Generalised Uniformity Testing

Tuğkan Batu Clément Canonne

Workshop on Data Summarization, University of Warwick 19 March 2018

Copyright 3 2001 United Feature Syndicate, Inc.

Asking questions such as

- Are two distributions similar?
- Are two random variables independent?
- Is the distribution monotone?
- What is the entropy of the distribution?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Asking questions such as

- Are two distributions similar?
- Are two random variables independent?
- Is the distribution monotone?
- What is the entropy of the distribution?

Access to samples from the distribution, not explicit probabilities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Asking questions such as

- Are two distributions similar?
- Are two random variables independent?
- Is the distribution monotone?
- What is the entropy of the distribution?

Access to samples from the distribution, not explicit probabilities

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

No assumptions on the underlying distribution

Asking questions such as

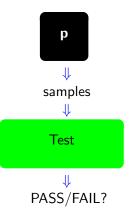
- Are two distributions similar?
- Are two random variables independent?
- Is the distribution monotone?
- What is the entropy of the distribution?

Access to samples from the distribution, not explicit probabilities

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

No assumptions on the underlying distribution

Focus: large discrete domains/alphabets



• $[n] = \{1, \ldots, n\}$ (typically known)

- **p**: black-box distribution over [*n*]
 - generates i.i.d. samples
- $p_i = \Pr[\mathbf{p} \text{ outputs } i]$
- ► Error probability < 0.01
- Sample complexity in terms of *n*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Brief History of Testing Distributions

Many results in testing of discrete distributions over domain [*n*]: uniformity, identity, closeness, independence, monotonicity, log-concavity, juntas, MHR, PBD, SIIRV, histograms,[GR00,BFR+00,BFF+01, BKR04, Pan08, LRR11, VV14, ADK15, DKN15, BFR+10, CDVV14, Can16, DK16, DKS17,...]

A Brief History of Testing Distributions

Many results in testing of discrete distributions over domain [*n*]: uniformity, identity, closeness, independence, monotonicity, log-concavity, juntas, MHR, PBD, SIIRV, histograms,[GR00,BFR+00,BFF+01, BKR04, Pan08, LRR11, VV14, ADK15, DKN15, BFR+10, CDVV14, Can16, DK16, DKS17,...]

We focus on **Uniformity.**

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Testing Uniformity

Lower bound (Impossibility):

 $\Omega(\sqrt{n})$ samples are needed

- Consider $\mathbf{p} = U_{[n]}$ and $\mathbf{p}' = U_{[n/2]}$
- In o(√n) samples from p (or p'), no repetitions (Birthday Problem)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Testing Uniformity

Lower bound (Impossibility):

 $\Omega(\sqrt{n})$ samples are needed

- Consider $\mathbf{p} = U_{[n]}$ and $\mathbf{p}' = U_{[n/2]}$
- In o(√n) samples from p (or p'), no repetitions (Birthday Problem)

Upper bound (Algorithm):

Techniques from [Goldreich Ron '00] extend to give a Uniformity Test with sample complexity $O(\sqrt{n}/\epsilon^4)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Estimate collision probability

Testing Uniformity

Lower bound (Impossibility):

 $\Omega(\sqrt{n})$ samples are needed

- Consider $\mathbf{p} = U_{[n]}$ and $\mathbf{p}' = U_{[n/2]}$
- In o(√n) samples from p (or p'), no repetitions (Birthday Problem)

Upper bound (Algorithm):

Techniques from [Goldreich Ron '00] extend to give a Uniformity Test with sample complexity $O(\sqrt{n}/\epsilon^4)$

Estimate collision probability

[Paninski '08] shows sample complexity $\Theta(\sqrt{n}/\epsilon^2)$.

Domain size *n* must be given as input.

(ロ)、(型)、(E)、(E)、 E) の(()

Domain size *n* must be given as input.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

It may be unavailable.

Domain size *n* must be given as input.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- It may be unavailable.
- It may be irrelevant.

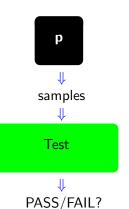
- Domain size *n* must be given as input.
 - It may be unavailable.
 - It may be irrelevant.
- Non-adaptive algorithms that always match the worst case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Domain size *n* must be given as input.
 - It may be unavailable.
 - It may be irrelevant.
- Non-adaptive algorithms that always match the worst case.

Usually not optimal for the given input distribution.

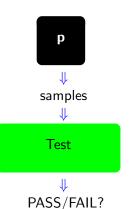
Testing Distributions Obliviously



- ▶ p: black-box distribution over unknown S ⊆ N
 - generates i.i.d. samples
- $p_i = \Pr[\mathbf{p} \text{ outputs } i]$
- ► Error probability < 0.01
- Sample complexity in terms of some f(p)?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Testing Distributions Obliviously

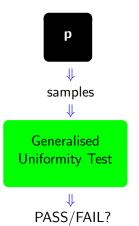


- ▶ p: black-box distribution over unknown S ⊆ N
 - generates i.i.d. samples
- $p_i = \Pr[\mathbf{p} \text{ outputs } i]$
- ► Error probability < 0.01
- Sample complexity in terms of some f(p)?

Questions:

- What should f(p)?
- How to detect when it has a large enough sample set?
- Optimal for each input distribution?

Generalised Uniformity Testing



Goal:

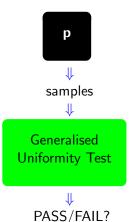
• If $\mathbf{p} = U_S$ for some $S \subset \mathbb{N}$, then PASS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ If, $\forall S \subseteq \mathbb{N}$, $\Delta(\mathbf{p}, U_S) > \epsilon$, then FAIL

 $\Delta(\cdot, \cdot)$: total variation distance

Generalised Uniformity Testing



Goal:

- If $\mathbf{p} = U_S$ for some $S \subset \mathbb{N}$, then PASS
- ▶ If, $\forall S \subseteq \mathbb{N}$, $\Delta(\mathbf{p}, U_S) > \epsilon$, then FAIL

 $\Delta(\cdot, \cdot)$: total variation distance

- How many samples are needed?
- How do we know when to stop?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

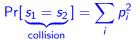
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition Collision probability of **p**: $\sum_i p_i^2$

Definition Collision probability of **p**: $\sum_{i} p_{i}^{2}$ (a.k.a., $\|\mathbf{p}\|_{2}^{2}$)

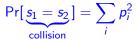
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition Collision probability of **p**: $\sum_{i} p_{i}^{2}$ (a.k.a., $\|\mathbf{p}\|_{2}^{2}$)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

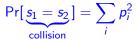
Definition Collision probability of **p**: $\sum_{i} p_{i}^{2}$ (a.k.a., $\|\mathbf{p}\|_{2}^{2}$)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma ([Goldreich Ron 00]) Using $O(\sqrt{n})$ samples, we can estimate $\|\mathbf{p}\|_2^2$ very well.

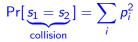
Definition Collision probability of **p**: $\sum_{i} p_{i}^{2}$ (a.k.a., $\|\mathbf{p}\|_{2}^{2}$)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma ([Goldreich Ron 00]) Using $O(\sqrt{n})$ samples, we can estimate $\|\mathbf{p}\|_2^2$ very well. *m* samples

Definition Collision probability of **p**: $\sum_{i} p_{i}^{2}$ (a.k.a., $\|\mathbf{p}\|_{2}^{2}$)



Lemma ([Goldreich Ron 00]) Using $O(\sqrt{n})$ samples, we can estimate $\|\mathbf{p}\|_2^2$ very well. m samples $\rightarrow {m \choose 2}$ pairs of samples

Definition Collision probability of **p**: $\sum_{i} p_{i}^{2}$ (a.k.a., $\|\mathbf{p}\|_{2}^{2}$)

$$\Pr[\underbrace{s_1 = s_2}_{\text{collision}}] = \sum_i p_i^2$$

Lemma ([Goldreich Ron 00]) Using $O(\sqrt{n})$ samples, we can estimate $\|\mathbf{p}\|_2^2$ very well. m samples $\rightarrow \binom{m}{2}$ pairs of samples \rightarrow estimate $\|\mathbf{p}\|_2^2$ for $m \approx \sqrt{n}$

For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.

For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Maybe we can still use ||p||²₂.

For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Maybe we can still use ||p||²₂.
 Idea: Wait until you see a collision.

- For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.
- Maybe we can still use ||p||²₂.
 More robust idea: Wait until you see k collisions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.
- Maybe we can still use ||p||²₂.
 More robust idea: Wait until you see k collisions.

Lemma

For any distribution **p**, we can estimate $\|\mathbf{p}\|_2^2$ within $1 \pm \epsilon$ using $\Theta(\frac{1}{\epsilon^2 \cdot \|\mathbf{p}\|_2})$ samples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.
- Maybe we can still use ||p||²₂.
 More robust idea: Wait until you see k collisions.

Lemma

For any distribution **p**, we can estimate $\|\mathbf{p}\|_2^2$ within $1 \pm \epsilon$ using $\Theta(\frac{1}{\epsilon^2 \cdot \|\mathbf{p}\|_2})$ samples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tight in terms of $\|\mathbf{p}\|_2$.

- For a uniform **p**, $\frac{1}{\|\mathbf{p}\|_2^2}$ is the support size.
- Maybe we can still use ||p||²₂.
 More robust idea: Wait until you see k collisions.

Lemma

For any distribution **p**, we can estimate $\|\mathbf{p}\|_2^2$ within $1 \pm \epsilon$ using $\Theta(\frac{1}{\epsilon^2 \cdot \|\mathbf{p}\|_2})$ samples.

Tight in terms of $\|\mathbf{p}\|_2$.

Lemma

Estimating $\|p\|_2^2$ requires $\Omega(\frac{1}{\|p\|_2})$ samples.

We got $\|\mathbf{p}\|_2^2$! What do we do?

We got $\|\mathbf{p}\|_2^2$! What do we do?

Two distributions can have the same norm, but different profiles.

- Two distributions can have the same norm, but different profiles.
- ▶ We need to observe 3-way collisions:

$$\Pr[s_1 = s_2 = s_3] = \sum_i p_i^3$$

(ロ)、(型)、(E)、(E)、 E) の(()

- Two distributions can have the same norm, but different profiles.
- ▶ We need to observe 3-way collisions:

$$\Pr[s_1 = s_2 = s_3] = \sum_i p_i^3$$

(ロ)、(型)、(E)、(E)、 E) の(()

- Two distributions can have the same norm, but different profiles.
- We need to observe 3-way collisions:

$$\Pr[s_1 = s_2 = s_3] = \sum_i p_i^3$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

Observation: For a fixed value for $\|\mathbf{p}\|_2$, the uniform distribution on $\frac{1}{\|\mathbf{p}\|_2^2}$ will generate the fewest 3-way collisions.

- Two distributions can have the same norm, but different profiles.
- We need to observe 3-way collisions:

$$\Pr[s_1 = s_2 = s_3] = \sum_i p_i^3$$

Observation: For a fixed value for $\|\mathbf{p}\|_2$, the uniform distribution on $\frac{1}{\|\mathbf{p}\|_2^2}$ will generate the fewest 3-way collisions.

Lemma

Let p be a distribution over $\mathbb N$ and $N\in\mathbb N$ such that

$$\frac{1-\epsilon}{N} \leq \|\mathbf{p}\|_2^2 \leq \frac{1+\epsilon}{N} \qquad \text{and} \qquad ||\mathbf{p}||_3^3 \leq \frac{1+\delta}{N^2},$$

for some $0 < \epsilon, \delta < 0.04$. Then, the ℓ_1 distance of **p** to any uniform distribution **q** can be upper bounded as

 $\Delta(\mathbf{p},\mathbf{q}) \leq 9\sqrt[3]{\delta+3\epsilon}.$

Putting It Altogether

- 1: Algorithm Test-Uniformity(\mathbf{p}, ϵ)
- 2: $\delta \leftarrow O(\epsilon^3), \ k \leftarrow \lceil \epsilon^{-18} \rceil$
- 3: $N \leftarrow 1/\text{ESTIMATE} \ell_2 \text{NORM}(\mathbf{p}, \delta)$
- 4: Keep taking samples from **p** until *k* 3-way collisions are observed or $M = \sqrt[3]{3(1-4\delta)k}N^{2/3}$ samples are taken

- 5: if more than k 3-way collisions are observed then
 6: return REJECT
- 7: **else**
- 8: return ACCEPT

Putting It Altogether

- 1: Algorithm Test-Uniformity (\mathbf{p}, ϵ)
- 2: $\delta \leftarrow O(\epsilon^3), \ k \leftarrow \lceil \epsilon^{-18} \rceil$
- 3: $N \leftarrow 1/\text{ESTIMATE} \ell_2 \text{NORM}(\mathbf{p}, \delta)$
- 4: Keep taking samples from **p** until k 3-way collisions are observed or $M = \sqrt[3]{3(1-4\delta)k}N^{2/3}$ samples are taken
- 5: **if** more than k 3-way collisions are observed **then**
- 6: return REJECT
- 7: **else**
- 8: return ACCEPT

Theorem

The test above, with probability at least 3/4, accepts a uniform distribution and rejects a distribution ϵ -far from any uniform distribution. The expected sample complexity is $\Theta(\frac{1}{\epsilon^6 \cdot ||\mathbf{p}||_3})$.

Putting It Altogether

- 1: Algorithm Test-Uniformity (\mathbf{p}, ϵ)
- 2: $\delta \leftarrow O(\epsilon^3), \ k \leftarrow \lceil \epsilon^{-18} \rceil$
- 3: $N \leftarrow 1/\text{ESTIMATE} \ell_2 \text{NORM}(\mathbf{p}, \delta)$
- 4: Keep taking samples from **p** until k 3-way collisions are observed or $M = \sqrt[3]{3(1-4\delta)k}N^{2/3}$ samples are taken
- 5: **if** more than k 3-way collisions are observed **then**
- 6: return REJECT
- 7: **else**
- 8: return ACCEPT

Theorem

The test above, with probability at least 3/4, accepts a uniform distribution and rejects a distribution ϵ -far from any uniform distribution. The expected sample complexity is $\Theta(\frac{1}{\epsilon^6 \cdot ||\mathbf{p}||_3})$.

Essentially tight. We certainly need $\Omega(\frac{1}{||\mathbf{p}||_3})$.

Instance-specific Lower Bound

Theorem

For any fixed non-uniform distribution \mathbf{q} , distinguishing between (i) $\mathbf{p} = \mathbf{q}$ (up to a permutation) and (ii) uniform \mathbf{p} requires $\Omega(1/||\mathbf{p}||_3)$ samples from \mathbf{p} .

Instance-specific Lower Bound

Theorem

For any fixed non-uniform distribution \mathbf{q} , distinguishing between (i) $\mathbf{p} = \mathbf{q}$ (up to a permutation) and (ii) uniform \mathbf{p} requires $\Omega(1/||\mathbf{p}||_3)$ samples from \mathbf{p} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Instance-specific not worst-case

Instance-specific Lower Bound

Theorem

For any fixed non-uniform distribution \mathbf{q} , distinguishing between (i) $\mathbf{p} = \mathbf{q}$ (up to a permutation) and (ii) uniform \mathbf{p} requires $\Omega(1/||\mathbf{p}||_3)$ samples from \mathbf{p} .

- Instance-specific not worst-case
- Proof uses Wishful Thinking Theorem of [Valiant11].

► Follow-up work of Diakonikolas, Kane, and Stewart 17:

▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• improve upper bound for ϵ dependence;

- ▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:
 - improve upper bound for ϵ dependence;
 - complement it with (worst-case) matching lower bound

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:
 - improve upper bound for ϵ dependence;
 - complement it with (worst-case) matching lower bound

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Extensions to other distribution testing problems

- ▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:
 - improve upper bound for ϵ dependence;
 - complement it with (worst-case) matching lower bound

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Extensions to other distribution testing problems
- Instance-specific lower bounds

- ▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:
 - improve upper bound for ϵ dependence;
 - complement it with (worst-case) matching lower bound

- Extensions to other distribution testing problems
- Instance-specific lower bounds
- Other notions of distance between distributions

- ▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:
 - improve upper bound for ϵ dependence;
 - complement it with (worst-case) matching lower bound

- Extensions to other distribution testing problems
- Instance-specific lower bounds
- Other notions of distance between distributions
 - Earth-mover distance?

- ▶ Follow-up work of Diakonikolas, Kane, and Stewart 17:
 - improve upper bound for ϵ dependence;
 - complement it with (worst-case) matching lower bound

- Extensions to other distribution testing problems
- Instance-specific lower bounds
- Other notions of distance between distributions
 - Earth-mover distance?
 - Domain with a metric?

Thank You!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ