Estimating Graph Parameters from Random Order Streams

Pan Peng

University of Vienna, Austria \implies University of Sheffield, UK

Joint work with Christian Sohler (TU Dortmund, Germany)

To analyze the structure of massive and dynamic networks/graphs

To analyze the structure of massive and dynamic networks/graphs

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

To analyze the structure of massive and dynamic networks/graphs

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

To analyze the structure of massive and dynamic networks/graphs

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

To analyze the structure of massive and dynamic networks/graphs

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

To analyze the structure of massive and dynamic networks/graphs

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

* This work: insertion-only; single pass

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

• $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.

```
Edges arrive in arbitrary order:
```

$$(n := \# \text{ vertices})$$

() $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- **2** semi-streaming model [FKMSZ05]: $O(n \cdot \log^{O(1)} n)$ space

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
 - good for dense graphs, while trivial for sparse graphs

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
 - good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
 - good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
 - good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

parameterize the problem;

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
 - good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

- parameterize the problem;
- study special class of graphs (planar);

Edges arrive in arbitrary order:

$$(n := \# \text{ vertices})$$

- $\Omega(n)$ space for many basic problems:
 - connectivity [HRR99], diameter, bipartiteness, planarity, etc.
- semi-streaming model [FKMSZ05]: O(n · log^{O(1)} n) space
 minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
 - good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

- parameterize the problem;
- study special class of graphs (planar);
- relax the assumption that edges come in arbitrary order

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges

- some problems can be solved using smaller space:
 - matching (size) [KMM12,KKS14]
 - bounded-degree graph property testing [MMPS17]

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges

- some problems can be solved using smaller space:
 - matching (size) [KMM12,KKS14]
 - bounded-degree graph property testing [MMPS17]
- some problems still require large space:
 - $\Omega(n)$ connectivity, $\Omega(n^{1+1/k})$ k-approx. for s, t-distance [CCM08]

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges

- some problems can be solved using smaller space:
 - matching (size) [KMM12,KKS14]
 - bounded-degree graph property testing [MMPS17]
- some problems still require large space:
 - $\Omega(n)$ connectivity, $\Omega(n^{1+1/k})$ k-approx. for s, t-distance [CCM08]

In general, it is unclear if the random-order assumption leads to more space-efficient algorithms

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

1

query access to the adjacency list of the graph
running time of the algorithm is constant, independent of *n*

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

New random order graph streaming algorithms

approx.	problem	graph class	space
additive	number of connected	gonoral	$(1) O(\frac{1}{3})$
εn	components (CCs)	general	$\left(\frac{1}{\varepsilon}\right)^{-1} \varepsilon^{3}$
	weight of minimum	general connected;	$(1) \tilde{O}(\frac{W^3}{2})$
$(1 + \varepsilon)$	spanning tree (MST)	edge weights {1, · · · , w}	$\left(\frac{1}{\varepsilon}\right) \sim \varepsilon^{3}$
	size of maximum in-	planar/minor frog	$(1, (\frac{1}{\epsilon})^{\log O(1)}(\frac{1}{\epsilon})$
	dependent set (MIS)	planar/minor-nee	2(=) * * /

**with high constant probability

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

New random order graph streaming algorithms

approx.	problem	graph class	space
additive	number of connected	general	$(1) O(\frac{1}{3})$
ε n	components (CCs)		$\left(\frac{1}{\varepsilon}\right)^{-1} \varepsilon^{3}$
	weight of minimum	general connected;	$(1) \tilde{O}(\frac{W^3}{2})$
$(1 + \varepsilon)$	spanning tree (MST)	edge weights {1, · · · , W}	$\left(\frac{1}{\varepsilon}\right) = \frac{\varepsilon^{3}}{\varepsilon^{3}}$
	size of maximum in-	planar/minor frog	$(1, (\frac{1}{\epsilon})^{\log O(1)}(\frac{1}{\epsilon})$
	dependent set (MIS)	planar/mmor-free	2(を)) ど

**with high constant probability

Remark: Adversary order: $\Omega(n^{1-O(\varepsilon)})$ for the first two problems [HP16]

Further applications from our technique:

Further applications from our technique:

Other constant-space random order streaming algorithms

Further applications from our technique:

Other constant-space random order streaming algorithms

- $(1+\epsilon)$, size of minimum dominating set, planar graphs
- additive εn , size of maximum matching, bounded average graphs
- ...

Further applications from our technique:

Other constant-space random order streaming algorithms

- $(1+\epsilon)$, size of minimum dominating set, planar graphs
- additive εn , size of maximum matching, bounded average graphs

• ...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

□ constant-time testable (adjacency list model) Π constant-space testable in random order streams

Further applications from our technique:

Other constant-space random order streaming algorithms

- $(1+\epsilon)$, size of minimum dominating set, planar graphs
- additive εn , size of maximum matching, bounded average graphs

• ...

2 can be used to derive the following:

[MMPS17] For graphs with bounded maximum degree, property Π

□ constant-time testable (adjacency list model) Π constant-space testable in random order streams

– here "test Π ": distinguish if a graph satisfies Π or is "far" from satisfying Π

generic framework for many constant-time algorithms

generic framework for many constant-time algorithms

① sample a set S of constant number of vertices

generic framework for many constant-time algorithms

- **1** sample a set *S* of constant number of vertices
- explore the constant-size neighborhood of each v ∈ S (and ignore "high" degree vertices)

generic framework for many constant-time algorithms

- **1** sample a set *S* of constant number of vertices
- explore the constant-size neighborhood of each $v \in S$ (and ignore "high" degree vertices)
- 3 draw conclusions from the explored subgraphs

generic framework for many constant-time algorithms

- sample a set S of constant number of vertices
- explore the constant-size neighborhood of each v ∈ S (and ignore "high" degree vertices)
- **③** draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

generic framework for many constant-time algorithms

- **(**) sample a set S of constant number of vertices
- explore the constant-size neighborhood of each v ∈ S (and ignore "high" degree vertices)
- I draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

• with (small) constant probability to see the right exploration
generic framework for many constant-time algorithms

- sample a set S of constant number of vertices
- explore the constant-size neighborhood of each v ∈ S (and ignore "high" degree vertices)
- I draw conclusions from the explored subgraphs

graph exploration: difficult for adversarial order streams

For random order streams:

- with (small) constant probability to see the right exploration
- challenge: to identify when the graph exploration behaves as in the original graph and when it does not.

our technique for random order streams

our technique for random order streams

(i) two phases of streaming:

our technique for random order streams

- (i) two phases of streaming:
- perform graph exploration in the first phase

our technique for random order streams

- (i) two phases of streaming:
- perform graph exploration in the first phase
- identify the right exploration in the second phase

our technique for random order streams

- (i) two phases of streaming:
- perform graph exploration in the first phase
- identify the right exploration in the second phase

(ii) use of conditional probabilities for the analysis

In the rest

- Approximate #CCs
- Approximate the weight of MST

not in this talk

• Approximate the size of MIS in planar graphs and beyond

 $\mathrm{cc}_k := \#\mathsf{CCs} \text{ of size } k$

- suffices to approx. cc_k with additive error $\varepsilon^2 n$, $k \leq 2/\varepsilon$

```
\mathrm{cc}_k := \#\mathsf{CCs} \text{ of size } k
```

– suffices to approx. cc_k with additive error $\varepsilon^2 n, \ k \leqslant 2/\varepsilon$

Approx. cc_k in the adjacency list model [CRZ05, BKMT14]

 $\mathrm{cc}_k := \#\mathsf{CCs} \text{ of size } k$

– suffices to approx. cc_k with additive error $\varepsilon^2 n, \ k \leqslant 2/\varepsilon$

Approx. cc_k in the adjacency list model [CRZ05, BKMT14]

sample a set S of vertices

 $cc_k := \#CCs \text{ of size } k$

– suffices to approx. cc_k with additive error $\varepsilon^2 n, \ k \leqslant 2/\varepsilon$

Approx. cc_k in the adjacency list model [CRZ05, BKMT14]

① sample a set S of vertices

2 for each $v \in S$, perform BFS(v)

$cc_k := \#CCs \text{ of size } k$

– suffices to approx. cc_k with additive error $\varepsilon^2 n, \ k \leqslant 2/\varepsilon$

Approx. cc_k in the adjacency list model [CRZ05, BKMT14]

- sample a set S of vertices
- 2 for each $v \in S$, perform BFS(v)
 - if a CC of size k is detected, set $X_v = 1$; o.w., $X_v = 0$

$cc_k := \#CCs \text{ of size } k$

– suffices to approx. cc_k with additive error $\varepsilon^2 n, \ k \leqslant 2/\varepsilon$

Approx. cc_k in the adjacency list model [CRZ05, BKMT14]

sample a set S of vertices

2) for each
$$v \in S$$
, perform $\mathsf{BFS}(v)$

• if a CC of size k is detected, set $X_v = 1$; o.w., $X_v = 0$

3 output
$$\hat{c}_k := \frac{n}{k} \cdot \frac{\sum_{v \in S} X_v}{|S|}$$

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 Initialize P := {v}. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

9

k

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 Initialize P := {v}. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

A property: if $|C_v| = k$, $Pr[StreamBFS(v) = BFS(v)] = \Omega(1)$

 $\mathsf{BFS}(v) \Longrightarrow \mathsf{StreamBFS}(v)$

StreamBFS(v)

 Initialize P := {v}. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

A property: if $|C_v| = k$, $\Pr[\text{StreamBFS}(v) = \text{BFS}(v)] = \Omega(1)$

A difficulty: if $|C_u| = |C_v| = k$, $Pr[StreamBFS(u) = C_u]$ might be different from $Pr[StreamBFS(v) = C_v]$

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT_v of C_v

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT_v of C_v

 $\mathsf{StreamBFS}(v) \Longrightarrow \mathsf{StreamCanoBFS}(v)$

StreamCanoBFS(v)

- Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CT_v

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree CT_v of C_v

 $\mathsf{StreamBFS}(v) \Longrightarrow \mathsf{StreamCanoBFS}(v)$

StreamCanoBFS(v)

- Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect CT_v

A property: if $|C_u| = |C_v| = k$: Pr[StreamCanoBFS(u) = CT_u] = Pr[StreamCanoBFS(v) = CT_v]

Another difficulty: false positives

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

- (1) sample a set S of vertices
- 2 first phase (i.e., first λm edges):
 - for each $v \in S$, perform a StreamCanoBFS

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

- (1) sample a set S of vertices
- **2** first phase (i.e., first λm edges):
 - for each $v \in S$, perform a StreamCanoBFS

-
$$v \text{ good}$$
: $v \in S \& |\text{StreamCanoBFS}(v)| = k$.

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm

- (1) sample a set S of vertices
- **2** first phase (i.e., first λm edges):
 - for each $v \in S$, perform a StreamCanoBFS

- v good: $v \in S \& |\text{StreamCanoBFS}(v)| = k$.

second phase:

for each good ν , check if StreamCanoBFS(ν) has an outgoing or "violating" edge

- If so, set $X_v = 0$; else set $X_v = 1$

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm

- (1) sample a set S of vertices
- **2** first phase (i.e., first λm edges):
 - for each $v \in S$, perform a StreamCanoBFS
 - v good: $v \in S$ & |StreamCanoBFS(v) | = k.

second phase:

for each good v, check if StreamCanoBFS(v) has an outgoing or "violating" edge – If so, set $X_v = 0$; else set $X_v = 1$

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm

- \bigcirc sample a set *S* of vertices
- 2 first phase (i.e., first λm edges):
 - for each $v \in S$, perform a StreamCanoBFS

- v good: $v \in S$ & |StreamCanoBFS(v) | = k.

for each good v, check if StreamCanoBFS(v) has an outgoing or "violating" edge - If so, set $X_{\nu} = 0$; else set $X_{\nu} = 1$

• output $\hat{c}_k := \frac{n}{k} \cdot \frac{1}{2^{i}} \cdot \frac{\sum_{v:\text{good}} X_v}{|S|}$

 $\gamma_k := \Pr[\text{any set } T \text{ of } k - 1 \text{ edges appears in the lexico. order in the first phase}]$

A simple but useful conditional probability

 $T \subseteq E, |T| = k - 1, e \in E \setminus T; F :=$ set of edges in the first phase: $Pr[e \in F|T \subseteq F] \sim \lambda$

A simple but useful conditional probability

 $T \subseteq E, |T| = k - 1, e \in E \setminus T; F :=$ set of edges in the first phase: $Pr[e \in F|T \subseteq F] \sim \lambda$

 \implies for any v with $|C_v| \ge k$: $\Pr[false positive] \ll \gamma_k$

A simple but useful conditional probability

 $T \subseteq E, |T| = k - 1, e \in E \setminus T; F :=$ set of edges in the first phase: $Pr[e \in F|T \subseteq F] \sim \lambda$

 \implies for any v with $|C_v| \ge k$: $\Pr[false positive] \ll \gamma_k$

Our guarantee

• if $|C_v| < k$, $\Pr[X_v = 1] = 0$

A simple but useful conditional probability

 $T \subseteq E$, |T| = k - 1, $e \in E \setminus T$; F := set of edges in the first phase: $\Pr[e \in F | T \subseteq F] \sim \lambda$

 \implies for any v with $|C_v| \ge k$: $\Pr[false positive] \ll \gamma_k$

Our guarantee

- if $|C_v| < k$, $\Pr[X_v = 1] = 0$
- if $|C_v| = k$, $\Pr[X_v = 1] \sim \gamma_k$

A simple but useful conditional probability

 $T \subseteq E$, |T| = k - 1, $e \in E \setminus T$; F := set of edges in the first phase: $\Pr[e \in F | T \subseteq F] \sim \lambda$

 \implies for any v with $|C_v| \ge k$: $\Pr[false positive] \ll \gamma_k$

Our guarantee

- if $|C_v| < k$, $\Pr[X_v = 1] = 0$
- if $|C_v| = k$, $\Pr[X_v = 1] \sim \gamma_k$
- if $|C_v| > k$, $\Pr[X_v = 1] \ll \gamma_k$

A simple but useful conditional probability

 $T \subseteq E$, |T| = k - 1, $e \in E \setminus T$; F := set of edges in the first phase: $\Pr[e \in F | T \subseteq F] \sim \lambda$

 \implies for any v with $|C_v| \ge k$: $\Pr[false positive] \ll \gamma_k$

Our guarantee

- if $|C_v| < k$, $\Pr[X_v = 1] = 0$
- if $|C_v| = k$, $\Pr[X_v = 1] \sim \gamma_k$
- if $|C_v| > k$, $\Pr[X_v = 1] \ll \gamma_k$

 $\Longrightarrow \operatorname{E}[\hat{c}_k] \sim \operatorname{cc}_k$

$(1+\epsilon)\text{-approx.}$ the weight of MST

Input: connected G, edge weights $\in \{1, \dots, W\}$

• M: weight of MST;

Input: connected G, edge weights $\in \{1, \dots, W\}$

• *M*: weight of MST; connected $\implies M \ge n-1$

Input: connected G, edge weights $\in \{1, \cdots, W\}$

• *M*: weight of MST; connected $\implies M \ge n-1$

A relation between MST weight and #CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leq t$
- $c^{(t)}$: #CCs of $G^{(t)}$

Input: connected G, edge weights $\in \{1, \dots, W\}$

• *M*: weight of MST; connected $\implies M \ge n-1$

A relation between MST weight and #CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leq t$
- $c^{(t)}$: #CCs of $G^{(t)}$

 $\implies M = n - W + \sum_{t=1}^{W-1} c^{(t)}$ [CRZ05]

Input: connected G, edge weights $\in \{1, \dots, W\}$

• *M*: weight of MST; connected $\implies M \ge n-1$

A relation between MST weight and #CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leq t$
- $c^{(t)}$: #CCs of $G^{(t)}$

 $\implies M = n - W + \sum_{t=1}^{W-1} c^{(t)}$ [CRZ05]

- to $(1 + \varepsilon)$ -approx. *M*: suffices to approx. each $c^{(t)}$ with additive error $\frac{\varepsilon n}{4W}$

Input: connected G, edge weights $\in \{1, \dots, W\}$

• *M*: weight of MST; connected $\implies M \ge n-1$

A relation between MST weight and #CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leq t$
- $c^{(t)}$: #CCs of $G^{(t)}$

 $\implies M = n - W + \sum_{t=1}^{W-1} c^{(t)}$ [CRZ05]

- to $(1 + \varepsilon)$ -approx. *M*: suffices to approx. each $c^{(t)}$ with additive error $\frac{\varepsilon n}{4W}$

- **1** for each t from 1 to W-1, approx. #CCs of $G^{(t)}$ to obtain $\hat{c}(t)$
- 2 output $\hat{M} := n W + \sum_{t=1}^{W-1} \hat{c}(t)$

Summary:

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

Summary:

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

Questions:

Summary:

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

Questions:

- Lower bounds in random order streams
 - our conjecture for approx. $\#CCs: \exp(\Omega(1/\epsilon))$.

Summary:

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

Questions:

- Lower bounds in random order streams
 - our conjecture for approx. $\#CCs: \exp(\Omega(1/\epsilon))$.
- Anything between uniformly random ordering and worst-case ordering?

Summary:

A new algorithmic technique:

some constant-time approximation algorithms (adjacency list model)

constant-space random order streaming algorithms

Questions:

- Lower bounds in random order streams
 - our conjecture for approx. $\#CCs: \exp(\Omega(1/\epsilon))$.
- Anything between uniformly random ordering and worst-case ordering?

Thanks!