Estimating Graph Parameters from Random Order Streams

Pan Peng
University of Vienna, Austria \Longrightarrow University of Sheffield, UK
Joint work with Christian Sohler (TU Dortmund, Germany)

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

Graph streams

To analyze the structure of massive and dynamic networks/graphs

Graph streaming algorithms

- Input: a sequence of edge insertions and/or deletions
- Goal: using as small space as possible, analyze the structure of the resulting graph.

* This work: insertion-only; single pass

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices })
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space - minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space
- minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
- good for dense graphs, while trivial for sparse graphs

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space
- minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
- good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space
- minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
- good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!
Some solutions for sparse graphs

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space
- minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
- good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

- parameterize the problem;

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZ05]: $O\left(n \cdot \log ^{O(1)} n\right)$ space
- minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
- good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

- parameterize the problem;
- study special class of graphs (planar);

Model: adversarial order streams

Edges arrive in arbitrary order:

$$
\text { (} n:=\# \text { vertices) }
$$

(1) $\Omega(n)$ space for many basic problems:

- connectivity [HRR99], diameter, bipartiteness, planarity, etc.
(2) semi-streaming model [FKMSZO5]: $O\left(n \cdot \log ^{O(1)} n\right)$ space
- minimum spanning tree, maximal matching, connectivity, spectral/cut sparsifier, etc.
- good for dense graphs, while trivial for sparse graphs

However: most real networks are sparse!

Some solutions for sparse graphs

- parameterize the problem;
- study special class of graphs (planar);
- relax the assumption that edges come in arbitrary order

Model: random order streams

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges

Model: random order streams

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges
- some problems can be solved using smaller space:
- matching (size) [KMM12,KKS14]
- bounded-degree graph property testing [MMPS17]

Model: random order streams

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges
- some problems can be solved using smaller space:
- matching (size) [KMM12,KKS14]
- bounded-degree graph property testing [MMPS17]
- some problems still require large space:
$-\Omega(n)$ connectivity, $\Omega\left(n^{1+1 / k}\right) k$-approx. for s, t-distance [CCM08]

Model: random order streams

Edges arrive in (uniformly) random order

- input stream is chosen u.a.r from the set of all possible permutations of edges
- some problems can be solved using smaller space:
- matching (size) [KMM12,KKS14]
- bounded-degree graph property testing [MMPS17]
- some problems still require large space:
$-\Omega(n)$ connectivity, $\Omega\left(n^{1+1 / k}\right) k$-approx. for s, t-distance [CCM08]

In general, it is unclear if the random-order assumption leads to more space-efficient algorithms

Our result

A new algorithmic technique:

Our result

A new algorithmic technique:

(- query access to the adjacency list of the graph

- running time of the algorithm is constant, independent of n)

Our result

A new algorithmic technique:

New random order graph streaming algorithms

approx.	problem	graph class	space
additive εn	number of connected components (CCs)	general	$\left(\frac{1}{\varepsilon}\right)^{O\left(\frac{1}{\varepsilon^{3}}\right)}$
$(1+\varepsilon)$	weight of minimum spanning tree (MST)	general connected; edge weights $\{1, \cdots, W\}$	$\left(\frac{1}{\varepsilon}\right)^{\tilde{O}\left(\frac{W^{3}}{\varepsilon^{3}}\right)}$
	size of maximum in- dependent set (MIS)	planar/minor-free	$2^{\left(\frac{1}{\varepsilon}\right)^{\left(\frac{1}{\varepsilon}\right)^{\log O(1)}\left(\frac{1}{\varepsilon}\right)}}$

[^0]
Our result

A new algorithmic technique:
some constant-time approximation algorithms (adjacency list model)

> constant-space random order streaming algorithms

New random order graph streaming algorithms

approx.	problem	graph class	space
additive εn	number of connected components (CCs)	general	$\left(\frac{1}{\varepsilon}\right)^{O\left(\frac{1}{\varepsilon^{3}}\right)}$
$(1+\varepsilon)$	weight of minimum spanning tree (MST)	general connected; edge weights $\{1, \cdots, W\}$	$\left(\frac{1}{\varepsilon}\right)^{\tilde{O}\left(\frac{W^{3}}{\varepsilon^{3}}\right)}$
	size of maximum in- dependent set (MIS)	planar/minor-free	$2^{\left(\frac{1}{\varepsilon}\right)^{\left(\frac{1}{\varepsilon}\right)^{\log O(1)}\left(\frac{1}{\varepsilon}\right)}}$

[^1]Remark: Adversary order: $\Omega\left(n^{1-O(\varepsilon)}\right)$ for the first two problems [HP16]

Our result

Further applications from our technique:

Our result

Further applications from our technique:
(1) other constant-space random order streaming algorithms

Our result

Further applications from our technique:
(1) other constant-space random order streaming algorithms

- $(1+\varepsilon)$, size of minimum dominating set, planar graphs
- additive εn, size of maximum matching, bounded average graphs
- ...

Our result

Further applications from our technique:
(1) other constant-space random order streaming algorithms

- $(1+\varepsilon)$, size of minimum dominating set, planar graphs
- additive εn, size of maximum matching, bounded average graphs
- ...
(2) can be used to derive the following:
[MMPS17] For graphs with bounded maximum degree, property Π

$$
\begin{gathered}
\Pi \text { constant-time testable } \\
\text { (adjacency list model) }
\end{gathered} \Longrightarrow \Longrightarrow \begin{array}{|}
\begin{array}{c}
\Pi \text { constant-space testable } \\
\text { in random order streams }
\end{array} \\
\hline
\end{array}
$$

Our result

Further applications from our technique:
(1) other constant-space random order streaming algorithms

- $(1+\varepsilon)$, size of minimum dominating set, planar graphs
- additive εn, size of maximum matching, bounded average graphs
- ...
(2) can be used to derive the following:
[MMPS17] For graphs with bounded maximum degree, property Π

$$
\begin{gathered}
\Pi \text { constant-time testable } \\
(\text { adjacency list model) }
\end{gathered} \Longrightarrow \Longrightarrow \begin{gathered}
\Pi \text { constant-space testable } \\
\text { in random order streams }
\end{gathered}
$$

- here "test Π ": distinguish if a graph satisfies Π or is "far" from satisfying Π

High-level idea

generic framework for many constant-time algorithms

High-level idea

generic framework for many constant-time algorithms

(1) sample a set S of constant number of vertices

High-level idea

generic framework for many constant-time algorithms

(1) sample a set S of constant number of vertices
(2) explore the constant-size neighborhood of each $v \in S$ (and ignore "high" degree vertices)

High-level idea

generic framework for many constant-time algorithms

(1) sample a set S of constant number of vertices
(2) explore the constant-size neighborhood of each $v \in S$ (and ignore "high" degree vertices)
(3) draw conclusions from the explored subgraphs

High-level idea

generic framework for many constant-time algorithms

(1) sample a set S of constant number of vertices
(2) explore the constant-size neighborhood of each $v \in S$ (and ignore "high" degree vertices)
(3) draw conclusions from the explored subgraphs
graph exploration: difficult for adversarial order streams

High-level idea

generic framework for many constant-time algorithms

(1) sample a set S of constant number of vertices
(2) explore the constant-size neighborhood of each $v \in S$ (and ignore "high" degree vertices)
(3) draw conclusions from the explored subgraphs
graph exploration: difficult for adversarial order streams

For random order streams:

- with (small) constant probability to see the right exploration

High-level idea

generic framework for many constant-time algorithms

(1) sample a set S of constant number of vertices
(2) explore the constant-size neighborhood of each $v \in S$ (and ignore "high" degree vertices)
(3) draw conclusions from the explored subgraphs
graph exploration: difficult for adversarial order streams
For random order streams:

- with (small) constant probability to see the right exploration
- challenge: to identify when the graph exploration behaves as in the original graph and when it does not.

High-level idea

our technique for random order streams

High-level idea

our technique for random order streams
(i) two phases of streaming:

High-level idea

our technique for random order streams
(i) two phases of streaming:

- perform graph exploration in the first phase

High-level idea

our technique for random order streams
(i) two phases of streaming:

- perform graph exploration in the first phase
- identify the right exploration in the second phase

High-level idea

our technique for random order streams
(i) two phases of streaming:

- perform graph exploration in the first phase
- identify the right exploration in the second phase

(ii) use of conditional probabilities for the analysis

In the rest

- Approximate \#CCs
- Approximate the weight of MST
not in this talk
- Approximate the size of MIS in planar graphs and beyond

Approx. \#CCs with an additive error εn

$\mathrm{cc}_{k}:=\#$ CCs of size k

- suffices to approx. cc ${ }_{k}$ with additive error $\varepsilon^{2} n, k \leqslant 2 / \varepsilon$

Approx. \#CCs with an additive error εn

$\mathrm{cc}_{k}:=\#$ CCs of size k

- suffices to approx. cc ${ }_{k}$ with additive error $\varepsilon^{2} n, k \leqslant 2 / \varepsilon$

Approx. cc_{k} in the adjacency list model [CRZ05, BKMT14]

Approx. \#CCs with an additive error εn

$\mathrm{cc}_{k}:=\#$ CCs of size k

- suffices to approx. cc ${ }_{k}$ with additive error $\varepsilon^{2} n, k \leqslant 2 / \varepsilon$

Approx. cc_{k} in the adjacency list model [CRZ05, BKMT14]
(1) sample a set S of vertices

Approx. \#CCs with an additive error εn

cc $_{k}:=\# C C s$ of size k

- suffices to approx. cc ${ }_{k}$ with additive error $\varepsilon^{2} n, k \leqslant 2 / \varepsilon$

Approx. cc_{k} in the adjacency list model [CRZ05, BKMT14]
(1) sample a set S of vertices

(2) for each $v \in S$, perform $\operatorname{BFS}(v)$

Approx. \#CCs with an additive error εn

cc $_{k}:=\# C C s$ of size k

- suffices to approx. cc ${ }_{k}$ with additive error $\varepsilon^{2} n, k \leqslant 2 / \varepsilon$

Approx. cc_{k} in the adjacency list model [CRZ05, BKMT14]
(1) sample a set S of vertices

(2) for each $v \in S$, perform $\operatorname{BFS}(v)$

- if a CC of size k is detected, set $X_{v}=1 ;$ o.w., $X_{v}=0$

Approx. \#CCs with an additive error εn

cc $_{k}:=\# C C s$ of size k

- suffices to approx. cc ${ }_{k}$ with additive error $\varepsilon^{2} n, k \leqslant 2 / \varepsilon$

Approx. cc_{k} in the adjacency list model [CRZ05, BKMT14]
(1) sample a set S of vertices

(2) for each $v \in S$, perform $\operatorname{BFS}(v)$

- if a CC of size k is detected, set $X_{v}=1 ;$ o.w., $X_{v}=0$
(3) output $\hat{c}_{k}:=\frac{n}{k} \cdot \frac{\sum_{v \in s} X_{v}}{|S|}$

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

$$
\text { A property: if }\left|C_{v}\right|=k, \operatorname{Pr}[\text { StreamBFS }(v)=\operatorname{BFS}(v)]=\Omega(1)
$$

Perform BFS in random order streams

$$
\text { BFS }(v) \Longrightarrow \text { StreamBFS }(v)
$$

StreamBFS(v)

- Initialize $P:=\{v\}$. Sequentially add edges e (and vertices) to P if e connects to the current collected subgraph.

$$
\begin{aligned}
& \text { A property: if }\left|C_{v}\right|=k, \operatorname{Pr}[\operatorname{StreamBFS}(v)=\operatorname{BFS}(v)]=\Omega(1) \\
& \text { A difficulty: if }\left|C_{u}\right|=\left|C_{v}\right|=k, \operatorname{Pr}\left[\operatorname{StreamBFS}(u)=C_{u}\right] \text { might be different } \\
& \text { from } \operatorname{Pr}\left[\operatorname{StreamBFS}(v)=C_{v}\right]
\end{aligned}
$$

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique $C B F$ Stree $C T_{v}$ of C_{v}

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree $C T_{v}$ of C_{v}

$$
\text { StreamBFS }(v) \Longrightarrow \text { StreamCanoBFS }(v)
$$

StreamCanoBFS(v)

- Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect $C T_{v}$

Perform BFS in random order streams

canonical BFS (CBFS) tree: BFS tree + lexicographic order of vertices

From v, there is a unique CBFStree $C T_{v}$ of C_{v}

$$
\text { StreamBFS }(v) \Longrightarrow \text { StreamCanoBFS }(v)
$$

StreamCanoBFS(v)

- Perform StreamBFS(v) w.r.t. lexicographic order of vertices to collect $C T_{v}$

$$
\begin{aligned}
& \text { A property: if }\left|C_{u}\right|=\left|C_{v}\right|=k \text { : } \\
& \operatorname{Pr}\left[\text { StreamCanoBFS }(u)=\mathrm{CT}_{u}\right]=\operatorname{Pr}\left[\text { StreamCanoBFS }(v)=\mathrm{CT}_{v}\right]
\end{aligned}
$$

Approx. cc_{k} in random order streams

Another difficulty: false positives

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm
(1) sample a set S of vertices

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm
(1) sample a set S of vertices
(2) first phase (i.e., first λm edges):

for each $v \in S$, perform a StreamCanoBFS

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm
(1) sample a set S of vertices

(2) first phase (i.e., first λm edges): for each $v \in S$, perform a StreamCanoBFS $-v$ good: $v \in S \& \mid S$ treamCanoBFS $(v) \mid=k$.

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm
(1) sample a set S of vertices

(2) first phase (i.e., first λm edges): for each $v \in S$, perform a StreamCanoBFS
$-v$ good: $v \in S \& \mid S$ treamCanoBFS $(v) \mid=k$.
(3) second phase:
for each good v, check if StreamCanoBFS (v) has an outgoing or "violating" edge

- If so, set $X_{v}=0$; else set $X_{v}=1$

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm
(1) sample a set S of vertices

(2) first phase (i.e., first λm edges): for each $v \in S$, perform a StreamCanoBFS
$-v$ good: $v \in S \& \mid S$ treamCanoBFS $(v) \mid=k$.
(3) second phase:
for each good v, check if StreamCanoBFS (v) has an outgoing or "violating" edge

- If so, set $X_{v}=0$; else set $X_{v}=1$
(4) output $\hat{c}_{k}:=\frac{n}{k} \cdot \frac{1}{\gamma_{k}} \cdot \frac{\sum_{v: \text { good }} X_{v}}{|S|}$

Approx. cc_{k} in random order streams

Another difficulty: false positives

- divide the stream into two phases to rule out most "false positives"

The algorithm
(1) sample a set S of vertices

(2) first phase (i.e., first λm edges): for each $v \in S$, perform a StreamCanoBFS
$-v$ good: $v \in S$ \& \mid StreamCanoBFS $(v) \mid=k$.
(3) second phase:
for each good v, check if StreamCanoBFS (v) has an outgoing or "violating" edge

- If so, set $X_{v}=0$; else set $X_{v}=1$
(4) output $\hat{c}_{k}:=\frac{n}{k} \cdot \frac{1}{\gamma_{k}} \cdot \frac{\sum_{v: \text { good }} X_{v}}{|S|}$
$\gamma_{k}:=\operatorname{Pr}$ [any set T of $k-1$ edges appears in the lexico. order in the first phase]

The analysis

A simple but useful conditional probability

$$
\begin{gathered}
T \subseteq E,|T|=k-1, e \in E \backslash T ; F:=\text { set of edges in the first phase: } \\
\operatorname{Pr}[e \in F \mid T \subseteq F] \sim \lambda
\end{gathered}
$$

The analysis

A simple but useful conditional probability

$$
\begin{gathered}
T \subseteq E,|T|=k-1, e \in E \backslash T ; F:=\text { set of edges in the first phase: } \\
\operatorname{Pr}[e \in F \mid T \subseteq F] \sim \lambda
\end{gathered}
$$

\Longrightarrow for any v with $\left|C_{v}\right| \geqslant k$: $\operatorname{Pr}[$ false positive $] \ll \gamma_{k}$

The analysis

A simple but useful conditional probability

$$
\begin{gathered}
T \subseteq E,|T|=k-1, e \in E \backslash T ; F:=\text { set of edges in the first phase: } \\
\operatorname{Pr}[e \in F \mid T \subseteq F] \sim \lambda
\end{gathered}
$$

\Longrightarrow for any v with $\left|C_{v}\right| \geqslant k$: $\operatorname{Pr}[$ false positive $] \ll \gamma_{k}$

Our guarantee

- if $\left|C_{v}\right|<k, \operatorname{Pr}\left[X_{v}=1\right]=0$

The analysis

A simple but useful conditional probability

$$
\begin{gathered}
T \subseteq E,|T|=k-1, e \in E \backslash T ; F:=\text { set of edges in the first phase: } \\
\operatorname{Pr}[e \in F \mid T \subseteq F] \sim \lambda
\end{gathered}
$$

\Longrightarrow for any v with $\left|C_{v}\right| \geqslant k$: $\operatorname{Pr}[$ false positive $] \ll \gamma_{k}$

Our guarantee

- if $\left|C_{v}\right|<k, \operatorname{Pr}\left[X_{v}=1\right]=0$
- if $\left|C_{v}\right|=k, \operatorname{Pr}\left[X_{v}=1\right] \sim \gamma_{k}$

The analysis

A simple but useful conditional probability

$$
\begin{gathered}
T \subseteq E,|T|=k-1, e \in E \backslash T ; F:=\text { set of edges in the first phase: } \\
\operatorname{Pr}[e \in F \mid T \subseteq F] \sim \lambda
\end{gathered}
$$

\Longrightarrow for any v with $\left|C_{v}\right| \geqslant k: \operatorname{Pr}[$ false positive $] \ll \gamma_{k}$

Our guarantee

- if $\left|C_{v}\right|<k, \operatorname{Pr}\left[X_{v}=1\right]=0$
- if $\left|C_{v}\right|=k, \operatorname{Pr}\left[X_{v}=1\right] \sim \gamma_{k}$
- if $\left|C_{v}\right|>k, \operatorname{Pr}\left[X_{v}=1\right] \ll \gamma_{k}$

The analysis

A simple but useful conditional probability

$$
\begin{gathered}
T \subseteq E,|T|=k-1, e \in E \backslash T ; F:=\text { set of edges in the first phase: } \\
\operatorname{Pr}[e \in F \mid T \subseteq F] \sim \lambda
\end{gathered}
$$

\Longrightarrow for any v with $\left|C_{v}\right| \geqslant k: \operatorname{Pr}[$ false positive $] \ll \gamma_{k}$

Our guarantee

- if $\left|C_{v}\right|<k, \operatorname{Pr}\left[X_{v}=1\right]=0$
- if $\left|C_{v}\right|=k, \operatorname{Pr}\left[X_{v}=1\right] \sim \gamma_{k}$
- if $\left|C_{v}\right|>k, \operatorname{Pr}\left[X_{v}=1\right] \ll \gamma_{k}$
$\Longrightarrow \mathrm{E}\left[\hat{c}_{k}\right] \sim \mathrm{cc}_{k}$
$(1+\varepsilon)$-approx. the weight of MST
Input: connected G, edge weights $\in\{1, \cdots, W\}$
- M: weight of MST;

$(1+\varepsilon)$-approx. the weight of MST

Input: connected G, edge weights $\in\{1, \cdots, W\}$

- M : weight of MST; connected $\Longrightarrow M \geqslant n-1$

$(1+\varepsilon)$-approx. the weight of MST

Input: connected G, edge weights $\in\{1, \cdots, W\}$

- M : weight of MST; connected $\Longrightarrow M \geqslant n-1$

A relation between MST weight and \#CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leqslant t$
- $c^{(t)}$: \#CCs of $G^{(t)}$

$(1+\varepsilon)$-approx. the weight of MST

Input: connected G, edge weights $\in\{1, \cdots, W\}$

- M : weight of MST; connected $\Longrightarrow M \geqslant n-1$

A relation between MST weight and \#CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leqslant t$
- $c^{(t)}: \# C C s$ of $G^{(t)}$
$\Longrightarrow M=n-W+\sum_{t=1}^{W-1} c^{(t)}[$ CRZO5]

$(1+\varepsilon)$-approx. the weight of MST

Input: connected G, edge weights $\in\{1, \cdots, W\}$

- M : weight of MST; \quad connected $\Longrightarrow M \geqslant n-1$

A relation between MST weight and \#CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leqslant t$
- $c^{(t)}$: \#CCs of $G^{(t)}$
$\Longrightarrow M=n-W+\sum_{t=1}^{W-1} c^{(t)}[$ CRZO5]
- to $(1+\varepsilon)$-approx. M : suffices to approx. each $c^{(t)}$ with additive error $\frac{\varepsilon n}{4 W}$

$(1+\varepsilon)$-approx. the weight of MST

Input: connected G, edge weights $\in\{1, \cdots, W\}$

- M : weight of MST; connected $\Longrightarrow M \geqslant n-1$

A relation between MST weight and \#CCs

- $G^{(t)}$: subgraph of G consisting of edges of weight $\leqslant t$
- $c^{(t)}$: \#CCs of $G^{(t)}$
$\Longrightarrow M=n-W+\sum_{t=1}^{W-1} c^{(t)}[$ CRZO5]
- to $(1+\varepsilon)$-approx. M : suffices to approx. each $c^{(t)}$ with additive error $\frac{\varepsilon n}{4 W}$

The algorithm
(1) for each t from 1 to $W-1$, approx. \#CCs of $G^{(t)}$ to obtain $\hat{c}(t)$
(2) output $\hat{M}:=n-W+\sum_{t=1}^{W-1} \hat{c}(t)$

Conclusions and open problems

Summary:
A new algorithmic technique:

Conclusions and open problems

Summary:
A new algorithmic technique:

Questions:

Conclusions and open problems

Summary:
A new algorithmic technique:

> some constant-time approximation algorithms (adjacency list model)

Questions:
(1) Lower bounds in random order streams

- our conjecture for approx. \#CCs: $\exp (\Omega(1 / \varepsilon))$.

Conclusions and open problems

Summary:
A new algorithmic technique:

Questions:
(1) Lower bounds in random order streams

- our conjecture for approx. \#CCs: $\exp (\Omega(1 / \varepsilon))$.
(2) Anything between uniformly random ordering and worst-case ordering?

Conclusions and open problems

Summary:
A new algorithmic technique:

Questions:
(1) Lower bounds in random order streams

- our conjecture for approx. \#CCs: $\exp (\Omega(1 / \varepsilon))$.
(2) Anything between uniformly random ordering and worst-case ordering?

Thanks!

[^0]: ** with high constant probability

[^1]: ** with high constant probability

