A SimpleFramework for Optimization over Sliding Windows

Michele Borassi Google Zurich Alessandro Epasto Google New York *Silvio Lattanzi* Google Zurich

Sergei Vassilvitskii Google New York Morteza Zadimoghaddam Google Zurich

Workshop on Data Summarization, University of Warwick

Outline

• Sliding Windows model

Model, exponential histograms, smooth histograms, limitations

- A Framework for Optimization Suffix composability, maximization, minimization, main results
- Applications Submodular optimization, k-median
- Conclusions and future works

Sliding Windows model

Sliding Windows model

Elements arrive in a stream:

We are interested in last *W* elements

Design algorithm that use small memory

General frameworks

Elements arrive in a stream:

Two main frameworks:

- exponential histograms [DGIM01]
- smooth histograms [BO07]

General frameworks

Elements arrive in a stream:

Two main frameworks:

- exponential histograms [DGIM01] "weakly additive" functions with composable sketches
- smooth histograms [BO07]

General frameworks

Elements arrive in a stream:

Two main frameworks:

- exponential histograms [DGIM01] "weakly additive" functions with composable sketches
- smooth histograms [BO07] (α, β) -smooth functions

 (α,β) -smooth functions

 $\forall A, B, C$ with $B \subseteq_r A$

 $(1-\beta)f(A) \leq f(B) \implies (1-\alpha)f(A \cup C) \leq f(B \cup C) \text{ for } 0 < \beta \leq \alpha < 1$

 (α,β) -smooth functions

 $\forall A, B, C$ with $B \subseteq_r A$

$(1-\beta)f(A) \leq f(B) \implies (1-\alpha)f(A \cup C) \leq f(B \cup C) \text{ for } 0 < \beta \leq \alpha < 1$

If there is a streaming algorithm using space g to estimate f than there is a s.w. algorithm that computes an α approximation using space $O\left(\frac{1}{\beta}(g + \log n) \log n\right)$

 (α,β) -smooth functions

 $\forall A, B, C$ with $B \subseteq_r A$

 $(1-\beta)f(A) \leq f(B) \implies (1-\alpha)f(A \cup C) \leq f(B \cup C) \text{ for } 0 < \beta \leq \alpha < 1$

If there is a streaming algorithm using space g to estimate f than there is a s.w. algorithm that computes an α approximation using space $O\left(\frac{1}{\beta}(g + \log n) \log n\right)$

It can also be extended to ϵ -approximation if $\epsilon < 1/4$

 (α,β) -smooth functions

 $\forall A, B, C$ with $B \subseteq_r A$

 $(1-\beta)f(A) \leq f(B) \implies (1-\alpha)f(A \cup C) \leq f(B \cup C) \text{ for } 0 < \beta \leq \alpha < 1$

If there is a streaming algorithm using space g to estimate f than there is a s.w. algorithm that computes an α approximation using space $O\left(\frac{1}{\beta}(g + \log n) \log n\right)$

It can also be extended to ϵ -approximation if $\epsilon < 1/4$

Algorithms for L_p -norms, frequency moments, geometric mean,...

Not all the functions are smooth

Submodular Optimization

Not all the functions are smooth

Submodular Optimization

Not all the functions are smooth

k-centers, diameter k-median, k-means

Submodular Optimization

[CNZ16,ELVZ17]

Not all the functions are smooth

k-centers, diameter k-median, k-means [CSS16] [BLLM16]

Submodular Optimization

[CNZ16,ELVZ17]

Not all the functions are smooth

k-centers, diameter k-median, k-means [CSS16] [BLLM16]

Can we find a framework for optimization?

A Framework for Optimization

Instead of characterize functions for which we have s.w. algorithms, we focus on sketch properties

Suffix composability

 $f\,$ be a monotone function and $Z\,$ be a sketch function.

Suffix composability

 $f\,$ be a monotone function and $Z\,$ be a sketch function.

We say that Z is (α,β) -suffix composable if there exist a function $h:Z\times Z\times t\to Z$

Suffix composability

 $f\,$ be a monotone function and $Z\,$ be a sketch function.

We say that Z is (α,β) -suffix composable if there exist a function $h:Z\times Z\times t\to Z$

 $\forall A, A^t, B$ either

```
f(Z(A)) > \beta OPT(A^t \cup B)
```

or

```
f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)
```

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

$$\lambda \in \{\gamma m, (1+\epsilon)\gamma m, (1+\epsilon)^2 \gamma m, ...\}$$
$$Z(A_{\lambda})$$

 $Z(B_{\lambda})$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

$$\lambda \in \{\gamma m, (1+\epsilon)\gamma m, (1+\epsilon)^2 \gamma m, ...\}$$
$$Z(A_{\lambda}) \leftarrow Z(\emptyset)$$
$$Z(B_{\lambda}) \leftarrow Z(\emptyset)$$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

$$\lambda \in \{\gamma m, (1+\epsilon)\gamma m, (1+\epsilon)^2 \gamma m, \ldots\}$$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

$$\lambda \in \{\gamma m, (1+\epsilon)\gamma m, (1+\epsilon)^2 \gamma m, ...\}$$

if $f(Z(B_\lambda \cup \{x\})) \leq \lambda$
 $Z(B_\lambda) \leftarrow Z(B_\lambda \cup \{x\}))$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$ *Proof*

 \mathcal{X}

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

$$\lambda \in \{\gamma m, (1+\epsilon)\gamma m, (1+\epsilon)^2 \gamma m, \ldots\}$$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

A Simple Framework for Optimization over Sliding Windows, Workshop on Data Summarization

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Let λ^* be the largest λ for which $A_{\lambda^*} \subseteq W$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Let λ^* be the largest λ for which $A_{\lambda^*} \subseteq W$

If
$$f(Z(A_{\lambda^*})) \geq \frac{\gamma\beta}{1+\epsilon} OPT$$
 we are done

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next $\,\lambda\,$, $\,\,\lambda' < \gamma\beta OPT$

If
$$f(Z(A_{\lambda^*})) \geq \frac{\gamma\beta}{1+\epsilon} OPT$$
 we are done

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next $\,\lambda\,$, $\,\,\lambda' < \gamma\beta OPT$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next λ , $~\lambda' < \gamma\beta OPT$

 $f(Z(A_{\lambda'})) \leq \lambda' \leq \beta OPT \implies f(h(Z(A_{\lambda'}), Z(B_{\lambda'}), t)) \geq \alpha OPT$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next $\,\lambda\,$, $\,\,\lambda' < \gamma\beta OPT$

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next λ , $~\lambda' < \gamma\beta OPT$

 $f(Z(B_{\lambda'})) \ge \gamma OPT$

Maximization framework

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next $\,\lambda\,$, $\,\,\lambda' < \gamma\beta OPT$

Maximization framework

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next λ , $~\lambda' < \gamma\beta OPT$

 $\gamma OPT \le f(Z(B_{\lambda'})) \le \lambda' < \gamma \beta OPT$

Maximization framework

Lemma

f be a monotone function and Z be a γ -approximating sketch function, such that Z is (α, β) -suffix composable. Then there is a s.w. algorithm that computes a $\min\left(\alpha, \frac{\gamma\beta}{1+\epsilon}\right)$ approximation using space $O\left(s_Z \log_{1+\epsilon} \frac{M}{\gamma m}\right)$

Proof

Otherwise consider the next λ , $~\lambda' < \gamma\beta OPT$

 $\gamma OPT \leq f(Z(B_{\lambda'})) \leq \lambda' < \gamma \beta OPT$ contradiction

General framework

Maximization

f be a monotone function

 $X' \subseteq X \implies f(X) \ge f(X')$

Minimization

f be a $\,\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$

General framework

Maximization

f be a monotone function $X' \subseteq X \implies f(X) \ge f(X')$ Z is (α, β) -suffix composable either: $f(Z(A)) > \beta OPT(A^t \cup B)$ or:

 $f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)$

Minimization

$$\begin{split} f \text{ be a } \delta \text{-monotone function} \\ X' &\subseteq X \implies \delta f(X) \geq f(X') \\ Z \text{ is } (\alpha, \beta) \text{-suffix composable} \\ \text{if:} \\ f(Z(A)) \leq (1 + \beta) \delta OPT(A^t \cup B) \\ \text{then:} \\ f(h(Z(A), Z(B), t)) \leq (1 + \alpha) OPT(A^t \cup B) \end{split}$$

General framework

Maximization

f be a monotone function $X' \subseteq X \implies f(X) \ge f(X')$ $Z \text{ is } (\alpha, \beta) \text{-suffix composable}$ either: $f(Z(A)) > \beta OPT(A^t \cup B)$ or: $f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)$

Minimization

$$\begin{split} f \text{ be a } \delta \text{-monotone function} \\ X' &\subseteq X \implies \delta f(X) \geq f(X') \\ Z \text{ is } (\alpha, \beta) \text{-suffix composable} \\ \text{if:} \\ f(Z(A)) \leq (1 + \beta) \delta OPT(A^t \cup B) \\ \text{then:} \\ f(h(Z(A), Z(B), t)) \leq (1 + \alpha) OPT(A^t \cup B) \end{split}$$

We get sliding windows algorithms

Problem	Space	Approx
Sub. Optimization	$O(k \log n)$	$1/3 - \epsilon$
Diversity max.	$ ilde{O}(k)$	$\gamma/5-\epsilon$
k-median / k-means	$ ilde{O}(k)$	O(1)
k-center	$ ilde{O}(k)$	$24 + \epsilon$

Problem	Space	Approx
Sub. Optimization	$O(k \log n)$	$1/3 - \epsilon$
Diversity max.	$ ilde{O}(k)$	$\gamma/5-\epsilon$
k-median / k-means	$\tilde{O}(k)$	O(1)
k-center	$ ilde{O}(k)$	$24 + \epsilon$

Applications

Maximization

 $f\,$ be a monotone function

 $X' \subseteq X \implies f(X) \ge f(X')$

 $Z \; \mbox{is} \; (\alpha,\beta)\mbox{-suffix composable}$

either:

```
f(Z(A)) > \beta OPT(A^t \cup B)
```

or:

```
f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)
```

Maximization

f be a monotone function $X' \subseteq X \implies f(X) \ge f(X')$ $Z \text{ is } (\alpha, \beta)\text{-suffix composable}$ either: $f(Z(A)) > \beta OPT(A^t \cup B)$ or: $f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)$

Monotone by definition

Maximization

 $f\,$ be a monotone function

 $X' \subseteq X \implies f(X) \ge f(X')$

 $Z \, \mbox{ is } (\alpha,\beta)\mbox{-suffix composable}$

either:

```
f(Z(A)) > \beta OPT(A^t \cup B)
```

or:

```
f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)
```

Monotone by definition

Let
$$h(Z(A), Z(B), t) = Z(B)$$

Maximization

 $f\,$ be a monotone function

 $X' \subseteq X \implies f(X) \ge f(X')$

 $Z \, \mbox{ is } (\alpha,\beta)\mbox{-suffix composable}$

either:

 $f(Z(A)) > \beta OPT(A^t \cup B)$

or:

 $f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)$

Monotone by definition

Let
$$h(Z(A), Z(B), t) = Z(B)$$

 $f(Z(B)) \ge \gamma OPT(B)$

Maximization

 $f\,$ be a monotone function

 $X' \subseteq X \implies f(X) \ge f(X')$

 $Z \, \mbox{ is } (\alpha,\beta)\mbox{-suffix composable}$

either:

 $f(Z(A)) > \beta OPT(A^t \cup B)$

or:

 $f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)$

Monotone by definition

$$-et \quad h(Z(A), Z(B), t) = Z(B)$$

 $f(Z(B)) \ge \gamma OPT(B)$ $\ge \gamma (OPT(A^t \cup B) - OPT(A^t))$

Maximization

f be a monotone function $X' \subseteq X \implies f(X) \ge f(X')$

 $Z \, \mbox{ is } (\alpha,\beta)\mbox{-suffix composable}$

either:

 $f(Z(A)) > \beta OPT(A^t \cup B)$

or:

 $f(h(Z(A), Z(B), t)) \ge \alpha OPT(A^t \cup B)$

Monotone by definition

$$-et \quad h(Z(A), Z(B), t) = Z(B)$$

 $f(Z(B)) \ge \gamma OPT(B)$ $\ge \gamma (OPT(A^t \cup B) - OPT(A^t))$ $\ge \gamma (OPT(A^t \cup B) - OPT(A))$

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

Minimization

- f be a $\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

```
f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)
```

 δ -monotone function

Minimization

- f be a $\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- Z is (α, β) -suffix composable

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- Z is (α, β) -suffix composable

if:

```
f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)
```

then:

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- Z is (α, β) -suffix composable

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

Meyerson sketch

- The $\tilde{O}(k)$ points have 2 properties: mapping has cost O(OPT)• weighted instance has cost O(OPT)

Minimization

- f be a $\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

Meyerson sketch

Now suppose Z(A) is a Meyerson sketch,

Minimization

- f be a $\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

Meyerson sketch

Now suppose Z(A) is a Meyerson sketch, a good sketch for A^t is Z(A) with updated weights.

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- $Z\;$ is $\,(\alpha,\beta)\text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

Meyerson sketch

Now suppose Z(A) is a Meyerson sketch, a good sketch for A^t is Z(A) with updated weights.

We can keep track using $\log_{1+\epsilon} W$ buckets

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- $Z~~{\rm is}~~(\alpha,\beta){\rm -suffix~composable}$

if:

```
f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)
```

then:

```
f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)
```

 δ -monotone function

Minimization

- f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$
- $Z\;$ is $\,(\alpha,\beta)\text{-suffix composable}$

if:

```
f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)
```

then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

 δ -monotone function

 $h(Z(A), Z(B), t) = Z(A^t) \cup Z(B)$

Minimization

f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$ Z is (α, β) -suffix composable if: $f(Z(A)) \le (1 + \beta)\delta OPT(A^t \cup B)$ then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

 δ -monotone function

 $h(Z(A), Z(B), t) = Z(A^t) \cup Z(B)$

 $f(h(Z(A), Z(B), t)) = f(Z(A^t) \cup Z(B))$

Minimization

f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$

 $Z\;$ is $\,(\alpha,\beta)\text{-suffix composable}$

if:

 $f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$

then:

 $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

 δ -monotone function

 $h(Z(A), Z(B), t) = Z(A^t) \cup Z(B)$

 $f(h(Z(A), Z(B), t)) = f(Z(A^t) \cup Z(B))$

 $\leq O(OPT) + O(f(Z(A))) + O(f(Z(B)))$

Conclusions and future works

Conclusions

New framework for optimization

Better results for maximization

Better results for minimization

Future works

Can we recover k-center result?

Can we apply the framework to other problems?

Can we simplify the framework?

Thanks

Minimization

- f be a $\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

Minimization

- f be a $\delta\text{-monotone function}$ $X'\subseteq X\implies \delta f(X)\geq f(X')$
- $Z \; \text{ is } (\alpha,\beta) \text{-suffix composable}$

if:

$$f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$$

then:

Minimization

 $\begin{array}{l} f \text{ be a } \delta \text{-monotone function} \\ X' \subseteq X \implies \delta f(X) \geq f(X') \\ Z \text{ is } (\alpha, \beta) \text{-suffix composable} \\ \text{if:} \\ f(Z(A)) \leq (1+\beta) \delta OPT(A^t \cup B) \end{array}$

then:

Minimization

f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$ Z is (α, β) -suffix composable if: $f(Z(A)) \le (1 + \beta)\delta OPT(A^t \cup B)$ then: $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

k-median

Minimization

f be a δ -monotone function $X' \subseteq X \implies \delta f(X) \ge f(X')$ Z is (α, β) -suffix composable if: $f(Z(A)) \le (1+\beta)\delta OPT(A^t \cup B)$ then: $f(h(Z(A), Z(B), t)) \le (1 + \alpha)OPT(A^t \cup B)$

