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Boson Sampling

Science advances

I Introduced in 2011 as a route to establishing quantum

computational supremacy.

I Classically intractable.

I �antumly tractable.



Boson Sampling - mathematically

Consider an m by n matrix M as the first n columns of a Haar

random m by m unitary.

I Sample n× n matrices A from M, each with probability.

|PerA|2∏m
j=1

sj!
, sj is number of copies of the jth row of M

A =

 M1,0 M1,1 M1,2

M1,0 M1,1 M1,2

M6,0 M6,1 M6,2
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random m by m unitary.
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(
n+m− 1

n
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≈ e

n(m/n)nn−1/2)

di�erent possibles matrices A.

(
8

2 + 8− 1

8

)
≈ 2

33

Permanents are expensive.
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The Classical Complexity of Boson Sampling

Aaronson and Arkhipov (2011):

I Exact sampling in poly time not possible unless the polynomial

hierarchy collapses to the third level (not much more likely

than proving NP = P).

I Approximate sampling in poly time conjectured to be hard for

m ≥ n5
and “collision free". They further suggest m ≥ n2

should be hard classically.

“If one could implement our experiment with (say)

20 ≤ n ≤ 30, then [..] such an experiment would arguably

constitute the strongest evidence against the ECT [Extended

Church-Turing Thesis] to date.”

— Aaronson and Arkhipov
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Previous expectations

Aaronson & Arkhipov, arXiv:1011.3245 (2010)

Aaronson & Arkhipov, arXiv:1309.7460 (2013)

Preskill, arXiv:1203.5813 (2012)

Goldstein et al., Phys. Rev. B 95 (2017)

Barkhofen et al., Phys. Rev. Le� 118 (2017)

Latmiral et al., New J. Phys 18 (2016)



Computing the permanent

Similar to the determinant but much slower to compute.

Per(A) =
∑
σ∈πn

n∏
i=1

Ai,σ(i)

where πn is the set of all permutations of 1, . . . , n.

Problem is #P-hard (Valiant ’79) and fastest algorithm takes O(n2
n)

time.



Boson sampling distribution

Histogram of collision−free boson sampling pmfs 
(n = 12, m = 144, sample size = 10000)

Pmf (unnormalised)
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Figure: Boson Sampling probability mass function



Table of results for classical Boson Sampling

Algorithm Permanents/sample Max n Approx/Exact

Rej S. (NSCJBML) exponential [15-20] Approx/Heuristic

MCMC (NSCJBML) ∼ 200 ∼ 30 Approx/Heuristic

Naive

(n+m−1

n

)
∼ 8 Exact

New result ∼ 2 ≥ 50 Exact

Old complexity: O
((n+m−1

n

)
n2

n
)

New: O(n2
n)

The largest boson sampling experiment to date has n = 5 photons.
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Exact sampling - SODA 2018

Step one: equivalently sample from the pmf

p(r) =
1

n!
|PerAr|2 =

1

n!

∣∣∣∣∣∣
∑
σ∈π[n]

n∏
i=1

ariσi

∣∣∣∣∣∣
2

, r ∈ [m]n.

For any ordered sequence of row ids z there are n!/
∏m

j=1
sj! equally

likely values of r in the expanded sample space. So:

n!∏m
j=1

sj!
p(z) =

n!∏m
j=1

sj!
1

n!
|PerAz |2 =

|PerAz|2∏m
j=1

sj!
,

as claimed.
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Exact sampling. Compute the joint pmf

Lemma (Marginal probabilities)

The joint pmf of the subsequence (r1, . . . , rk) is given by

p(r1, . . . , rk) =
(n− k)!

n!

∑
c∈Ck

∣∣
PerAc

r1,...,rk

∣∣2 , k = 1, . . . , n,

where Ck is the set of k-combinations taken without replacement from
[n] and Ac

r1,...,rk is the matrix formed from rows (r1, . . . , rk) of the
columns c of A.

Algorithm A samples a chain of conditional pmfs,

p(r) = p(r1)p(r2|r1)p(r3|r1, r2) . . . p(rn|r1, r2, . . . , rn−1).
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Exact sampling. Algorithm A

Algorithm A Boson Sampler: single sample in O(mn3
n) time

Require: m and n positive integers; A first n columns of m×m Haar

random unitary matrix

1: r← ∅ . Empty array
2: for k ← 1 to n do

3: wi ←
∑

c∈Ck |PerA
c
(r,i)|

2, i ∈ [m] .Make array w
4: x ← Sample(w) . Sample index x from w
5: r← (r, x) . Append x to r

6: end for

Running time:

m
n∑

k=1

k2
k
(
n
k

)
= m

2

3

n3
n = O(mn3

n)
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Faster exact sampling. Expand the sample space again

We introduce an auxiliary array α = (α1, . . . , αn), where α ∈ π[n].
Define the pmf:

φ(r1, . . . , rk |α) =
1

k!

∣∣∣PerA{α1,...,αk}
r1,...,rk

∣∣∣2 , k = 1, . . . , n− 1.

Let ek = φ(r1, . . . , rk |α) and dk =
∑

rk
ek , k = 1, . . . , n− 1 with

en = p(r1, . . . , rn) and dn = p(r1, . . . , rn−1).

Lemma (Sampling from expectation)

With the preceding notation, let φ(r|α) =
∏n

k=1
ek/dk then

p(r) = Eα{φ(r|α)} where the expectation is taken over α, uniformly
distributed on π[n] for fixed r.
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Algorithm B - exact sampling

Sample from chain of conditional probabilities:

φ(r|α) = φ(r1|α)φ(r2|r1,α)φ(r3|r1, r2,α) . . . φ(rn|r1, r2, . . . , rn−1,α)

I φ(r1|α) = |PerAα1

r1 |
2 = |ar1,α1

|2.

I Takes O(m) time to sample the first row.

I φ(r2|r1,α) = e2/d2 but d2 does not involve r2.

I Since e2 is proportional to |PerAα1,α2

r1,r2 |2, calculate m
permanents of 2× 2 matrices; a further O(m) operations.

I At stage k we need to sample rk from the pmf proportional to

|PerAα1,...,αk
r1,...,rk |2 considered simply as a function of rk .
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Exploiting the Laplace expansion to speed up stage k

We exploit the Laplace expansion:

PerB =
k∑
`=1

bk,` PerB�k,`,

where B�k,` is the submatrix with row k and column ` removed.

Lemma (Amortised permanent computation)

Let B be a k × k complex matrix and let {B�k,`} be submatrices of B
with row k and column ` removed, ` ∈ [k]. The collection
{PerB�k,`, ` ∈ [k]} can be evaluated jointly in O(k2

k) time and O(k)
additional space.
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The complexity of Boson Sampling

The total time for stage k is O(k2
k +mk). Therefore the total

running time is:

O(n2
n +mn2)

The same complexity as computing a single permanent.

In practice taking one sample takes roughly twice as long as

computing one permanent. This pushes the threshold for quantum

computational supremacy to at least n = 50.
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Running times
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What next?

I Classical statistical tests for experimental Boson Samplers.

I Exact sampling takes O(n2
n) time. How much faster is

approximate sampling?

I What other quantum sampling problems could have faster

classical algorithms?

Thank you for listening
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