(Can assume at most $O\left(n / \epsilon^{2} \log n\right)$ players in the proof)

Hard Distribution

Reuse the hard distribution for sampling:

$$
\delta_{1}=+1 \quad \delta_{2}=-1 \quad \delta_{3}=+1 \quad \delta_{4}=+1
$$

Hard Distribution

Reuse the hard distribution for sampling:

$$
\delta_{1}=+1 \quad \delta_{2}=-1 \quad \delta_{3}=+1 \quad \delta_{4}=+1
$$

Can assume the protocol is deterministic:

- Slight loss in the probability of success
- Expected communication goes up by constant factor

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol
- For random i, show that:
- Messages reveal very little about δ_{i} (even if the referee knows all other δ;'s)
- The referee can predict δ_{i} with probability $\frac{1}{2}+o(1)$

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol
- For random i, show that:
- Messages reveal very little about δ_{i} (even if the referee knows all other δ 's)
- The referee can predict δ_{i} with probability $\frac{1}{2}+o(1)$
- The original protocol correct only on $\frac{1}{2}+o(1)$ fraction of δ_{i} 's most of the time

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol
- For random i, show that:
- Messages reveal very little about δ_{i} (even if the referee knows all other δ;'s)
- The referee can predict δ_{i} with probability $\frac{1}{2}+o(1)$
- The original protocol correct only on $\frac{1}{2}+o(1)$ fraction of δ_{i} 's most of the time

CONTRADICTION!!!

Messages of Single Player

Modify protocol for each pair $2 j-1$ and $2 j$:

- Before: x sent for $2 j-1$ and y sent for $2 j$
- After: send $x y$ for $2 j-1$ and $y x$ for $2 j$

Messages of Single Player

Modify protocol for each pair $2 j-1$ and $2 j$:

- Before: x sent for $2 j-1$ and y sent for $2 j$
- After: send $x y$ for $2 j-1$ and $y x$ for $2 j$

Messages of Single Player

Modify protocol for each pair $2 j-1$ and $2 j$:

- Before: x sent for $2 j-1$ and y sent for $2 j$
- After: send $x y$ for $2 j-1$ and $y x$ for $2 j$

Result:

- Communication complexity only doubles.
- This partitions pairs. Each message reveals bias on a specific subset of pairs.

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:
(1) $|x y|>\frac{\log n}{100}$

- Happens for $o\left(n / \epsilon^{2}\right)$ fraction of players
- Can assume the message reveals the sample
- $I\left(\right.$ message $\left.; \delta_{i}\right) \leq I\left(\right.$ sample $\left.\delta_{i}\right)=O\left(\epsilon^{2} / n\right)$

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:
(1) $|x y|>\frac{\log n}{100}$
(2) $|x y| \leq \frac{\log n}{100} \quad \& \leq \sqrt{n}$ pairs with these messages

- Random i : happens with probability $\frac{n^{0.01} \cdot \sqrt{n}}{n}$
- Can assume the message reveals the sample
- $I\left(\right.$ message $\left.; \delta_{i}\right) \leq I\left(\right.$ sample; $\left.\delta_{i}\right)=O\left(\epsilon^{2} / n\right)$

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:
(1) $|x y|>\frac{\log n}{100}$
(2 $|x y| \leq \frac{\log n}{100} \quad \& \leq \sqrt{n}$ pairs with these messages
(3) $|x y| \leq \frac{\log n}{100} \quad \& \quad>\sqrt{n}$ pairs with these messages

- Can happen always
- δ_{i} has little impact on probabilities of $x y$ and $y x$
- $I\left(\right.$ sample $\left.; \delta_{i}\right)=O\left(\epsilon^{2} /(n \cdot \#\right.$ pairs $\left.)\right)=O\left(\epsilon^{2} / n^{1.5}\right)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but $o(1)$ fraction of i 's:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=o(1)
\end{aligned}
$$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but o (1) fraction of i 's:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Then $I\left(\delta_{i} ; M\right)=o(1)$:

- Messages M_{j} independent once δ_{i} is fixed
- This implies that $I\left(\delta_{i} ; M\right) \leq \sum_{j} I\left(\delta_{i}, M_{j}\right)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but o (1) fraction of i 's:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Then $I\left(\delta_{i} ; M\right)=O(1)$:

- Messages M_{j} independent once δ_{i} is fixed
- This implies that $I\left(\delta_{i} ; M\right) \leq \sum_{j} I\left(\delta_{i}, M_{j}\right)$

And $H\left(\delta_{i} \mid M\right)=H\left(\delta_{i}\right)-I\left(\delta_{i} ; M\right)=1-o(1)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but $o(1)$ fraction of $i \prime s$:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Then $I\left(\delta_{i} ; M\right)=O(1)$:

- Messages M_{j} independent once δ_{i} is fixed
- This implies that $I\left(\delta_{i} ; M\right) \leq \sum_{j} I\left(\delta_{i}, M_{j}\right)$

And $H\left(\delta_{i} \mid M\right)=H\left(\delta_{i}\right)-I\left(\delta_{i} ; M\right)=1-o(1)$
Algorithm correct with probability $\frac{1}{2}+O(1)$

Long term goals:

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

Long term goals:

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

Questions?

