Random Fourier Features for Kernel Ridge Regression

Michael Kapralov¹

¹EPFL

(Joint work with H. Avron, C. Musco, C. Musco, A. Velingker and A. Zandieh)

Scalable machine learning algorithms with provable guarantees

In this talk: towards scalable numerical linear algebra in kernel spaces with provable guarantees

Linear regression

Input:

► a sequence of *d*-dimensional data points $x_1, ..., x_n \in \mathbb{R}^d$

• values
$$y_j = f(x_j), j = 1, ..., n$$

Output: linear approximation to f

Linear regression

Input:

► a sequence of *d*-dimensional data points $x_1, ..., x_n \in \mathbb{R}^d$

• values
$$y_j = f(x_j), j = 1, ..., n$$

Output: linear approximation to f

Linear regression

Input:

▶ a sequence of *d*-dimensional data points $x_1, ..., x_n \in \mathbb{R}^d$

• values
$$y_j = f(x_j), j = 1, ..., n$$

Output: linear approximation to f

$$\min_{\alpha \in \mathbb{R}^d} \sum_{j=1}^n |x_j \alpha - y_j|^2 + \lambda ||\alpha||_2^2$$

Kernel ridge regression

Input:

▶ a sequence of *d*-dimensional data points $x_1, ..., x_n \in \mathbb{R}^d$

• values
$$y_j = f(x_j), j = 1, \dots, n$$

Output: approximation from class of 'smooth' functions on \mathbb{R}^d

Kernel ridge regression

Input:

▶ a sequence of *d*-dimensional data points $x_1, ..., x_n \in \mathbb{R}^d$

• values
$$y_j = f(x_j), j = 1, ..., n$$

Output: approximation from class of 'smooth' functions on \mathbb{R}^d

Choose an embedding into a high dimensional feature space $\Psi:\mathbb{R}\to\mathbb{R}^D$

Dimension *D* may be infinite (e.g. Gaussian kernel).

$$\min_{\alpha \in \mathbb{R}^{D}} \sum_{j=1}^{n} |\Psi(x_{j})\alpha - y_{j}|^{2} + \lambda ||\alpha||_{2}^{2}$$

$$\min_{\alpha \in \mathbb{R}^{D}} \sum_{j=1}^{n} |\Psi(x_{j})\alpha - y_{j}|^{2} + \lambda ||\alpha||_{2}^{2}$$

$$\min_{\alpha \in \mathbb{R}^{D}} \sum_{j=1}^{n} |\Psi(x_{j})\alpha - y_{j}|^{2} + \lambda ||\alpha||_{2}^{2}$$

$$\min_{\alpha \in \mathbb{R}^{D}} \sum_{j=1}^{n} |\Psi(x_{j})\alpha - y_{j}|^{2} + \lambda ||\alpha||_{2}^{2}$$

Solve least squares problem:

$$\min_{\alpha \in \mathbb{R}^{D}} \sum_{j=1}^{n} |\Psi(x_{j})\alpha - y_{j}|^{2} + \lambda ||\alpha||_{2}^{2}$$

After algebraic manipulations

$$\alpha^* = \Psi^T \left(K + \lambda I \right)^{-1} y$$

Kernel ridge regression

Main computational effort:

$$(K+\lambda I)^{-1} y$$

Kernel ridge regression

Main computational effort:

The (i,j)-th entry of Gaussian kernel matrix K is

$$K_{ij} = e^{-(x_i - x_j)^2/2}$$

The (i,j)-th entry of Gaussian kernel matrix K is

$$K_{ij} = e^{-(x_i - x_j)^2/2}$$

The (i,j)-th entry of Gaussian kernel matrix K is

$$K_{ij} = e^{-(x_i - x_j)^2/2}$$

 n^3 (or n^{ω}) in full generality...

 $\Omega(n^2)$ time needed when $\lambda = 0$ assuming SETH Backurs-Indyk-Schmidt (NIPS'17)

The (i,j)-th entry of Gaussian kernel matrix K is

$$K_{ij} = e^{-(x_i - x_j)^2/2}$$

 n^3 (or n^{ω}) in full generality...

 $\Omega(n^2)$ time needed when $\lambda = 0$ assuming SETH Backurs-Indyk-Schmidt (NIPS'17)

In practice: find $Z \in \mathbb{R}^{n \times s}$, $s \ll n$ such that

$$K \approx ZZ^{T}$$

and use $ZZ^T + \lambda I$ as a proxy for $K + \lambda I$!

The (i,j)-th entry of Gaussian kernel matrix K is

$$K_{ij} = e^{-(x_i - x_j)^2/2}$$

 n^3 (or n^{ω}) in full generality...

 $\Omega(n^2)$ time needed when $\lambda = 0$ assuming SETH Backurs-Indyk-Schmidt (NIPS'17)

In practice: find $Z \in \mathbb{R}^{n \times s}$, $s \ll n$ such that

$$K \approx ZZ^{T}$$

and use $ZZ^T + \lambda I$ as a proxy for $K + \lambda I$!

Can compute $(ZZ^T + \lambda I)^{-1}y$ in $O(ns^2)$ time and O(ns) space!

Theorem (Bochner's Theorem)

A normalized continuous function $k : \mathbb{R} \to \mathbb{R}$ is a shift-invariant kernel if and only if its Fourier transform \hat{k} is a measure.

Theorem (Bochner's Theorem)

A normalized continuous function $k : \mathbb{R} \to \mathbb{R}$ is a shift-invariant kernel if and only if its Fourier transform \hat{k} is a measure.

Let $p(\eta) := \hat{k}(\eta)$. Then for every x_a, x_b

$$\begin{aligned} \mathcal{K}_{ab} &= k(x_a - x_b) = \int_{\mathbb{R}} \widehat{k}(\eta) e^{-2\pi i (x_a - x_b)\eta} d\eta \\ &= \int_{\mathbb{R}} e^{-2\pi i (x_a - x_b)\eta} p(\eta) d\eta \\ &= \mathbf{E}_{\eta \sim p(\eta)} \left[e^{-2\pi i (x_a - x_b)\eta} \right] \end{aligned}$$

Rahimi-Recht'2007: fix *s*, sample i.i.d. $\eta_1, \ldots, \eta_s \sim p(\eta)$ Let *j*-th row of *Z* be

$$Z_{j,k} := \frac{1}{\sqrt{s}} e^{-2\pi i x_j \eta_k}$$
 (samples of pure frequency x_j)

and use ZZ^T as a proxy for K!

Rahimi-Recht'2007: fix *s*, sample i.i.d. $\eta_1, \ldots, \eta_s \sim p(\eta)$

Let *j*-th row of Z be

 $Z_{j,k} := \frac{1}{\sqrt{s}} e^{-2\pi i x_j \eta_k} \quad (\text{samples of pure frequency } x_j)$ and use ZZ^T as a proxy for K!

Fourier features = sampling columns of *A* with probability proportional to column norms squared!

Fourier features = sampling columns of *A* with probability proportional to column norms squared!

$$n \begin{bmatrix} s \\ Z \end{bmatrix} \bullet \begin{bmatrix} Z^T \end{bmatrix} \approx \begin{bmatrix} K \end{bmatrix}$$

Column η has ℓ_2^2 norm $n \cdot p(\eta)!$

Fourier features = sampling columns of *A* with probability proportional to column norms squared!

One has
$$\mathbf{E}[ZZ^T] = K$$

Spectral approximations

Our goal: find $Z \in \mathbb{R}^{n \times s}$, $\mathbf{s} \ll \mathbf{n}$ such that $(1 - \varepsilon)(K + \lambda I) < ZZ^T + \lambda I < (1 + \varepsilon)(K + \lambda I)$?
Spectral approximations

Our goal: find $Z \in \mathbb{R}^{n \times s}$, $\mathbf{s} \ll \mathbf{n}$ such that $(1 - \varepsilon)(K + \lambda I) < ZZ^T + \lambda I < (1 + \varepsilon)(K + \lambda I)$?

Subspace embeddings for kernel matrices that can be applied implicitly to points $x_1, ..., x_n \in \mathbb{R}^d$?

Spectral approximations

Our goal: find $Z \in \mathbb{R}^{n \times s}$, **s** \ll **n** such that

$$(1-\varepsilon)(K+\lambda I) \prec ZZ' + \lambda I \prec (1+\varepsilon)(K+\lambda I)?$$

Subspace embeddings for kernel matrices that can be applied implicitly to points $x_1, ..., x_n \in \mathbb{R}^d$?

Known for the polynomial kernel only: Avron et al., NIPS'2014 via TENSORSKETCH

Spectral approximation via column sampling

For each j = 1, ..., D compute sampling probability $\tau(j)$

Sample *s* columns independently from distribution τ , include *j* in *Z* with weight $\frac{1}{\sqrt{s \cdot \tau(j)}}$ if sampled.

Spectral approximation via column sampling

For each j = 1, ..., D compute sampling probability $\tau(j)$

Sample *s* columns independently from distribution τ , include *j* in *Z* with weight $\frac{1}{\sqrt{s \cdot \tau(j)}}$ if sampled.

That way

$$\mathbf{E}[ZZ^T] = K$$

Spectral approximation via column sampling

For each j = 1, ..., D compute sampling probability $\tau(j)$

Sample *s* columns independently from distribution τ , include *j* in *Z* with weight $\frac{1}{\sqrt{s \cdot \tau(j)}}$ if sampled.

That way

$$\mathbf{E}[ZZ^T] = K$$

Choose τ to ensure ZZ^T spectrally close to K whp?

Ridge leverage scores

Define λ -ridge leverage scores by

$$\tau_{\lambda}(j) := a_j^T (K + \lambda I)^+ a_j$$

Ridge leverage scores

Define λ -ridge leverage scores by

$$\tau_{\lambda}(j) := a_j^T (K + \lambda I)^+ a_j$$

The number of samples required \approx statistical dimension of *K*

$$s_{\lambda}(K) := \operatorname{tr}((K + \lambda I)^{+}K) = \sum_{j=1}^{d} \frac{\lambda_{j}}{\lambda_{j} + \lambda_{j}}$$

Ridge leverage scores

Define λ -ridge leverage scores by

$$\tau_{\lambda}(j) := a_j^T (K + \lambda I)^+ a_j$$

The number of samples required \approx statistical dimension of K

$$s_{\lambda}(K) := \operatorname{tr}((K + \lambda I)^{+}K) = \sum_{j=1}^{d} \frac{\lambda_{j}}{\lambda_{j} + \lambda_{j}}$$

Statistical dimension \approx # eigenvalues above λ +(sum of eigenvalues below λ)/ λ

Theorem (Folklore)

Suppose that

- For each i = 1,...,s one has Z_i ~ a_j with probability ~ τ_λ(j) independently;
- $s = O(\varepsilon^{-2} s_{\lambda} \log s_{\lambda}).$

Then

$$(1-\varepsilon)(K+\lambda I) \prec ZZ^T + \lambda I \prec (1+\varepsilon)(K+\lambda I)$$

with high probability.

This paper: NO, not even in dimension d = 1

This paper: NO, not even in dimension d = 1

Q1': how many samples are necessary and sufficient for spectral guarantees?

This paper: (essentially) tight bounds

This paper: NO, not even in dimension d = 1

Q1': how many samples are necessary and sufficient for spectral guarantees?

This paper: (essentially) tight bounds

Q2: a better sampling scheme with $\tilde{O}(s_{\lambda})$ samples? This paper: YES, at least in constant dimensions for bounded datasets

- Leverage score density function
- Primal-dual characterization
- Tight lower bound for Fourier Features

Leverage score density function

- Primal-dual characterization
- Tight lower bound for Fourier Features

For each $\eta \in \mathbb{R}$ let

$$z(\eta)_j := e^{-2\pi x_j \eta}$$

and let $d\mu(\eta) := p(\eta) d\eta$ so that

$$\mathcal{K} = \int_{\mathbb{R}} z(\eta) z(\eta)^* d\mu(\eta).$$

For each $\eta \in \mathbb{R}$ let

$$z(\eta)_j := e^{-2\pi x_j \eta}$$

and let $d\mu(\eta) := p(\eta) d\eta$ so that

$$\mathcal{K} = \int_{\mathbb{R}} z(\eta) z(\eta)^* d\mu(\eta).$$

Define the ridge leverage score function

$$\tau_{\lambda}(\eta) := \rho(\eta) Z(\eta)^* (K + \lambda I)^{-1} Z(\eta)$$

Define the ridge leverage score function

$$\tau_{\lambda}(\eta) := p(\eta) z(\eta)^{*} (K + \lambda I)^{-1} z(\eta)$$

Lemma For every $\eta \in \mathbb{R}$

$$\tau_{\lambda}(\eta) \leq p(\eta) \cdot \frac{n}{\lambda}$$

Define the ridge leverage score function

$$\tau_{\lambda}(\eta) := p(\eta) z(\eta)^{*} (K + \lambda I)^{-1} z(\eta)$$

Lemma For every $\eta \in \mathbb{R}$

$$\tau_{\lambda}(\eta) \leq p(\eta) \cdot \frac{n}{\lambda}$$

Proof:

$$\tau_{\lambda}(\eta) = p(\eta)Z(\eta)^{*}(K + \lambda I)^{-1}Z(\eta)$$

$$\leq p(\eta)Z(\eta)^{*}Z(\eta)/\lambda$$

$$= p(\eta)||Z(\eta)||_{2}^{2}/\lambda$$

$$= p(\eta) \cdot \frac{n}{\lambda}$$

For every kernel k, any dataset $x_1, ..., x_n$, any $\varepsilon \in (0, 1/2)$ if Z is a Fourier Features matrix with $s = O(\frac{1}{\varepsilon^2} \frac{n}{\lambda} s_\lambda \log s_\lambda)$ columns, then

$$(1-\varepsilon)(K+\lambda I) \prec ZZ^T + \lambda I \prec (1+\varepsilon)(K+\lambda I)$$

with high probability.

For every kernel k, any dataset $x_1, ..., x_n$, any $\varepsilon \in (0, 1/2)$ if Z is a Fourier Features matrix with $s = O(\frac{1}{\varepsilon^2} \frac{n}{\lambda} s_\lambda \log s_\lambda)$ columns, then

$$(1-\varepsilon)(K+\lambda I) \prec ZZ^T + \lambda I \prec (1+\varepsilon)(K+\lambda I)$$

with high probability.

Is this good? Usually $\lambda = \omega(1)$ (e.g. $\lambda = \sqrt{n}$), and definitely $\lambda \le n$.

For every kernel k, any dataset $x_1, ..., x_n$, any $\varepsilon \in (0, 1/2)$ if Z is a Fourier Features matrix with $s = O(\frac{1}{\varepsilon^2} \frac{n}{\lambda} s_\lambda \log s_\lambda)$ columns, then

$$(1-\varepsilon)(K+\lambda I) \prec ZZ^T + \lambda I \prec (1+\varepsilon)(K+\lambda I)$$

with high probability.

Is this good? Usually $\lambda = \omega(1)$ (e.g. $\lambda = \sqrt{n}$), and definitely $\lambda \le n$.

Is this best possible? basically YES, even for 1d datasets!

For every kernel k, any dataset $x_1, ..., x_n$, any $\varepsilon \in (0, 1/2)$ if Z is a Fourier Features matrix with $s = O(\frac{1}{\varepsilon^2} \frac{n}{\lambda} s_\lambda \log s_\lambda)$ columns, then

$$(1-\varepsilon)(K+\lambda I) \prec ZZ^T + \lambda I \prec (1+\varepsilon)(K+\lambda I)$$

with high probability.

Is this good? Usually $\lambda = \omega(1)$ (e.g. $\lambda = \sqrt{n}$), and definitely $\lambda \le n$.

Is this best possible? basically YES, even for 1d datasets!

Can we do better? YES, at least for bounded datasets in constant dimension

Assume: dimension *d* is constant (one in pictures), kernel is Gaussian, data points belong to [-R, +R]

Theorem (Upper bound, informal) For every $|\eta| \le 10\sqrt{\log(n/\lambda)}$:

 $\tau_{\lambda}(\eta) \leq 25 \max(R, 3000 \log^{1.5}(n/\lambda)).$

Theorem (Upper bound, informal) For every $|\eta| \le 10\sqrt{\log(n/\lambda)}$:

 $\tau_{\lambda}(\eta) \leq 25 \max(R, 3000 \log^{1.5}(n/\lambda)).$

Theorem (Lower bound, informal)

For integer *n*, regularization parameter λ , and radius R^1 , there exist $x_1, ..., x_n \in [-R, R]$ such that for every $\eta \in [-100\sqrt{\log(n/\lambda)}, +100\sqrt{\log(n/\lambda)}]$

$$\tau_{\lambda}(\eta) \geq \frac{R}{150} \left(\frac{p(\eta)}{p(\eta) + 2R(\lambda/n)} \right).$$

¹Restrictions apply

Theorem (Lower bound, informal)

For integer n, regularization parameter λ , and radius R^1 , there exist $x_1, ..., x_n \in [-R, R]$ such that for every $\eta \in [-100\sqrt{\log(n/\lambda)}, +100\sqrt{\log(n/\lambda)}]$

$$\tau_{\lambda}(\eta) \geq \frac{R}{150} \left(\frac{p(\eta)}{p(\eta) + 2R(\lambda/n)} \right).$$

Suppose that

- for each i = 1,...,s one has Z_i ~ a_η with probability τ_λ(η)dη independently;
- $s = O(\varepsilon^{-2} s_{\lambda} \log s_{\lambda}).$

Then

$$(1-\varepsilon)(K+\lambda I) < ZZ^T + \lambda I < (1+\varepsilon)(K+\lambda I)$$

with high probability.

Statistical dimension of $s_{\lambda}(K) = \sum_{j=1}^{n} \frac{\lambda_j}{\lambda_j + \lambda}$

- Leverage score density function
- Primal-dual characterization
- Tight lower bound for Fourier Features

- Leverage score density function
- Primal-dual characterization
- Tight lower bound for Fourier Features

Define operator $\Phi: L_2(d\mu) \to \mathbb{C}^n$ by

$$\Phi y = \int_{\mathbb{R}} z(\xi) y(\xi) d\mu(\xi),$$

 ∞

Lemma

The ridge leverage function can alternatively be defined as follows:

$$\tau_{\lambda}(\boldsymbol{\eta}) = \min_{\boldsymbol{y} \in L_{2}(d\mu)} \lambda^{-1} || \Phi \boldsymbol{y} - \sqrt{\boldsymbol{p}(\boldsymbol{\eta})} \boldsymbol{z}(\boldsymbol{\eta}) ||_{2}^{2} + || \boldsymbol{y} ||_{L_{2}(d\mu)}^{2}$$

Intuition: recombine many columns of Φ to get our column (i.e. frequency η), approximately

For a function $y \in L_2(d\mu)$

$$\Phi y = \int_{\mathbb{R}} z(\xi) y(\xi) d\mu(\xi)$$

Fix $\eta \in \mathbb{R}$. Want to upper bound

For a function $y \in L_2(d\mu)$

$$\Phi y = \int_{\mathbb{R}} z(\xi) y(\xi) d\mu(\xi)$$

Fix $\eta \in \mathbb{R}$. Want to upper bound

Lemma

The ridge leverage function can alternatively be defined as follows:

$$\tau_{\lambda}(\mathbf{\eta}) = \max_{\alpha \in \mathbb{C}^n} \frac{p(\mathbf{\eta}) \cdot |\alpha^* Z(\mathbf{\eta})|^2}{||\Phi^* \alpha||_{L_2(d\mu)}^2 + \lambda||\alpha||_2^2}$$

Intuition: recombine rows of Φ to create a 'localized' vector

Similar construction of test functions

- Leverage score density function
- Primal-dual characterization

Tight lower bound for Fourier Features

Need: for every $\alpha \in \mathbb{R}^n$

 $\boldsymbol{\alpha}^{T}\boldsymbol{K}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2} \in \big(\boldsymbol{1}\pm\boldsymbol{\varepsilon}\big)\big(\boldsymbol{\alpha}^{T}\boldsymbol{Z}\boldsymbol{Z}^{T}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2}\big)$

Need: for every $\alpha \in \mathbb{R}^n$

 $\boldsymbol{\alpha}^{T}\boldsymbol{K}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2} \in \big(\boldsymbol{1}\pm\boldsymbol{\varepsilon}\big)\big(\boldsymbol{\alpha}^{T}\boldsymbol{Z}\boldsymbol{Z}^{T}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2}\big)$

Need: for every $\alpha \in \mathbb{R}^n$

 $\boldsymbol{\alpha}^{T}\boldsymbol{K}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2} \in \big(\boldsymbol{1}\pm\boldsymbol{\varepsilon}\big)\big(\boldsymbol{\alpha}^{T}\boldsymbol{Z}\boldsymbol{Z}^{T}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2}\big)$

Need: for every $\alpha \in \mathbb{R}^n$

 $\boldsymbol{\alpha}^{T}\boldsymbol{K}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2} \in \big(\boldsymbol{1}\pm\boldsymbol{\varepsilon}\big)\big(\boldsymbol{\alpha}^{T}\boldsymbol{Z}\boldsymbol{Z}^{T}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2}\big)$

Need: for every $\alpha \in \mathbb{R}^n$

 $\boldsymbol{\alpha}^{T}\boldsymbol{K}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2} \in \big(\boldsymbol{1}\pm\boldsymbol{\varepsilon}\big)\big(\boldsymbol{\alpha}^{T}\boldsymbol{Z}\boldsymbol{Z}^{T}\boldsymbol{\alpha}+\boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2}\big)$

Need: for every $\alpha \in \mathbb{R}^n$

 $\boldsymbol{\alpha}^{T}\boldsymbol{K}\boldsymbol{\alpha} + \boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2} \in \big(1\pm \boldsymbol{\varepsilon}\big)\big(\boldsymbol{\alpha}^{T}\boldsymbol{Z}\boldsymbol{Z}^{T}\boldsymbol{\alpha} + \boldsymbol{\lambda}||\boldsymbol{\alpha}||_{2}^{2}\big)$

Experiments: one-dimensional

Sample from the function

 $f^{\star}(x) = \sin(6x) + \sin(60\exp(x)).$

Use a 400-point uniform grid spanning $[-5/2\pi,+5/2\pi],$ and sample according to

$$y_i = f^{\star}(x_i) + v_i.$$

where v_i is i.i.d. Gaussian noise.

Experiments: one-dimensional

Sample from the function

 $f^{\star}(x) = \sin(6x) + \sin(60\exp(x)).$

Use a 400-point uniform grid spanning $[-5/2\pi,+5/2\pi],$ and sample according to

$$y_i = f^{\star}(x_i) + v_i.$$

where v_i is i.i.d. Gaussian noise.

Experiments: two-dimensional

 $f^{\star}(x, z) = (\sin(x) + \sin(10\exp(x)))(\sin(z) + \sin(10\exp(z))).$

Sample points on a 40×40 uniform grid.

Experiments: two-dimensional

 $f^{\star}(x,z) = (\sin(x) + \sin(10\exp(x)))(\sin(z) + \sin(10\exp(z))).$ Sample points on a 40 × 40 uniform grid.

CRF Estimator

MRF Estimator

Summary

Our results:

 tight bounds for Fourier Features for bounded datasets in constant dimension

Summary

Our results:

- tight bounds for Fourier Features for bounded datasets in constant dimension
- tight bounds on leverage score function for bounded datasets in any constant dimension

Summary

Our results:

- tight bounds for Fourier Features for bounded datasets in constant dimension
- tight bounds on leverage score function for bounded datasets in any constant dimension

Subspace embeddings with poly(*d*) dependence? Tight bounds for worst case datasets? Does Rahimi-Recht work on 'typical' datasets? Other kernels?

Thank you!