The Classical Complexity of Boson Sampling

Peter Clifford ${ }^{1} \quad$ Raphaël Clifford ${ }^{2}$

${ }^{1}$ University of Oxford
${ }^{2}$ University of Bristol, UK

Boson Sampling

Science advances

- Introduced in 2011 as a route to establishing quantum computational supremacy.
- Classically intractable.
- Quantumly tractable.

Boson Sampling - mathematically

Consider an m by n matrix M as the first n columns of a Haar random m by m unitary.

- Sample $n \times n$ matrices A from M, each with probability.

$$
\frac{|\operatorname{Per} A|^{2}}{\prod_{j=1}^{m} s_{j}!}, s_{j} \text { is number of copies of the } j \text { th row of } M
$$

Boson Sampling - mathematically

Consider an m by n matrix M as the first n columns of a Haar random m by m unitary.

- Sample $n \times n$ matrices A from M, each with probability.
$|\operatorname{Per} A|^{2}$
$\overline{\prod_{j=1}^{m} s_{j}!}, s_{j}$ is number of copies of the j th row of M

$$
M=\left(\begin{array}{lll}
M_{0,0} & M_{0,1} & M_{0,2} \\
M_{10} & M_{1,} & M_{1,2} \\
M_{2,0} & M_{2,1} & M_{2,2} \\
M_{3,0} & M_{3,1} & M_{3,2} \\
M_{4,0} & M_{4,1} & M_{4,2} \\
M_{5,0} & M_{5,1} & M_{5,2} \\
M_{6,0} & M_{6,1} & M_{6,2} \\
M_{7,0} & M_{7,1} & M_{7,2} \\
M_{8,0} & M_{8,1} & M_{8,2}
\end{array}\right) \times 2
$$

Boson Sampling - mathematically

Consider an m by n matrix M as the first n columns of a Haar random m by m unitary.

- Sample $n \times n$ matrices A from M, each with probability.
$|\operatorname{Per} A|^{2}$
$\overline{\prod_{j=1}^{m} s_{j}!}, s_{j}$ is number of copies of the j th row of M

$$
M=\left(\begin{array}{ccc}
M_{0,0} & M_{0,1} & M_{0,2} \\
M_{10} & M_{1,} & M_{1,2} \\
M_{2,0} & M_{2,1} & M_{2,2} \\
M_{3,0} & M_{3,1} & M_{3,2} \\
M_{4,0} & M_{4,1} & M_{4,2} \\
M_{5,0} & M_{5,1} & M_{5,2} \\
M_{6,0} & M_{6,1} & M_{6,2} \\
M_{7,0} & M_{7,1} & M_{7,2} \\
M_{8,0} & M_{8,1} & M_{8,2}
\end{array}\right) \times 2
$$

$$
A=\left(\begin{array}{lll}
M_{1,0} & M_{1,1} & M_{1,2} \\
M_{1,0} & M_{1,1} & M_{1,2} \\
M_{6,0} & M_{6,1} & M_{6,2}
\end{array}\right)
$$

Boson Sampling - mathematically

Consider an m by n matrix M as the first n columns of a Haar random m by m unitary.

- Sample $n \times n$ matrices A from M, each with probability.

$$
\frac{|\operatorname{Per} A|^{2}}{\prod_{j=1}^{m} s_{j}!}, s_{j} \text { is number of copies of the } j \text { th row of } M
$$

$\left.\binom{n+m-1}{n} \approx \mathrm{e}^{n}(m / n)^{n} n^{-1 / 2}\right)$
different possibles matrices A.

$$
A=\left(\begin{array}{lll}
M_{1,0} & M_{1,1} & M_{1,2} \\
M_{1,0} & M_{1,1} & M_{1,2} \\
M_{6,0} & M_{6,1} & M_{6,2}
\end{array}\right)
$$

$$
\binom{8^{2}+8-1}{8} \approx 2^{33}
$$

Permanents are expensive.

The Classical Complexity of Boson Sampling

Aaronson and Arkhipov (2011):

- Exact sampling in poly time not possible unless the polynomial hierarchy collapses to the third level (not much more likely than proving $\mathrm{NP}=\mathrm{P}$).
- Approximate sampling in poly time conjectured to be hard for $m \geq n^{5}$ and "collision free". They further suggest $m \geq n^{2}$ should be hard classically.

The Classical Complexity of Boson Sampling

Aaronson and Arkhipov (2011):

- Exact sampling in poly time not possible unless the polynomial hierarchy collapses to the third level (not much more likely than proving $\mathrm{NP}=\mathrm{P}$).
- Approximate sampling in poly time conjectured to be hard for $m \geq n^{5}$ and "collision free". They further suggest $m \geq n^{2}$ should be hard classically.
"If one could implement our experiment with (say) $20 \leq n \leq 30$, then [..] such an experiment would arguably constitute the strongest evidence against the ECT [Extended Church-Turing Thesis] to date."

The Classical Complexity of Boson Sampling

Aaronson and Arkhipov (2011):

- Exact sampling in poly time not possible unless the polynomial hierarchy collapses to the third level (not much more likely than proving $\mathrm{NP}=\mathrm{P}$).
- Approximate sampling in poly time conjectured to be hard for $m \geq n^{5}$ and "collision free". They further suggest $m \geq n^{2}$ should be hard classically.
"If one could implement our experiment with (say) $20 \leq n \leq 30$, then [..] such an experiment would arguably constitute the strongest evidefice against the ECT [Extended Church-Turing Thesis] to date."

Previous expectations

If one could implement our experiment with (say) $20 \leq n \leq 30$, then certainly a classical computer could verify the answers-but at the same time, one would be getting direct evidence that a quantum computer could efficiently solve an "interestingly difficult" problem, one for which the best-known classical algorithms require many millions of operations. While disproving the Extended ChurchTuring Thesis is formally impossible, such an experiment would arguably constitute the strongest evidence against the ECT to date.

Aaronson \& Arkhipov, arXiv:1011.3245 (2010)
the first steps. The eventual goal would be to demonstrate BosonSampling with (say) $n=20$ or $n=30$ photons: a regime where the quantum experiment probably would outperform its fastest classical simulation, if not by an astronomical amount. In our view, this would be an exciting proof-of-principle for quantum computation.

Aaronson \& Arkhipov, arXiv:1309.7460 (2013)

Abstract

though, this linear optics experiment is still not at all easy - to reach the regime where digital simulation is currently infeasible one should detect a coincidence of about 30 photons, whose paths through the interferometer can interfere. Further-

> Preskill, arXiv:1203.5813 (2012)
> extending to N of order 20 with currently available coherence times, clearly growing beyond the capabilities of modern classical supercomputing. We note that the fidelity will not Goldstein et al., Phys. Rev. B 95 (2017)
input modes [3-11]. However, it remains a challenge to
scale up the devices to $20-30$ photons [1] traversing a
correspondingly large network, a regime in which a
quantum boson sampling machine is expected to outper-
form classical computers.
Barkhofen et al., Phys. Rev. Lett $118(2017)$
input modes [3-11]. However, it remains a challenge to quantum boson sampling machine is expected to outperform classical computers
cavities decoherence time. The final theoretical result leads to a significant improvement in the efficiency and an additional step towards quantum supremacy which can be achieved with a 7 photons in 50 modes experiment.

Computing the permanent

Similar to the determinant but much slower to compute.

$$
\operatorname{Per}(A)=\sum_{\sigma \in \pi_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

where π_{n} is the set of all permutations of $1, \ldots, n$.

Problem is \#P-hard (Valiant '79) and fastest algorithm takes $O\left(n 2^{n}\right)$ time.

Boson sampling distribution

Histogram of collision-free boson sampling pmfs
($n=12, m=144$, sample size $=10000$)

Figure: Boson Sampling probability mass function

Table of results for classical Boson Sampling

Algorithm	Permanents/sample	Max n	Approx/Exact
Rej S. (NSCJBML)	exponential	$[15-20]$	Approx/Heuristic
MCMC (NSCJBML)	~ 200	~ 30	Approx/Heuristic
Naive	$\binom{n+m-1}{n}$	~ 8	Exact
New result	~ 2	≥ 50	Exact

Table of results for classical Boson Sampling

Algorithm	Permanents/sample	Max n	Approx/Exact
Rej S. (NSCJBML)	exponential	$[15-20]$	Approx/Heuristic
MCMC (NSCJBML)	~ 200	~ 30	Approx/Heuristic
Naive	$\binom{n+m-1}{n}$	~ 8	Exact
New result	~ 2	≥ 50	Exact

Old complexity: $\quad O\left(\binom{n+m-1}{n} n 2^{n}\right) \quad$ New: $\quad O\left(n 2^{n}\right)$

Table of results for classical Boson Sampling

Algorithm	Permanents/sample	Max n	Approx/Exact
Rej S. (NSCJBML)	exponential	$[15-20]$	Approx/Heuristic
MCMC (NSCJBML)	~ 200	~ 30	Approx/Heuristic
Naive	$\binom{n+m-1}{n}$	~ 8	Exact
New result	~ 2	≥ 50	Exact

Old complexity: $\quad O\left(\binom{n+m-1}{n} n 2^{n}\right) \quad$ New: $\quad O\left(n 2^{n}\right)$

The largest boson sampling experiment to date has $n=5$ photons.

Exact sampling - SODA 2018

Step one: equivalently sample from the pmf

$$
p(\mathbf{r})=\frac{1}{n!}\left|\operatorname{Per} A_{\mathbf{r}}\right|^{2}=\frac{1}{n!}\left|\sum_{\sigma \in \pi[n]} \prod_{i=1}^{n} a_{r i}\right|^{2}, \quad \mathbf{r} \in[m]^{n} .
$$

Exact sampling - SODA 2018

Step one: equivalently sample from the pmf

$$
p(\mathbf{r})=\frac{1}{n!}\left|\operatorname{Per} A_{\mathbf{r}}\right|^{2}=\frac{1}{n!}\left|\sum_{\sigma \in \pi[n]} \prod_{i=1}^{n} a_{r i}\right|^{2}, \quad \mathbf{r} \in[m]^{n} .
$$

For any ordered sequence of row ids z there are $n!/ \prod_{j=1}^{m} s_{j}!$ equally likely values of \mathbf{r} in the expanded sample space. So:

$$
\frac{n!}{\prod_{j=1}^{m} s_{j}!} p(\mathbf{z})=\frac{n!}{\prod_{j=1}^{m} s_{j}!} \frac{1}{n!}\left|\operatorname{Per} A_{z}\right|^{2}=\frac{\left|\operatorname{Per} A_{\mathbf{z}}\right|^{2}}{\prod_{j=1}^{m} s_{j}!},
$$

as claimed.

Exact sampling. Compute the joint pmf

Lemma (Marginal probabilities)

The joint pmf of the subsequence $\left(r_{1}, \ldots, r_{k}\right)$ is given by

$$
p\left(r_{1}, \ldots, r_{k}\right)=\frac{(n-k)!}{n!} \sum_{c \in \mathcal{C}_{k}}\left|\operatorname{Per} A_{r_{1}, \ldots, r_{k}}^{c}\right|^{2}, \quad k=1, \ldots, n,
$$

where \mathcal{C}_{k} is the set of k-combinations taken without replacement from $[n]$ and $A_{r_{1}, \ldots, r_{k}}^{c}$ is the matrix formed from rows $\left(r_{1}, \ldots, r_{k}\right)$ of the columns c of A.

Exact sampling. Compute the joint pmf

Lemma (Marginal probabilities)

The joint pmf of the subsequence $\left(r_{1}, \ldots, r_{k}\right)$ is given by

$$
p\left(r_{1}, \ldots, r_{k}\right)=\frac{(n-k)!}{n!} \sum_{c \in \mathcal{C}_{k}}\left|\operatorname{Per} A_{r_{1}, \ldots, r_{k}}^{c}\right|^{2}, \quad k=1, \ldots, n,
$$

where \mathcal{C}_{k} is the set of k-combinations taken without replacement from $[n]$ and $A_{r_{1}, \ldots, r_{k}}^{c}$ is the matrix formed from rows $\left(r_{1}, \ldots, r_{k}\right)$ of the columns c of A.

Algorithm A samples a chain of conditional pmfs,

$$
p(\mathbf{r})=p\left(r_{1}\right) p\left(r_{2} \mid r_{1}\right) p\left(r_{3} \mid r_{1}, r_{2}\right) \ldots p\left(r_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}\right) .
$$

Exact sampling. Algorithm A

Algorithm A Boson Sampler: single sample in $\mathcal{O}\left(m n 3^{n}\right)$ time
Require: m and n positive integers; A first n columns of $m \times m$ Haar random unitary matrix

```
    1: r \leftarrow\varnothing
\(\triangleright\) Empty array
```

2: $\operatorname{FOR} k \leftarrow 1$ TO n DO

3:	$w_{i} \leftarrow \sum_{c \in \mathcal{C}_{k}}\left\|\operatorname{Per} A_{(\mathbf{r}, i)}^{c}\right\|^{2}, i \in[m]$	\triangleright MaKE ARRAY w
4:	$x \leftarrow \operatorname{SAMPLE}(w)$	\triangleright SAMPLE INDEX x FROM w
5:	$\mathbf{r} \leftarrow(\mathbf{r}, x)$	\triangleright APPEND x To \mathbf{r}

6: END FOR

Exact sampling. Algorithm A

Algorithm A Boson Sampler: single sample in $\mathcal{O}\left(m n 3^{n}\right)$ time
Require: m and n positive integers; A first n columns of $m \times m$ Haar random unitary matrix

```
    1: r \leftarrow\varnothing
\(\triangleright\) Empty array
```

2: $\operatorname{FOR} k \leftarrow 1$ TO $n \mathbf{D O}$

3:	$w_{i} \leftarrow \sum_{c \in \mathcal{C}_{k}}\left\|\operatorname{Per} A_{(\mathbf{r}, i)}^{c}\right\|^{2}, i \in[m]$	\triangleright MAKE ARRAY w
4:	$x \leftarrow \operatorname{SAMPLE}(w)$	\triangleright SAMPLE INDEX x FROM w
5:	$\mathbf{r} \leftarrow(\mathbf{r}, x)$	\triangleright APPEND x To \mathbf{r}

6: END FOR

Running time:

$$
m \sum_{k=1}^{n} k 2^{k}\binom{n}{k}=m \frac{2}{3} n 3^{n}=O\left(m n 3^{n}\right)
$$

Faster exact sampling. Expand the sample space again

We introduce an auxiliary array $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where $\boldsymbol{\alpha} \in \pi[n]$. Define the pmf:

$$
\phi\left(r_{1}, \ldots, r_{k} \mid \alpha\right)=\frac{1}{k!}\left|\operatorname{Per} A_{r_{1}, \ldots, r_{k}}^{\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}}\right|^{2}, \quad k=1, \ldots, n-1 .
$$

Faster exact sampling. Expand the sample space again

We introduce an auxiliary array $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where $\boldsymbol{\alpha} \in \pi[n]$. Define the pmf:

$$
\phi\left(r_{1}, \ldots, r_{k} \mid \alpha\right)=\frac{1}{k!}\left|\operatorname{Per} A_{r_{1}, \ldots, r_{k}}^{\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}}\right|^{2}, \quad k=1, \ldots, n-1 .
$$

Let $e_{k}=\phi\left(r_{1}, \ldots, r_{k} \mid \alpha\right)$ and $d_{k}=\sum_{r_{k}} e_{k}, k=1, \ldots, n-1$ with $e_{n}=p\left(r_{1}, \ldots, r_{n}\right)$ and $d_{n}=p\left(r_{1}, \ldots, r_{n-1}\right)$.

Lemma (Sampling from expectation)

With the preceding notation, let $\phi(\mathbf{r} \mid \boldsymbol{\alpha})=\prod_{k=1}^{n} e_{k} / d_{k}$ then $p(\mathbf{r})=\mathbb{E}_{\alpha}\{\phi(\mathbf{r} \mid \boldsymbol{\alpha})\}$ where the expectation is taken over $\boldsymbol{\alpha}$, uniformly distributed on $\pi[n]$ for fixed \mathbf{r}.

Algorithm B - exact sampling

Sample from chain of conditional probabilities:
$\phi(\mathbf{r} \mid \boldsymbol{\alpha})=\phi\left(r_{1} \mid \boldsymbol{\alpha}\right) \phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right) \phi\left(r_{3} \mid r_{1}, r_{2}, \boldsymbol{\alpha}\right) \ldots \phi\left(r_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}, \boldsymbol{\alpha}\right)$

Algorithm B - exact sampling

Sample from chain of conditional probabilities:

$$
\begin{aligned}
& \phi(\mathbf{r} \mid \boldsymbol{\alpha})=\phi\left(r_{1} \mid \boldsymbol{\alpha}\right) \phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right) \phi\left(r_{3} \mid r_{1}, r_{2}, \boldsymbol{\alpha}\right) \ldots \phi\left(r_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}, \boldsymbol{\alpha}\right) \\
& \quad>\phi\left(r_{1} \mid \boldsymbol{\alpha}\right)=\left|\operatorname{Per} A_{r_{1}}^{\alpha_{1}}\right|^{2}=\left|a_{r_{1}, \alpha_{1}}\right|^{2} .
\end{aligned}
$$

- Takes $O(m)$ time to sample the first row.

Algorithm B - exact sampling

Sample from chain of conditional probabilities:

$$
\begin{aligned}
& \phi(\mathbf{r} \mid \boldsymbol{\alpha})=\phi\left(r_{1} \mid \boldsymbol{\alpha}\right) \phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right) \phi\left(r_{3} \mid r_{1}, r_{2}, \boldsymbol{\alpha}\right) \ldots \phi\left(r_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}, \boldsymbol{\alpha}\right) \\
& \quad>\phi\left(r_{1} \mid \boldsymbol{\alpha}\right)=\left|\operatorname{Per} A_{r_{1}}^{\alpha_{1}}\right|^{2}=\left|a_{r_{1}, \alpha_{1}}\right|^{2} .
\end{aligned}
$$

- Takes $O(m)$ time to sample the first row.
$>\phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right)=e_{2} / d_{2}$ but d_{2} does not involve r_{2}.

Algorithm B - exact sampling

Sample from chain of conditional probabilities:

$$
\begin{aligned}
& \phi(\mathbf{r} \mid \boldsymbol{\alpha})=\phi\left(r_{1} \mid \boldsymbol{\alpha}\right) \phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right) \phi\left(r_{3} \mid r_{1}, r_{2}, \boldsymbol{\alpha}\right) \ldots \phi\left(r_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}, \boldsymbol{\alpha}\right) \\
& \quad>\phi\left(r_{1} \mid \boldsymbol{\alpha}\right)=\left|\operatorname{Per} A_{r_{1}}^{\alpha_{1}}\right|^{2}=\left|a_{r_{1}, \alpha_{1}}\right|^{2}
\end{aligned}
$$

- Takes $O(m)$ time to sample the first row.
$>\phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right)=e_{2} / d_{2}$ but d_{2} does not involve r_{2}.
$>$ Since e_{2} is proportional to $\left|\operatorname{Per} A_{r_{1}, r_{2}}^{\alpha_{1}, \alpha_{2}}\right|^{2}$, calculate m permanents of 2×2 matrices; a further $O(m)$ operations.

Algorithm B - exact sampling

Sample from chain of conditional probabilities:

$$
\begin{aligned}
& \phi(\mathbf{r} \mid \boldsymbol{\alpha})=\phi\left(r_{1} \mid \boldsymbol{\alpha}\right) \phi\left(r_{2} \mid r_{1}, \boldsymbol{\alpha}\right) \phi\left(r_{3} \mid r_{1}, r_{2}, \boldsymbol{\alpha}\right) \ldots \phi\left(r_{n} \mid r_{1}, r_{2}, \ldots, r_{n-1}, \boldsymbol{\alpha}\right) \\
& \quad>\phi\left(r_{1} \mid \boldsymbol{\alpha}\right)=\left|\operatorname{Per} A_{r_{1}}^{\alpha_{1}}\right|^{2}=\left|a_{r_{1}, \alpha_{1}}\right|^{2}
\end{aligned}
$$

- Takes $O(m)$ time to sample the first row.
$\triangleright \phi\left(r_{2} \mid r_{1}, \alpha\right)=e_{2} / d_{2}$ but d_{2} does not involve r_{2}.
- Since e_{2} is proportional to $\left|\operatorname{Per} A_{r_{1}, r_{2}}^{\alpha_{1}, \alpha_{2}}\right|^{2}$, calculate m permanents of 2×2 matrices; a further $O(m)$ operations.
- At stage k we need to sample r_{k} from the pmf proportional to $\left|\operatorname{Per} A_{r_{1}, \ldots, r_{k}}^{\alpha_{1}, \ldots}\right|^{2}$ considered simply as a function of r_{k}.

Exploiting the Laplace expansion to speed up stage k

We exploit the Laplace expansion:

$$
\operatorname{Per} B=\sum_{\ell=1}^{k} b_{k, \ell} \operatorname{Per} B_{k, \ell}^{\diamond},
$$

where $B_{k, \ell}^{\diamond}$ is the submatrix with row k and column ℓ removed.

Exploiting the Laplace expansion to speed up stage k

We exploit the Laplace expansion:

$$
\operatorname{Per} B=\sum_{\ell=1}^{k} b_{k, \ell} \operatorname{Per} B_{k, \ell}^{\diamond}
$$

where $B_{k, \ell}^{\diamond}$ is the submatrix with row k and column ℓ removed.

Lemma (Amortised permanent computation)

Let B be a $k \times k$ complex matrix and let $\left\{B_{k, \ell}^{\diamond}\right\}$ be submatrices of B with row k and column ℓ removed, $\ell \in[k]$. The collection $\left\{\operatorname{Per} B_{k, \ell}^{\diamond}, \ell \in[k]\right\}$ can be evaluated jointly in $\mathcal{O}\left(k 2^{k}\right)$ time and $\mathcal{O}(k)$ additional space.

The complexity of Boson Sampling

The total time for stage k is $O\left(k 2^{k}+m k\right)$. Therefore the total running time is:

$$
O\left(n 2^{n}+m n^{2}\right)
$$

The same complexity as computing a single permanent.

The complexity of Boson Sampling

The total time for stage k is $O\left(k 2^{k}+m k\right)$. Therefore the total running time is:

$$
O\left(n 2^{n}+m n^{2}\right)
$$

The same complexity as computing a single permanent.

In practice taking one sample takes roughly twice as long as computing one permanent. This pushes the threshold for quantum computational supremacy to at least $n=50$.

Running times

Figure: Running times

What next?

- Classical statistical tests for experimental Boson Samplers.
- Exact sampling takes $O\left(n 2^{n}\right)$ time. How much faster is approximate sampling?
- What other quantum sampling problems could have faster classical algorithms?

What next?

- Classical statistical tests for experimental Boson Samplers.
- Exact sampling takes $O\left(n 2^{n}\right)$ time. How much faster is approximate sampling?
- What other quantum sampling problems could have faster classical algorithms?

Thank you for listening

