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Graph streams
To analyze the structure of massive and dynamic networks/graphs
Graph streaming algorithms
@ Input: a sequence of edge insertions and/or deletions

@ Goal: using as small space as possible, analyze the structure of the
resulting graph.
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* This work: insertion-only; single pass
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Edges arrive in arbitrary order: (n:= # vertices)

@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.
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@ Q(n) space for many basic problems:
— connectivity [HRR99], diameter, bipartiteness, planarity, etc.

@ semi-streaming model [FKMSZ05]: O(n-log®" n) space
— minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
— good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

— parameterize the problem;
— study special class of graphs (planar);

— relax the assumption that edges come in arbitrary order
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Model: random order streams

Edges arrive in (uniformly) random order
— input stream is chosen u.a.r from the set of all possible permutations of edges

@ some problems can be solved using smaller space:
— matching (size) [KMM12,KKS14]
— bounded-degree graph property testing [MMPS17]

@ some problems still require large space:
— Q(n) connectivity, Q(n'**/k) k-approx. for s, t-distance [CCMO08]

In general, it is unclear if the random-order assumption leads to
more space-efficient algorithms
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e running time of the algorithm is constant, independent of n
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Our result

A new algorithmic technique:
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approximation algorithms
(adjacency list model)

constant-space random
order streaming algorithms

New random order graph streaming algorithms

approx.| problem graph class space
additive| number of connected | 1100 %)
en components (CCs) genera ()7
weight of minimum | general connected; NI
(1+¢) | spanning tree (MST) | edge weights (1,---, w} (5" ¢
size of maximum in- lanar /minor-f L (1yog®) (1)
dependent set (MIS) P ree 2(x)°F

**with high constant probability

Remark: Adversary order: Q(n'~©(¢)) for the first two problems [HP16]
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Our result

Further applications from our technique:

@ other constant-space random order streaming algorithms

o (1+¢), size of minimum dominating set, planar graphs
e additive en, size of maximum matching, bounded average graphs
o ...

© can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property TT

T constant-time testable TT constant-space testable
(adjacency list model) in random order streams

— here “test TT": distinguish if a graph satisfies TT or is “far” from satisfying TT
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High-level idea

generic framework for many constant-time algorithms

@ sample a set S of constant number of vertices

@ explore the constant-size neighborhood of each
v € S (and ignore “high” degree vertices)

@ draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:
@ with (small) constant probability to see the right exploration

@ challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.
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High-level idea

our technique for random order streams

(i) two phases of streaming:
@ perform graph exploration in the first phase
@ identify the right exploration in the second phase

second phase first phase
identification 5 explmatmn

SIS

(i) use of conditional probabilities for the analysis



In the rest

o Approximate #CCs
o Approximate the weight of MST

not in this talk
o Approximate the size of MIS in planar graphs and beyond
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Approx. #CCs with an additive error en

ccy = #CCs of size k
— suffices to approx. cc, with additive error €2n, k < 2/¢

Approx. cck in the adjacency list model [CRZ05, BKMT14]

@ sample a set S of vertices
@ for each v € S, perform BFS(v)

o if a CC of size k is detected, set
X, =1, 0w, X, =0

P 2vesXv
© output & =7 - 5
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Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.
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Perform BFS in random order streams

’ BFS(v) — StreamBFS(v)

StreamBFS(v)

— Initialize P :={v}. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

4 e 38
°
2 ‘ ®9
1 T .
3 -

A property: if |C,| = k, Pr[StreamBFS(v) = BFS(v)] = Q(1)

A difficulty: if |C,| =|C,| = k, Pr[StreamBFS(u) = C,] might be different
from Pr[StreamBFS(v) = C,]
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Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT, of C,

StreamBFS(v) = StreamCanoBFS(v)

StreamCanoBFS(v)

— Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CT,

A property: if |C)| =|C,| =k
Pr[StreamCanoBFS(u) = CT,] = Pr[StreamCanoBFS(v) = CT,]
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— divide the stream into two phases to rule out most “false positives”

The algorithm

Second phase

Outgoing Z‘ :
]L

U:]

n i
& o

Xuy=0

4 Xu=0 4

o

sample a set S of vertices
first phase (i.e., first Am edges):
for each v € S, perform a StreamCanoBFS

— v good: veS & |StreamCanoBFS(v) | = k.

second phase:

for each good v, check if StreamCanoBFS(v)
has an outgoing or “violating” edge
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The algorithm
© sample a set S of vertices

@ first phase (i.e., first Am edges):

Second phase

] (’”'“‘"“7\\_ for each v € S, perform a StreamCanoBFS
. Xy =0
§ ./{ — v good: veS & |StreamCanoBFS(v) | = k.
+E o Vi lu:nZQ © second phase:
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Approx. ccy in random order streams

Another difficulty: false positives
— divide the stream into two phases to rule out most “false positives”

The algorithm
© sample a set S of vertices

@ first phase (i.e., first Am edges):

Second phase

j 0'7'{ for each v € S, perform a StreamCanoBFS

H P Xu=0

: . § /{ — v good: veS & |StreamCanoBFS(v) | = k.
N@} l \'mh":'éq © second phase:

Xy =0 for each good v, check if StreamCanoBFS(v)
has an outgoing or “violating” edge
—If so, set X, =0; else set X, =1

1, Lvigood Xv

Q output & =1 B B

vYi:=Pr[any set T of k —1 edges appears in the lexico. order in the first phase]
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TCE,|TIl=k—1,ee€ E\ T;F :=set of edges in the first phase:

Prlee FIT CFI~A

= for any v with |C,| > k: Pr[false positive] < v

Our guarantee

@ if |Cl<k, PriX,=1=0
o if |Gl =k, PrlX, =1] ~ v«
@ if |G| > k, PriX, =1] < v«

= E[&] ~ cck
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Input: connected G, edge weights € {1,---, W}
@ M: weight of MST; connected = M > n—1

A relation between MST weight and #CCs

@ GW: subgraph of G consisting of edges of weight < t
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@ M: weight of MST; connected = M > n—1

A relation between MST weight and #CCs

@ GW: subgraph of G consisting of edges of weight < t
(t): #CCs of G

—=M=n-W+3 " "c® [CRZO05]

—to (1 + ¢)-approx. M: suffices to approx. each c(*) with additive error W

The algorithm

@ for each t from 1 to W — 1, approx. #CCs of G*) to obtain &(t)
@ output M :=n— W+ 3 " 1 &(t)
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Questions:

© Lower bounds in random order streams

— our conjecture for approx. #CCs: exp(Q(1/¢)).

@ Anything between uniformly random ordering and worst-case ordering?
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