Estimating Graph Parameters from Random
Order Streams

Pan Peng
University of Vienna, Austria = University of Sheffield, UK

Joint work with Christian Sohler (TU Dortmund, Germany)

15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.

15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.

I
ot "

. 0
+* o,
e, o

“, o

0

RLT P

15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.

e "
. .
o 3
¢<
. R
. R
.
"ll Il“‘

15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.

e "
. .
o 3
¢<
. R
. R
.
"ll Il“‘

15

Graph streams

To analyze the structure of massive and dynamic networks/graphs
Graph streaming algorithms
@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.

e, o
“, o
0 .
ALTTTTTI M

15

Graph streams
To analyze the structure of massive and dynamic networks/graphs
Graph streaming algorithms
@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.

e, o
“, o
0 .
ALTTTTTI M

* This work: insertion-only; single pass

15

Model: adversarial order streams
Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

15

Model: adversarial order streams
Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n - log®® n) space
g

Model: adversarial order streams
Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n-log®" n) space
— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.

15

Model: adversarial order streams
Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n-log®" n) space
— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
— good for dense graphs, while trivial for sparse graphs

15

Model: adversarial order streams

Edges arrive in arbitrary order: (n:= # vertices)

Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

semi-streaming model [FKMSZ05]: O(n - log®™" n) space

— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.

— good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

15

Model: adversarial order streams

Edges arrive in arbitrary order: (n:= # vertices)

Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

semi-streaming model [FKMSZ05]: O(n - log®™" n) space

— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.

— good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

15

Model: adversarial order streams
Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n-log®" n) space
— minimum spanning tree, maximal matching, connectivity, spectral/cut

sparsifier, etc.
— good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

— parameterize the problem;

15

Model: adversarial order streams

Edges arrive in arbitrary order: (n:= # vertices)
@ Q(n) space for many basic problems:

— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n-log®" n) space
— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
— good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

— parameterize the problem;

— study special class of graphs (planar);

15

Model: adversarial order streams

Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n-log®" n) space
— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
— good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

— parameterize the problem;
— study special class of graphs (planar);

— relax the assumption that edges come in arbitrary order

15

Model: random order streams

Edges arrive in (uniformly) random order

— input stream is chosen u.a.r from the set of all possible permutations of edges

15

Model: random order streams

Edges arrive in (uniformly) random order

— input stream is chosen u.a.r from the set of all possible permutations of edges

@ some problems can be solved using smaller space:
— matching (size) [KMM12,KKS14]
— bounded-degree graph property testing [MMPS17]

15

Model: random order streams

Edges arrive in (uniformly) random order
— input stream is chosen u.a.r from the set of all possible permutations of edges

@ some problems can be solved using smaller space:
— matching (size) [KMM12,KKS14]
— bounded-degree graph property testing [MMPS17]

@ some problems still require large space:
— Q(n) connectivity, Q(n'**/k) k-approx. for s, t-distance [CCMO08]

15

Model: random order streams

Edges arrive in (uniformly) random order
— input stream is chosen u.a.r from the set of all possible permutations of edges

@ some problems can be solved using smaller space:
— matching (size) [KMM12,KKS14]
— bounded-degree graph property testing [MMPS17]

@ some problems still require large space:
— Q(n) connectivity, Q(n'**/k) k-approx. for s, t-distance [CCMO08]

In general, it is unclear if the random-order assumption leads to
more space-efficient algorithms

Our result

A new algorithmic technique:

some constant-time
approximation algorithms
(adjacency list model)

constant-space random
order streaming algorithms

15

Our result

A new algorithmic technique:

some constant-time
approximation algorithms |=—
(adjacency list model)

constant-space random
order streaming algorithms

4

e query access to the adjacency list of the graph
e running time of the algorithm is constant, independent of n

Our result

A new algorithmic technique:

some constant-time
approximation algorithms
(adjacency list model)

constant-space random
order streaming algorithms

New random order graph streaming algorithms

approx.| problem graph class space
additive| number of connected o(L)
general (l) w3/
en components (CCs) e
weight of minimum | general connected; NI
(1+¢) | spanning tree (MST) | edge weights (1,---, w} (?) ‘
size of maximum in- lanar /minor-free L (1yog®) (1)
dependent set (MIS) | P 2(=)

**with high constant probability

15

Our result

A new algorithmic technique:

some constant-time
approximation algorithms
(adjacency list model)

constant-space random
order streaming algorithms

New random order graph streaming algorithms

approx.| problem graph class space
additive| number of connected | 1100 %)
en components (CCs) genera ()7
weight of minimum | general connected; NI
(1+¢) | spanning tree (MST) | edge weights (1,---, w} (5" ¢
size of maximum in- lanar /minor-f L (1yog®) (1)
dependent set (MIS) P ree 2(x)°F

**with high constant probability

Remark: Adversary order: Q(n'~©(¢)) for the first two problems [HP16]

15

Our result

Further applications from our technique:

15

Our result

Further applications from our technique:

@ other constant-space random order streaming algorithms

15

Our result

Further applications from our technique:

@ other constant-space random order streaming algorithms

o (1+¢), size of minimum dominating set, planar graphs
e additive en, size of maximum matching, bounded average graphs
o ...

5/15

Our result

Further applications from our technique:

@ other constant-space random order streaming algorithms

o (1+¢), size of minimum dominating set, planar graphs
e additive en, size of maximum matching, bounded average graphs
o ...

© can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property TT

T constant-time testable TT constant-space testable
(adjacency list model) in random order streams

15

Our result

Further applications from our technique:

@ other constant-space random order streaming algorithms

o (1+¢), size of minimum dominating set, planar graphs
e additive en, size of maximum matching, bounded average graphs
o ...

© can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property TT

T constant-time testable TT constant-space testable
(adjacency list model) in random order streams

— here “test TT": distinguish if a graph satisfies TT or is “far” from satisfying TT

15

High-level idea

generic framework for many constant-time algorithms

6/15

High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

15

High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

@ explore the constant-size neighborhood of each
v € S (and ignore “high” degree vertices)

15

High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

@ explore the constant-size neighborhood of each
v € S (and ignore “high” degree vertices)

@ draw conclusions from the explored subgraphs

15

High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

@ explore the constant-size neighborhood of each
v € S (and ignore “high” degree vertices)

@ draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

15

High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

@ explore the constant-size neighborhood of each
v € S (and ignore “high” degree vertices)

@ draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

@ with (small) constant probability to see the right exploration

15

High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

@ explore the constant-size neighborhood of each
v € S (and ignore “high” degree vertices)

@ draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:
@ with (small) constant probability to see the right exploration

@ challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

15

High-level idea

our technique for random order streams

7/15

High-level idea

our technique for random order streams

(i) two phases of streaming:

/15

High-level idea

our technique for random order streams

(i) two phases of streaming:

@ perform graph exploration in the first phase

first phase
exploration

/15

High-level idea

our technique for random order streams

(i) two phases of streaming:
@ perform graph exploration in the first phase
@ identify the right exploration in the second phase

second phase first phase
identification 5 explmatmn

SIS

/15

High-level idea

our technique for random order streams

(i) two phases of streaming:
@ perform graph exploration in the first phase
@ identify the right exploration in the second phase

second phase first phase
identification 5 explmatmn

SIS

(i) use of conditional probabilities for the analysis

In the rest

o Approximate #CCs
o Approximate the weight of MST

not in this talk
o Approximate the size of MIS in planar graphs and beyond

15

Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error £2n, k < 2/¢

/15

Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error £2n, k < 2/¢

Approx. cck in the adjacency list model [CRZ05, BKMT14]

/15

Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error €2n, k < 2/¢

Approx. cck in the adjacency list model [CRZ05, BKMT14]

@ sample a set S of vertices

Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error €2n, k < 2/¢

Approx. cck in the adjacency list model [CRZ05, BKMT14]

@ sample a set S of vertices

@ for each v € S, perform BFS(v)
© &
OO D

@

15

Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error €2n, k < 2/¢

Approx. cck in the adjacency list model [CRZ05, BKMT14]

@ sample a set S of vertices
@ for each v € S, perform BFS(v)

o if a CC of size k is detected, set
X, =1, 0w, X, =0

15

Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error €2n, k < 2/¢

Approx. cck in the adjacency list model [CRZ05, BKMT14]

@ sample a set S of vertices
@ for each v € S, perform BFS(v)

o if a CC of size k is detected, set
X, =1, 0w, X, =0

P 2vesXv
© output & =7 - 5

15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 8
°
2 ®9
O L
S L
g
% ® K

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 8
°
2 ®9
O L
S L
g
% ® K

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 38
[

®9
. 7
* ok

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 38
[

®9
. 7
* ok

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

e 8
®9

® Kk

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

e 8
®9

® Kk

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 8
°
2 ‘ ®9
1 T .
3 -

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 8
°
2 ‘ ®9
1 T .
3 -

A property: if |C,| = k, Pr[StreamBFS(v) = BFS(v)] = Q(1)

10/15

Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 38
°
2 ‘ ®9
1 T .
3 -

A property: if |C,| = k, Pr[StreamBFS(v) = BFS(v)] = Q(1)

A difficulty: if |C,| =|C,| = k, Pr[StreamBFS(u) = C,] might be different
from Pr[StreamBFS(v) = C,]

10/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

11/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

11/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

2
]
1
°
°
3

[I=8

2 P

°
®9

® K

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

4
1/% 05.7
3

°
®9

® K

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

[I=8

2 P

°
®9

® K

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

°
2 ®9

o °k

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

°
2 ®9

o °k

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

°
2 ®9

® K

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

°
2 ®9

® K

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

11/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT, of C,

11/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT, of C,

StreamBFS(v) = StreamCanoBFS(v)

StreamCanoBFS(v)

— Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CT,

11/15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT, of C,

StreamBFS(v) = StreamCanoBFS(v)

StreamCanoBFS(v)

— Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CT,

A property: if |C)| =|C,| =k
Pr[StreamCanoBFS(u) = CT,] = Pr[StreamCanoBFS(v) = CT,]

11/15

Approx. ccy in random order streams

Another difficulty: false positives

12/15

Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

12/15

Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

The algorithm

© sample a set S of vertices

12/15

Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

The algorithm
© sample a set S of vertices

@ first phase (i.e., first Am edges):
o for each v € S, perform a StreamCanoBFS

s
<@ :

12/15

Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

The algorithm
© sample a set S of vertices

First phase @ first phase (i.e., first Am edges):
j o/{ for each v € S, perform a StreamCanoBFS
e

./{ — v good: veS & |StreamCanoBFS(v) | = k.

12/15

Approx. ccy in random order streams

Another difficulty: false positives

— divide the stream into two phases to rule out most “false positives”

The algorithm

Second phase

Outgoing Z‘ :
]L

U:]

n i
& o

Xuy=0

4 Xu=0 4

o

sample a set S of vertices
first phase (i.e., first Am edges):
for each v € S, perform a StreamCanoBFS

— v good: veS & |StreamCanoBFS(v) | = k.

second phase:

for each good v, check if StreamCanoBFS(v)
has an outgoing or “violating” edge

—If so, set X, =0; else set X, =1

12/15

Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

The algorithm
© sample a set S of vertices

@ first phase (i.e., first Am edges):

Second phase

] (’”'“‘"“7_ for each v € S, perform a StreamCanoBFS
. Xy =0
§ ./{ — v good: veS & |StreamCanoBFS(v) | = k.
+E o Vi lu:nZQ © second phase:
@ ‘4 Xy =0 for each good v, check if StreamCanoBFS(v)

has an outgoing or “violating” edge
— If so, set X, =0; else set X, =1

1 Lvigood Xv

Q output & =1 B B

12/15

Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

The algorithm
© sample a set S of vertices

@ first phase (i.e., first Am edges):

Second phase

j 0'7'{ for each v € S, perform a StreamCanoBFS

H P Xu=0

: . § /{ — v good: veS & |StreamCanoBFS(v) | = k.
N@} l \'mh":'éq © second phase:

Xy =0 for each good v, check if StreamCanoBFS(v)
has an outgoing or “violating” edge
—If so, set X, =0; else set X, =1

1, Lvigood Xv

Q output & =1 B B

vYi:=Pr[any set T of k —1 edges appears in the lexico. order in the first phase]

12 /15

The analysis

A simple but useful conditional probability

TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

13 /15

The analysis

A simple but useful conditional probability

TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

= for any v with |C,| > k: Pr[false positive] < v

13 /15

The analysis

A simple but useful conditional probability

TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

= for any v with |C,| > k: Pr[false positive] < v

Our guarantee

@ if |G| <k, PriX,=1=0

13 /15

The analysis

A simple but useful conditional probability

TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

= for any v with |C,| > k: Pr[false positive] < v

Our guarantee

@ if |Cl<k, PriX,=1=0
o if |Gl =k, PrlX, =1] ~ v«

13 /15

The analysis

A simple but useful conditional probability

TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

= for any v with |C,| > k: Pr[false positive] < v

Our guarantee

@ if |Cl<k, PriX,=1=0
o if |Gl =k, PrlX, =1] ~ v«
@ if |G| > k, PriX, =1] < v«

13 /15

The analysis

A simple but useful conditional probability

TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

= for any v with |C,| > k: Pr[false positive] < v

Our guarantee

@ if |Cl<k, PriX,=1=0
o if |Gl =k, PrlX, =1] ~ v«
@ if |G| > k, PriX, =1] < v«

= E[&] ~ cck

13 /15

(1 4 ¢)-approx. the weight of MST

Input: connected G, edge weights € {1,---, W}
@ M: weight of MST;

14 /15

(1 4 ¢)-approx. the weight of MST

Input: connected G, edge weights € {1,---, W}
@ M: weight of MST; connected = M > n—1

14 /15

(1 4 ¢)-approx. the weight of MST

Input: connected G, edge weights € {1,---, W}
@ M: weight of MST; connected = M > n—1

A relation between MST weight and #CCs

@ GW: subgraph of G consisting of edges of weight < t
@ c: #CCs of G

14 /15

(1 4 ¢)-approx. the weight of MST

Input: connected G, edge weights € {1,---, W}
@ M: weight of MST; connected = M > n—1

A relation between MST weight and #CCs

@ GW: subgraph of G consisting of edges of weight < t
@ c: #CCs of G

—=M=n-W+3 " "c® [CRZO05]

14 /15

(1 4 ¢)-approx. the weight of MST

Input: connected G, edge weights € {1,---, W}
@ M: weight of MST; connected = M > n—1

A relation between MST weight and #CCs

@ GW: subgraph of G consisting of edges of weight < t
@ c: #CCs of G

—=M=n-W+3 " "c® [CRZO05]

—to (1+ ¢)-approx. M: suffices to approx. each c¢(®) with additive error %

14 /15

(1 4 ¢)-approx. the weight of MST

Input: connected G, edge weights € {1,---, W}
@ M: weight of MST; connected = M > n—1

A relation between MST weight and #CCs

@ GW: subgraph of G consisting of edges of weight < t
(t): #CCs of G

—=M=n-W+3 " "c® [CRZO05]

—to (1 + ¢)-approx. M: suffices to approx. each c(*) with additive error W

The algorithm

@ for each t from 1 to W — 1, approx. #CCs of G*) to obtain &(t)
@ output M :=n— W+ 3 " 1 &(t)

14 /15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms |=—
(adjacency list model)

constant-space random
order streaming algorithms

15/15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms |=—
(adjacency list model)

constant-space random
order streaming algorithms

Questions:

15/15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms |=—
(adjacency list model)

constant-space random
order streaming algorithms

Questions:

© Lower bounds in random order streams

— our conjecture for approx. #CCs: exp(Q(1/¢)).

15/15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms |=—
(adjacency list model)

constant-space random
order streaming algorithms

Questions:

© Lower bounds in random order streams

— our conjecture for approx. #CCs: exp(Q(1/¢)).

@ Anything between uniformly random ordering and worst-case ordering?

15/15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms
(adjacency list model)

constant-space random
order streaming algorithms

Questions:

© Lower bounds in random order streams

— our conjecture for approx. #CCs: exp(Q(1/¢)).

@ Anything between uniformly random ordering and worst-case ordering?

Thanks!

15/15

	Introduction

