
Estimating Graph Parameters from Random
Order Streams

Pan Peng

University of Vienna, Austria =⇒ University of Sheffield, UK

Joint work with Christian Sohler (TU Dortmund, Germany)

0 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

1 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

Input: a sequence of edge insertions and/or deletions

Goal: using as small space as possible, analyze the structure of the
resulting graph.

1 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

Input: a sequence of edge insertions and/or deletions

Goal: using as small space as possible, analyze the structure of the
resulting graph.

ei ei−1ei+1

1 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

Input: a sequence of edge insertions and/or deletions

Goal: using as small space as possible, analyze the structure of the
resulting graph.

ei ei−1ei+1 ei−1

1 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

Input: a sequence of edge insertions and/or deletions

Goal: using as small space as possible, analyze the structure of the
resulting graph.

ei ei−1ei+1 ei−1

ei

1 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

Input: a sequence of edge insertions and/or deletions

Goal: using as small space as possible, analyze the structure of the
resulting graph.

ei ei−1ei+1 ei−1

ei

ei+1

1 / 15

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

Input: a sequence of edge insertions and/or deletions

Goal: using as small space as possible, analyze the structure of the
resulting graph.

ei ei−1ei+1 ei−1

ei

ei+1

* This work: insertion-only; single pass

1 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space

– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.

– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: adversarial order streams

Edges arrive in arbitrary order: (n := # vertices)

1 Ω(n) space for many basic problems:
– connectivity [HRR99], diameter, bipartiteness, planarity, etc.

2 semi-streaming model [FKMSZ05]: O(n · logO(1) n) space
– minimum spanning tree, maximal matching, connectivity, spectral/cut
sparsifier, etc.
– good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

– parameterize the problem;

– study special class of graphs (planar);

– relax the assumption that edges come in arbitrary order

2 / 15

Model: random order streams

Edges arrive in (uniformly) random order
– input stream is chosen u.a.r from the set of all possible permutations of edges

some problems can be solved using smaller space:
– matching (size) [KMM12,KKS14]
– bounded-degree graph property testing [MMPS17]

some problems still require large space:
– Ω(n) connectivity, Ω(n1+1/k) k-approx. for s, t-distance [CCM08]

In general, it is unclear if the random-order assumption leads to
more space-efficient algorithms

3 / 15

Model: random order streams

Edges arrive in (uniformly) random order
– input stream is chosen u.a.r from the set of all possible permutations of edges

some problems can be solved using smaller space:
– matching (size) [KMM12,KKS14]
– bounded-degree graph property testing [MMPS17]

some problems still require large space:
– Ω(n) connectivity, Ω(n1+1/k) k-approx. for s, t-distance [CCM08]

In general, it is unclear if the random-order assumption leads to
more space-efficient algorithms

3 / 15

Model: random order streams

Edges arrive in (uniformly) random order
– input stream is chosen u.a.r from the set of all possible permutations of edges

some problems can be solved using smaller space:
– matching (size) [KMM12,KKS14]
– bounded-degree graph property testing [MMPS17]

some problems still require large space:
– Ω(n) connectivity, Ω(n1+1/k) k-approx. for s, t-distance [CCM08]

In general, it is unclear if the random-order assumption leads to
more space-efficient algorithms

3 / 15

Model: random order streams

Edges arrive in (uniformly) random order
– input stream is chosen u.a.r from the set of all possible permutations of edges

some problems can be solved using smaller space:
– matching (size) [KMM12,KKS14]
– bounded-degree graph property testing [MMPS17]

some problems still require large space:
– Ω(n) connectivity, Ω(n1+1/k) k-approx. for s, t-distance [CCM08]

In general, it is unclear if the random-order assumption leads to
more space-efficient algorithms

3 / 15

Our result

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

4 / 15

Our result

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

⇓(
• query access to the adjacency list of the graph
• running time of the algorithm is constant, independent of n

)

4 / 15

Our result

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

New random order graph streaming algorithms

approx. problem graph class space
additive
εn

number of connected
components (CCs)

general
(

1
ε

)O(1
ε3)

(1 + ε)

weight of minimum
spanning tree (MST)

general connected;
edge weights {1, · · · ,W }

(
1
ε

)Õ(W 3

ε3)

size of maximum in-
dependent set (MIS)

planar/minor-free 2(
1
ε)(

1
ε)logO(1)(1

ε)

**with high constant probability

4 / 15

Our result

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

New random order graph streaming algorithms

approx. problem graph class space
additive
εn

number of connected
components (CCs)

general
(

1
ε

)O(1
ε3)

(1 + ε)

weight of minimum
spanning tree (MST)

general connected;
edge weights {1, · · · ,W }

(
1
ε

)Õ(W 3

ε3)

size of maximum in-
dependent set (MIS)

planar/minor-free 2(
1
ε)(

1
ε)logO(1)(1

ε)

**with high constant probability

Remark: Adversary order: Ω(n1−O(ε)) for the first two problems [HP16]

4 / 15

Our result

Further applications from our technique:

1 other constant-space random order streaming algorithms

(1 + ε), size of minimum dominating set, planar graphs
additive εn, size of maximum matching, bounded average graphs
...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

Π constant-time testable
(adjacency list model)

=⇒ Π constant-space testable
in random order streams

– here “test Π”: distinguish if a graph satisfies Π or is “far” from satisfying Π

5 / 15

Our result

Further applications from our technique:

1 other constant-space random order streaming algorithms

(1 + ε), size of minimum dominating set, planar graphs
additive εn, size of maximum matching, bounded average graphs
...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

Π constant-time testable
(adjacency list model)

=⇒ Π constant-space testable
in random order streams

– here “test Π”: distinguish if a graph satisfies Π or is “far” from satisfying Π

5 / 15

Our result

Further applications from our technique:

1 other constant-space random order streaming algorithms

(1 + ε), size of minimum dominating set, planar graphs
additive εn, size of maximum matching, bounded average graphs
...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

Π constant-time testable
(adjacency list model)

=⇒ Π constant-space testable
in random order streams

– here “test Π”: distinguish if a graph satisfies Π or is “far” from satisfying Π

5 / 15

Our result

Further applications from our technique:

1 other constant-space random order streaming algorithms

(1 + ε), size of minimum dominating set, planar graphs
additive εn, size of maximum matching, bounded average graphs
...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

Π constant-time testable
(adjacency list model)

=⇒ Π constant-space testable
in random order streams

– here “test Π”: distinguish if a graph satisfies Π or is “far” from satisfying Π

5 / 15

Our result

Further applications from our technique:

1 other constant-space random order streaming algorithms

(1 + ε), size of minimum dominating set, planar graphs
additive εn, size of maximum matching, bounded average graphs
...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

Π constant-time testable
(adjacency list model)

=⇒ Π constant-space testable
in random order streams

– here “test Π”: distinguish if a graph satisfies Π or is “far” from satisfying Π

5 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

generic framework for many constant-time algorithms

1 sample a set S of constant number of vertices

2 explore the constant-size neighborhood of each
v ∈ S (and ignore “high” degree vertices)

3 draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

with (small) constant probability to see the right exploration

challenge: to identify when the graph exploration behaves as in the original
graph and when it does not.

6 / 15

High-level idea

our technique for random order streams

(i) two phases of streaming:

perform graph exploration in the first phase

identify the right exploration in the second phase

7 / 15

High-level idea

our technique for random order streams

(i) two phases of streaming:

perform graph exploration in the first phase

identify the right exploration in the second phase

7 / 15

High-level idea

our technique for random order streams

(i) two phases of streaming:

perform graph exploration in the first phase

identify the right exploration in the second phase

first phase
exploration

7 / 15

High-level idea

our technique for random order streams

(i) two phases of streaming:

perform graph exploration in the first phase

identify the right exploration in the second phase

first phase
explorationidentification

second phase

7 / 15

High-level idea

our technique for random order streams

(i) two phases of streaming:

perform graph exploration in the first phase

identify the right exploration in the second phase

first phase
explorationidentification

second phase

(ii) use of conditional probabilities for the analysis

7 / 15

In the rest

Approximate #CCs
Approximate the weight of MST

not in this talk

Approximate the size of MIS in planar graphs and beyond

8 / 15

Approx. #CCs with an additive error εn

cck := #CCs of size k
– suffices to approx. cck with additive error ε2n, k 6 2/ε

Approx. cck in the adjacency list model [CRZ05, BKMT14]

1 sample a set S of vertices

2 for each v ∈ S , perform BFS(v)

if a CC of size k is detected, set
Xv = 1; o.w., Xv = 0

3 output ĉk := n
k ·

∑
v∈S Xv

|S |

9 / 15

Approx. #CCs with an additive error εn

cck := #CCs of size k
– suffices to approx. cck with additive error ε2n, k 6 2/ε

Approx. cck in the adjacency list model [CRZ05, BKMT14]

1 sample a set S of vertices

2 for each v ∈ S , perform BFS(v)

if a CC of size k is detected, set
Xv = 1; o.w., Xv = 0

3 output ĉk := n
k ·

∑
v∈S Xv

|S |

9 / 15

Approx. #CCs with an additive error εn

cck := #CCs of size k
– suffices to approx. cck with additive error ε2n, k 6 2/ε

Approx. cck in the adjacency list model [CRZ05, BKMT14]

1 sample a set S of vertices

2 for each v ∈ S , perform BFS(v)

if a CC of size k is detected, set
Xv = 1; o.w., Xv = 0

3 output ĉk := n
k ·

∑
v∈S Xv

|S |

9 / 15

Approx. #CCs with an additive error εn

cck := #CCs of size k
– suffices to approx. cck with additive error ε2n, k 6 2/ε

Approx. cck in the adjacency list model [CRZ05, BKMT14]

1 sample a set S of vertices

2 for each v ∈ S , perform BFS(v)

if a CC of size k is detected, set
Xv = 1; o.w., Xv = 0

3 output ĉk := n
k ·

∑
v∈S Xv

|S |

9 / 15

Approx. #CCs with an additive error εn

cck := #CCs of size k
– suffices to approx. cck with additive error ε2n, k 6 2/ε

Approx. cck in the adjacency list model [CRZ05, BKMT14]

Xu = 1

Xv = 0

Xw = 1

Xy = 0

k
k

> k

< k

1 sample a set S of vertices

2 for each v ∈ S , perform BFS(v)

if a CC of size k is detected, set
Xv = 1; o.w., Xv = 0

3 output ĉk := n
k ·

∑
v∈S Xv

|S |

9 / 15

Approx. #CCs with an additive error εn

cck := #CCs of size k
– suffices to approx. cck with additive error ε2n, k 6 2/ε

Approx. cck in the adjacency list model [CRZ05, BKMT14]

Xu = 1

Xv = 0

Xw = 1

Xy = 0

k
k

> k

< k

1 sample a set S of vertices

2 for each v ∈ S , perform BFS(v)

if a CC of size k is detected, set
Xv = 1; o.w., Xv = 0

3 output ĉk := n
k ·

∑
v∈S Xv

|S |

9 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

2

3

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

2

4

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

1

3

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

4

7

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

3

5

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

7

8

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

1

2

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

2

5

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

3

6

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

3

6

A property: if |Cv | = k, Pr[StreamBFS(v) = BFS(v)] = Ω(1)

A difficulty: if |Cu | = |Cv | = k, Pr[StreamBFS(u) = Cu] might be different
from Pr[StreamBFS(v) = Cv]

10 / 15

Perform BFS in random order streams

BFS(v) =⇒ StreamBFS(v)

StreamBFS(v)

– Initialize P := {v }. Sequentially add edges e (and vertices) to P if e connects
to the current collected subgraph.

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

3

6

A property: if |Cv | = k, Pr[StreamBFS(v) = BFS(v)] = Ω(1)

A difficulty: if |Cu | = |Cv | = k, Pr[StreamBFS(u) = Cu] might be different
from Pr[StreamBFS(v) = Cv]

10 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

From v , there is a unique CBFStree CTv of Cv

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

From v , there is a unique CBFStree CTv of Cv

StreamBFS(v) =⇒ StreamCanoBFS(v)

StreamCanoBFS(v)

– Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CTv

11 / 15

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

1

2

3

4

5

6

7

8

9

k

1

2

3

4

5

6

7

8

9

k

From v , there is a unique CBFStree CTv of Cv

StreamBFS(v) =⇒ StreamCanoBFS(v)

StreamCanoBFS(v)

– Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CTv

A property: if |Cu | = |Cv | = k :

Pr[StreamCanoBFS(u) = CTu] = Pr[StreamCanoBFS(v) = CTv]

11 / 15

Approx. cck in random order streams

Another difficulty: false positives

– divide the stream into two phases to rule out most “false positives”

The algorithm

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

e

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

e

First phase

jTvj = k

jTuj = k

jTwj = k

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

– v good: v ∈ S & |StreamCanoBFS(v) | = k.

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

e

Second phase

Xv = 1

Xu = 0

Xw = 0

Outgoing

Violating

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

– v good: v ∈ S & |StreamCanoBFS(v) | = k.

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

e

Second phase

Xv = 1

Xu = 0

Xw = 0

Outgoing

Violating

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

– v good: v ∈ S & |StreamCanoBFS(v) | = k.

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

12 / 15

Approx. cck in random order streams

Another difficulty: false positives
– divide the stream into two phases to rule out most “false positives”

The algorithm

e

Second phase

Xv = 1

Xu = 0

Xw = 0

Outgoing

Violating

1 sample a set S of vertices

2 first phase (i.e., first λm edges):

for each v ∈ S , perform a StreamCanoBFS

– v good: v ∈ S & |StreamCanoBFS(v) | = k.

3 second phase:

for each good v , check if StreamCanoBFS(v)
has an outgoing or “violating” edge

– If so, set Xv = 0; else set Xv = 1

4 output ĉk := n
k ·

1
γk
·
∑

v:good Xv

|S |

γk :=Pr[any set T of k − 1 edges appears in the lexico. order in the first phase]

12 / 15

The analysis

A simple but useful conditional probability

T ⊆ E , |T | = k − 1, e ∈ E \ T ;F := set of edges in the first phase:

Pr[e ∈ F |T ⊆ F] ∼ λ

=⇒ for any v with |Cv | > k: Pr[false positive]� γk

Our guarantee

if |Cv | < k, Pr[Xv = 1] = 0

if |Cv | = k, Pr[Xv = 1] ∼ γk

if |Cv | > k, Pr[Xv = 1]� γk

=⇒ E[ĉk] ∼ cck

13 / 15

The analysis

A simple but useful conditional probability

T ⊆ E , |T | = k − 1, e ∈ E \ T ;F := set of edges in the first phase:

Pr[e ∈ F |T ⊆ F] ∼ λ

=⇒ for any v with |Cv | > k: Pr[false positive]� γk

Our guarantee

if |Cv | < k, Pr[Xv = 1] = 0

if |Cv | = k, Pr[Xv = 1] ∼ γk

if |Cv | > k, Pr[Xv = 1]� γk

=⇒ E[ĉk] ∼ cck

13 / 15

The analysis

A simple but useful conditional probability

T ⊆ E , |T | = k − 1, e ∈ E \ T ;F := set of edges in the first phase:

Pr[e ∈ F |T ⊆ F] ∼ λ

=⇒ for any v with |Cv | > k: Pr[false positive]� γk

Our guarantee

if |Cv | < k, Pr[Xv = 1] = 0

if |Cv | = k, Pr[Xv = 1] ∼ γk

if |Cv | > k, Pr[Xv = 1]� γk

=⇒ E[ĉk] ∼ cck

13 / 15

The analysis

A simple but useful conditional probability

T ⊆ E , |T | = k − 1, e ∈ E \ T ;F := set of edges in the first phase:

Pr[e ∈ F |T ⊆ F] ∼ λ

=⇒ for any v with |Cv | > k: Pr[false positive]� γk

Our guarantee

if |Cv | < k, Pr[Xv = 1] = 0

if |Cv | = k, Pr[Xv = 1] ∼ γk

if |Cv | > k, Pr[Xv = 1]� γk

=⇒ E[ĉk] ∼ cck

13 / 15

The analysis

A simple but useful conditional probability

T ⊆ E , |T | = k − 1, e ∈ E \ T ;F := set of edges in the first phase:

Pr[e ∈ F |T ⊆ F] ∼ λ

=⇒ for any v with |Cv | > k: Pr[false positive]� γk

Our guarantee

if |Cv | < k, Pr[Xv = 1] = 0

if |Cv | = k, Pr[Xv = 1] ∼ γk

if |Cv | > k, Pr[Xv = 1]� γk

=⇒ E[ĉk] ∼ cck

13 / 15

The analysis

A simple but useful conditional probability

T ⊆ E , |T | = k − 1, e ∈ E \ T ;F := set of edges in the first phase:

Pr[e ∈ F |T ⊆ F] ∼ λ

=⇒ for any v with |Cv | > k: Pr[false positive]� γk

Our guarantee

if |Cv | < k, Pr[Xv = 1] = 0

if |Cv | = k, Pr[Xv = 1] ∼ γk

if |Cv | > k, Pr[Xv = 1]� γk

=⇒ E[ĉk] ∼ cck

13 / 15

(1+ ε)-approx. the weight of MST

Input: connected G , edge weights ∈ {1, · · · ,W }

M: weight of MST;

connected =⇒M > n − 1

A relation between MST weight and #CCs

G (t): subgraph of G consisting of edges of weight 6 t

c(t): #CCs of G (t)

=⇒M = n −W +
∑W−1

t=1 c(t) [CRZ05]

– to (1 + ε)-approx. M: suffices to approx. each c(t) with additive error εn
4W

The algorithm

1 for each t from 1 to W − 1, approx. #CCs of G (t) to obtain ĉ(t)

2 output M̂ := n −W +
∑W−1

t=1 ĉ(t)

14 / 15

(1+ ε)-approx. the weight of MST

Input: connected G , edge weights ∈ {1, · · · ,W }

M: weight of MST; connected =⇒M > n − 1

A relation between MST weight and #CCs

G (t): subgraph of G consisting of edges of weight 6 t

c(t): #CCs of G (t)

=⇒M = n −W +
∑W−1

t=1 c(t) [CRZ05]

– to (1 + ε)-approx. M: suffices to approx. each c(t) with additive error εn
4W

The algorithm

1 for each t from 1 to W − 1, approx. #CCs of G (t) to obtain ĉ(t)

2 output M̂ := n −W +
∑W−1

t=1 ĉ(t)

14 / 15

(1+ ε)-approx. the weight of MST

Input: connected G , edge weights ∈ {1, · · · ,W }

M: weight of MST; connected =⇒M > n − 1

A relation between MST weight and #CCs

G (t): subgraph of G consisting of edges of weight 6 t

c(t): #CCs of G (t)

=⇒M = n −W +
∑W−1

t=1 c(t) [CRZ05]

– to (1 + ε)-approx. M: suffices to approx. each c(t) with additive error εn
4W

The algorithm

1 for each t from 1 to W − 1, approx. #CCs of G (t) to obtain ĉ(t)

2 output M̂ := n −W +
∑W−1

t=1 ĉ(t)

14 / 15

(1+ ε)-approx. the weight of MST

Input: connected G , edge weights ∈ {1, · · · ,W }

M: weight of MST; connected =⇒M > n − 1

A relation between MST weight and #CCs

G (t): subgraph of G consisting of edges of weight 6 t

c(t): #CCs of G (t)

=⇒M = n −W +
∑W−1

t=1 c(t) [CRZ05]

– to (1 + ε)-approx. M: suffices to approx. each c(t) with additive error εn
4W

The algorithm

1 for each t from 1 to W − 1, approx. #CCs of G (t) to obtain ĉ(t)

2 output M̂ := n −W +
∑W−1

t=1 ĉ(t)

14 / 15

(1+ ε)-approx. the weight of MST

Input: connected G , edge weights ∈ {1, · · · ,W }

M: weight of MST; connected =⇒M > n − 1

A relation between MST weight and #CCs

G (t): subgraph of G consisting of edges of weight 6 t

c(t): #CCs of G (t)

=⇒M = n −W +
∑W−1

t=1 c(t) [CRZ05]

– to (1 + ε)-approx. M: suffices to approx. each c(t) with additive error εn
4W

The algorithm

1 for each t from 1 to W − 1, approx. #CCs of G (t) to obtain ĉ(t)

2 output M̂ := n −W +
∑W−1

t=1 ĉ(t)

14 / 15

(1+ ε)-approx. the weight of MST

Input: connected G , edge weights ∈ {1, · · · ,W }

M: weight of MST; connected =⇒M > n − 1

A relation between MST weight and #CCs

G (t): subgraph of G consisting of edges of weight 6 t

c(t): #CCs of G (t)

=⇒M = n −W +
∑W−1

t=1 c(t) [CRZ05]

– to (1 + ε)-approx. M: suffices to approx. each c(t) with additive error εn
4W

The algorithm

1 for each t from 1 to W − 1, approx. #CCs of G (t) to obtain ĉ(t)

2 output M̂ := n −W +
∑W−1

t=1 ĉ(t)

14 / 15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

Questions:

1 Lower bounds in random order streams

– our conjecture for approx. #CCs: exp(Ω(1/ε)).

2 Anything between uniformly random ordering and worst-case ordering?

Thanks!

15 / 15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

Questions:

1 Lower bounds in random order streams

– our conjecture for approx. #CCs: exp(Ω(1/ε)).

2 Anything between uniformly random ordering and worst-case ordering?

Thanks!

15 / 15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

Questions:

1 Lower bounds in random order streams

– our conjecture for approx. #CCs: exp(Ω(1/ε)).

2 Anything between uniformly random ordering and worst-case ordering?

Thanks!

15 / 15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

Questions:

1 Lower bounds in random order streams

– our conjecture for approx. #CCs: exp(Ω(1/ε)).

2 Anything between uniformly random ordering and worst-case ordering?

Thanks!

15 / 15

Conclusions and open problems

Summary:

A new algorithmic technique:

some constant-time
approximation algorithms

(adjacency list model)
=⇒ constant-space random

order streaming algorithms

Questions:

1 Lower bounds in random order streams

– our conjecture for approx. #CCs: exp(Ω(1/ε)).

2 Anything between uniformly random ordering and worst-case ordering?

Thanks!

15 / 15

	Introduction

