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Asking questions such as

> Are two distributions similar?

» Are two random variables independent?
Is the distribution monotone?
What is the entropy of the distribution?
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Access to samples from the distribution, not explicit probabilities

No assumptions on the underlying distribution

Focus: large discrete domains/alphabets



Testing Distributions
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[n] ={1,..., n} (typically known)
p: black-box distribution over [n]
» generates i.i.d. samples

v
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pi = Pr[p outputs /]
Error probability < 0.01

v
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Sample complexity in terms of n?



A Brief History of Testing Distributions

Many results in testing of discrete distributions over domain [n]:
uniformity, identity, closeness, independence, monotonicity,
log-concavity, juntas, MHR, PBD, SIIRV, histograms,
...[GR00,BFR+00,BFF+01, BKR04, Pan08, LRR11, VV14,
ADK15, DKN15, BFR+10, CDVV14, Canl6, DK16, DKS17,...]
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We focus on
Uniformity.
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Testing Uniformity

Lower bound (Impossibility):
Q(y/n) samples are needed
» Consider p = Uy, and p’ = Uy 2
» In o(y/n) samples from p (or p’), no repetitions (Birthday
Problem)

Upper bound (Algorithm):
Techniques from [Goldreich Ron '00] extend to give a Uniformity
Test with sample complexity O(y/n/e*)

» Estimate collision probability

[Paninski '08] shows sample complexity ©(y/n/¢?).
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Shortcoming(s) of Known Results

» Domain size n must be given as input.

» It may be unavailable.
> It may be irrelevant.

» Non-adaptive algorithms that always match the worst case.

» Usually not optimal for the given input distribution.
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Testing Distributions Obliviously

v

p: black-box distribution over

unknown S C N
> generates i.i.d. samples
pi = Pr[p outputs /]
4

Error probability < 0.01

Sample complexity in terms of
some f(p)?

v

v

v

samples
Questions:
» What should f(p)?

‘
U » How to detect when it has a large

PASS/FAIL? enough sample set?
» Optimal for each input distribution?




Generalised Uniformity Testing

Goal:

> If p= Us for some S C N, then PASS
» If, VS C N, A(p, Us) > ¢, then FAIL
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Generalised Uniformity Testing

Goal:

> If p= Us for some S C N, then PASS
» If, VS C N, A(p, Us) > ¢, then FAIL

¢

samples

4

A(+,-): total variation distance

» How many samples are needed?

» How do we know when to stop?

J
PASS /FAIL?
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Testing Uniformity via Collision Probability

Definition
Collision probability of p: >°. p? (a.k.a., ||p[|3)

Prlsi = s | = 2
[51= 5] Z_:P,

collision

Lemma ([Goldreich Ron 00])
Using O(+/n) samples, we can estimate ||p||3 very well.

m samples — (%) pairs of samples — estimate ||p||3 for m ~ \/n
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Generalised Uniformity Testing
Estimating ||p||2

» For a uniform p, o HQ is the support size.

» Maybe we can still use ||p|3.
More robust idea: Wait until you see k collisions.

Lemma
For any distribution p, we can estimate ||p||3 within 1 + € using
@(m) samples.

Tight in terms of [|p||2.

Lemma
Estimating ||p||3 requires Q(ﬁ) samples.
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We got ||p||3! What do we do?

» Two distributions can have the same norm, but different
profiles.
> We need to observe 3-way collisions:

Prisi = & = s3] = Zp?
i

Observation' For a fixed value for ||p||2, the uniform distribution
n ”2 will generate the fewest 3-way collisions.

Lemma
Let p be a distribution over N and N € N such that
1+e€ 3 < 146

1—c¢
C<lplBs S and (bl < T

for some 0 < ¢,5 < 0.04. Then, the {1 distance of p to any
uniform distribution q can be upper bounded as

A(p,q) < 9V + 3e.



Putting It Altogether

1. Algorithm TEST-UNIFORMITY(p, €)

2:
3:
4:

° N oo

5+ O(e3), k + [e718]
N < 1/ESTIMATE-{2-NORM(p, §)
Keep taking samples from p until k 3-way collisions are
observed or M = {/3(1 — 46)kN?/3 samples are taken
if more than k 3-way collisions are observed then
return REJECT
else
return ACCEPT
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4: Keep taking samples from p until k 3-way collisions are
observed or M = {/3(1 — 46)kN?/3 samples are taken
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The test above, with probability at least 3/4, accepts a uniform
distribution and rejects a distribution e-far from any uniform
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Putting It Altogether

1. Algorithm TEST-UNIFORMITY(p, €)

2: § <+ O(e3), k « [e718]
3 N < 1/ESTIMATE-{2-NORM(p, §)
4: Keep taking samples from p until k 3-way collisions are
observed or M = {/3(1 — 46)kN?/3 samples are taken
5: if more than k 3-way collisions are observed then
6: return REJECT
7 else
8: return ACCEPT
Theorem

The test above, with probability at least 3/4, accepts a uniform
distribution and rejects a distribution e-far from any uniform
distribution. The expected sample complexity is @(m).

Essentially tight. We certainly need Q(-1-).

llpll3
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Instance-specific Lower Bound

Theorem

For any fixed non-uniform distribution q, distinguishing between
(i) p = q (up to a permutation) and

(ii) uniform p

requires Q(1/||p||3) samples from p.

> Instance-specific not worst-case

» Proof uses Wishful Thinking Theorem of [Valiant11].
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Remarks

v

Follow-up work of Diakonikolas, Kane, and Stewart 17:

» improve upper bound for € dependence;
» complement it with (worst-case) matching lower bound

v

Extensions to other distribution testing problems

v

Instance-specific lower bounds
Other notions of distance between distributions

» Earth-mover distance?
» Domain with a metric?

v
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