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Testing Distributions

Asking questions such as

I Are two distributions similar?

I Are two random variables independent?

I Is the distribution monotone?

I What is the entropy of the distribution?

Access to samples from the distribution, not explicit probabilities

No assumptions on the underlying distribution

Focus: large discrete domains/alphabets
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Testing Distributions

p

⇓
samples
⇓

Test

⇓
PASS/FAIL?

I [n] = {1, . . . , n} (typically known)
I p: black-box distribution over [n]

I generates i.i.d. samples

I pi = Pr[p outputs i ]

I Error probability < 0.01

I Sample complexity in terms of n?



A Brief History of Testing Distributions

Many results in testing of discrete distributions over domain [n]:
uniformity, identity, closeness, independence, monotonicity,
log-concavity, juntas, MHR, PBD, SIIRV, histograms,
. . . [GR00,BFR+00,BFF+01, BKR04, Pan08, LRR11, VV14,
ADK15, DKN15, BFR+10, CDVV14, Can16, DK16, DKS17,. . . ]

We focus on
Uniformity.
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Testing Uniformity

Lower bound (Impossibility):

Ω(
√

n) samples are needed

I Consider p = U[n] and p′ = U[n/2]

I In o(
√

n) samples from p (or p′), no repetitions (Birthday
Problem)

Upper bound (Algorithm):

Techniques from [Goldreich Ron ’00] extend to give a Uniformity
Test with sample complexity O(

√
n/ε4)

I Estimate collision probability

[Paninski ’08] shows sample complexity Θ(
√

n/ε2).
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Shortcoming(s) of Known Results

I Domain size n must be given as input.

I It may be unavailable.
I It may be irrelevant.

I Non-adaptive algorithms that always match the worst case.

I Usually not optimal for the given input distribution.
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Testing Distributions Obliviously

p

⇓
samples
⇓

Test

⇓
PASS/FAIL?

I p: black-box distribution over
unknown S ⊆ N

I generates i.i.d. samples

I pi = Pr[p outputs i ]

I Error probability < 0.01

I Sample complexity in terms of
some f (p)?

Questions:

I What should f (p)?

I How to detect when it has a large
enough sample set?

I Optimal for each input distribution?
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Generalised Uniformity Testing

p

⇓
samples
⇓

Generalised
Uniformity Test

⇓
PASS/FAIL?

Goal:

I If p = US for some S ⊂ N, then PASS

I If, ∀S ⊆ N, ∆(p,US) > ε, then FAIL

∆(·, ·): total variation distance

I How many samples are needed?

I How do we know when to stop?



Generalised Uniformity Testing

p

⇓
samples
⇓

Generalised
Uniformity Test

⇓
PASS/FAIL?

Goal:

I If p = US for some S ⊂ N, then PASS

I If, ∀S ⊆ N, ∆(p,US) > ε, then FAIL

∆(·, ·): total variation distance

I How many samples are needed?

I How do we know when to stop?



Testing Uniformity via Collision Probability

Definition
Collision probability of p:

∑
i p2

i

(a.k.a., ‖p‖22)

Pr[ s1 = s2︸ ︷︷ ︸
collision

] =
∑
i

p2
i

Lemma ([Goldreich Ron 00])

Using O(
√

n) samples, we can estimate ‖p‖22 very well.

m samples →
(m
2

)
pairs of samples → estimate ‖p‖22 for m ≈

√
n
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Generalised Uniformity Testing
Estimating ‖p‖22

I For a uniform p, 1
‖p‖22

is the support size.

I Maybe we can still use ‖p‖22.

More robust idea: Wait until you see k collisions.

Lemma
For any distribution p, we can estimate ‖p‖22 within 1± ε using
Θ( 1

ε2·‖p‖2 ) samples.

Tight in terms of ‖p‖2.

Lemma
Estimating ‖p‖22 requires Ω( 1

‖p‖2 ) samples.
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We got ‖p‖2
2! What do we do?

I Two distributions can have the same norm, but different
profiles.

I We need to observe 3-way collisions:

Pr[s1 = s2 = s3] =
∑
i

p3
i

Observation: For a fixed value for ‖p‖2, the uniform distribution
on 1
‖p‖22

will generate the fewest 3-way collisions.

Lemma
Let p be a distribution over N and N ∈ N such that

1− ε
N
≤ ‖p‖22 ≤

1 + ε

N
and ||p||33 ≤

1 + δ

N2
,

for some 0 < ε, δ < 0.04. Then, the `1 distance of p to any
uniform distribution q can be upper bounded as

∆(p,q) ≤ 9 3
√
δ + 3ε.
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Putting It Altogether

1: Algorithm Test-Uniformity(p, ε)
2: δ ← O(ε3), k ← dε−18e
3: N ← 1/Estimate-`2-norm(p, δ)
4: Keep taking samples from p until k 3-way collisions are

observed or M = 3
√

3(1− 4δ)kN2/3 samples are taken
5: if more than k 3-way collisions are observed then
6: return REJECT
7: else
8: return ACCEPT

Theorem
The test above, with probability at least 3/4, accepts a uniform
distribution and rejects a distribution ε-far from any uniform
distribution. The expected sample complexity is Θ( 1

ε6·||p||3 ).

Essentially tight. We certainly need Ω( 1
||p||3 ).
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Instance-specific Lower Bound

Theorem
For any fixed non-uniform distribution q, distinguishing between
(i) p = q (up to a permutation) and
(ii) uniform p
requires Ω(1/||p||3) samples from p.

I Instance-specific not worst-case

I Proof uses Wishful Thinking Theorem of [Valiant11].
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Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:

I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;

I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds

I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?

I Domain with a metric?



Remarks

I Follow-up work of Diakonikolas, Kane, and Stewart 17:
I improve upper bound for ε dependence;
I complement it with (worst-case) matching lower bound

I Extensions to other distribution testing problems

I Instance-specific lower bounds
I Other notions of distance between distributions

I Earth-mover distance?
I Domain with a metric?



Thank You!


