
Shared Memory Parallel Stream
Processing

Srikanta Tirthapura
Iowa State University

snt@iastate.edu

Joint work with Kanat Tangwongsan, Kun-Lung Wu

Workshop on Data Summarization, Warwick, 2018

mailto:snt@iastate.edu

Sequential Streaming

5/8/18 Workshop on Data Summarization 2

Input Stream Sketch,
Summary

Streaming
Algorithm

Input
Buffer

Query

Memory

Shared Memory Parallel Machines

• Server machines commonly have tens to hundreds of cores
and 100+ GB of shared memory

• How can we harness their power for stream processing?
• How best to increase throughput?
• Can we retain memory-accuracy tradeoffs?

5/8/18 Workshop on Data Summarization 3

Shared Memory Parallel Streaming

5/8/18 Workshop on Data Summarization 4

Input Stream Stream
Summary

Input
Buffer

Query

Globally
Shared
Memory

Thread 1 Thread 2 Thread p

Goals of Parallel Streaming

1. Parallel Update: When a new minibatch is received, can the sketch
be updated in parallel, increasing the throughput?

2. Query: When a query is received, can it be answered quickly?

3. Accuracy: Can the memory/accuracy tradeoff of the sequential
algorithm be preserved?

5/8/18 Workshop on Data Summarization 5

Parallel Streaming in Shared Memory
Stream is a Sequence of “Mini Batches”

5/8/18 Workshop on Data Summarization 6

Stream

Summary

Input

Buffer

Query

Globally

Shared

Memory

Thread 1 Thread 2 Thread p

B1B2B3

Each minibatch may

consist of many elements

For a parallel update, important to have a

large input to process.

Measure of Parallel Effectiveness:
Work-Depth Model

• Abstracts away the details of modeling a parallel computer
• Algorithm written as a computation graph (a DAG)

• Work of the algorithm is the total number (cost) of operations in the
computation graph

• Depth is the longest directed path from the input to the output

5/8/18 Workshop on Data Summarization 7

Example: Adding n numbers

5/8/18 Workshop on Data Summarization 8

+a1

a2 an-1 an

Work = (n-1)
Depth = (n-1)

Algorithm 1

a1 a2 an-1 an

Algorithm 2

+

a3

……. + +
+

a3 a4

+ +

+ +

+
Work = (n-1)
Depth = log2 n

Work-Depth to Speedup, Efficiency
An algorithm written using the work-depth model can be translated to other related models, such as the PRAM model.

Brent’s Theorem: Any algorithm that can be expressed as a circuit of total work W and depth D and with
constant fan-in nodes in the circuit model can be executed in O(W/P + D) steps in the CREW PRAM model.

Addition in ! "
+ log() parallel time steps on a CREW PRAM, using P processors.

Speedup with P processors = O "
+
,-./01 "

Speedup =Θ 3 as long as P = O(n/log n)

Algorithms written using the work-depth model can be translated into parallel programs using e.g. Cilk Plus (Intel)

“Gold Standard” for Parallel Algorithms in Work-Depth model:
• Work-Efficient: Work is the same order as the best sequential algorithm
• Depth is poly-logarithmic in the input size

5/8/18 Workshop on Data Summarization 9

Overview

• Parallel Streaming in Shared Memory

• Aggregation Tasks
• Random Sampling
• Frequency Estimation (Heavy-Hitter Identification)

• Comparison with Distributed Streaming

5/8/18 Workshop on Data Summarization 10

Problem 1: Random Sampling

• Let !"= size of minibatch #" and $" = ∑'()" !' the number of
elements so far. The desired sample size = s.

• Sampling Without Replacement: For each time i = 1 . . . t , maintain
random sample R of size min{s, $"} chosen uniformly without
replacement from *" = ⋃'()

" #"
5/8/18 Workshop on Data Summarization 11

BiElements so far Si-1

$",) !"

Bi+1

!"-)

Bi+2

!"-.

Sequential Reservoir Sampling Without
Replacement

• Initialization: R = {}, and Insert the first s elements in the stream into R

• When element e arrives at position i (i > s)
• With probability s/i, replace a randomly chosen element in R with e
• With probability (1-s/i), leave R unchanged

• When there is a query for a random sample
• return R

• Easy to parallelize this algorithm when a minibatch arrives

• However…. Algorithm has a work of ! "# for processing a minibatch $# with nielements

5/8/18 Iowa State University, Summer School on Big Data 12

Improved Work (Sequential) Reservoir
Sampling

• When a new minibatch Bi arrives, skip directly to the elements that will be
selected into the sample (Vitter 1985) – Algorithm Z uses a process to
generate random variable ! ", $ where n is the number of elements
processed so far

• Total work (and depth) per minibatch = % " log)*+,
)*

, much better, but
still linear in s

5/8/18 Workshop on Data Summarization 13

Minibatch of new elementsElements so far Si-1

Work-Efficient Parallel Reservoir Sampling (1)
Hyper-geometric random variable H(p,q,r) for integers p,q ≤ r

• Suppose there are q RED balls and (r − q) BLUE balls in an urn. Then
H(p,q,r) is the number of RED balls drawn in p trials where in each
trial, a ball is drawn at random from the urn without replacement.

• There is an algorithm for generating
H(p,q,r) in O(1) time (e.g. Stadlober 1990)

5/8/18 Workshop on Data Summarization 14

p balls chosen
out of r

Work-Efficient Parallel Reservoir Sampling (2)

5/8/18 Workshop on Data Summarization 15

New Minibatch BiAll Elements so far Si-1

Sample R

1. Generate H = H(s,ni,Ni) that equals how many samples in Rnew come from Bi

rather than from Si-1

2. To choose H elements from Bi in parallel

1. Generate HL, HR, how many samples in H come from BiL and from BiR

2. In Parallel

1. Generate HL elements from BiL

2. Generate HR elements from BiR

3. Replace H randomly chosen elements in R by the newly chosen elements

BiL BiR

Total Work = Order of

magnitude of change in R

Work is optimal

Depth is logarithmic in s, ni

Sample Rnew

See also Sanders et al.

ACM TOMS 2018

Work-Efficient Parallel Reservoir Sampling

• Expected work = order of magnitude of change in the sample, which
can be seen to be optimal

• Lemma: There is a work-efficient parallel algorithm with optimal (up
to constant factors) total expected work to process a minibatch and
depth logarithmic in sample size s and minibatch size ni

5/8/18 Workshop on Data Summarization 16

Comparison with Vitter 1985 (Algorithm Z)

• Algorithm Z is sequential, while ours is parallel algorithm

• Algorithm Z applies in case when the size of the input Ni is unknown,
and we have described the case when Ni is known – The unknown Ni
case can be parallelized as well
• If Ni is known, our algorithm is a better sequential algorithm as well

5/8/18 Workshop on Data Summarization 17

Alternate Approach Using Independent Data Structures

5/8/18 Workshop on Data Summarization 18

Reservoir
Sampler 1

Reservoir
Sampler 2

Reservoir
Sampler p

New Batch BiMany Independent Reservoir
Samplers

R1

R2

Rp

Alternate Approach Using Independent Data Structures

5/8/18 Workshop on Data Summarization 19

Reservoir
Sampler 1

Reservoir
Sampler 2

Reservoir
Sampler p

New Batch BiMany Independent Reservoir
Samplers

R1

R2

Rp

This Approach has Two Problems
• More space than necessary
• Processing Work is too high

Parallel Stream Sampling from a Sliding
Window

• Two versions:
• Fixed Size Window: Window size W is fixed and known at processing time

• Sequential Algorithm uses a reduction to the case of infinite window (Braverman, Ostrovsky, Zaniolo,
2009)

• Similar reduction in parallel

• Variable Size Window: Window size is a parameter that is provided at query time – common
solutions use “bottom-k” sampling (BDM02, GL08, XTB08, BOZ09)
• Each stream element gets a randomly chosen weight from [0,1]
• Sample equals the set of s elements with the smallest weights within window
• Invariant: Maintain only those elements which are not dominated by s or more elements that came later
• Parallelizing this case needs an alternate view of work-efficient reservoir sampling than is provided by

Vitter’s Algorithm Z

• Tangwongsan and Tirthapura, “Parallel Random Sampling in the Minibatch
Streaming Model”, submitted, 2018.

5/8/18 Workshop on Data Summarization 20

Work-Efficient Parallel Sampling from a
Variable-Length Sliding Window

• Lemma: Let W be the maximum possible window size. For fixed s ≤ W, there is a
data structure for Variable Window Sampling, consuming expected
O(s + slog(W/s)) space, supporting
• insert(Bi) in O(s + s ln(W/s)) work and O(log W) depth
• sample(q, t) in O(q) work and O(log W) depth.

• Algorithm Ideas:
• Size 1 sampler for a sliding window
• Divide new minibatch Bi into multiple “tracks” – each track skips s elements to

get to the next one
• Sample elements in different tracks in parallel, and post-process the result

5/8/18 Workshop on Data Summarization 21

Overview

• Parallel Streaming in Shared Memory

• Aggregation Tasks
• Random Sampling
• Frequency Estimation (Heavy-Hitter Identification)

• Comparison with Distributed Streaming

5/8/18 Workshop on Data Summarization 22

Problem 2: Heavy Hitter Identification (Frequency
Estimation)

• Consider a stream where each element e is chosen from {1,2...,M}.
Let fe denote the number of occurrences of element e.
N is the total number of elements in the stream.
Given thresholds ε < φ < 1.

• ε-Accurate Frequency Estimation: For each element e, maintain an
estimate ge such that (fe - ε N) ≤ ge ≤ fe

• Heavy Hitter Identification: Output all elements e such that fe≥ φN
and no element such that fe < (φ - ε)N

5/8/18 Workshop on Data Summarization 23

Sequential Misra-Gries Algorithm (MG)

• The MG summary (MGS) is a set of up to S = 1/ε <item,frequency> pairs

• When item e arrives:
1. If e in MGS, then increment frequency of e
2. Else

1. If MGS has less than S items, add <e,1>
2. Else, decrement frequency of each item in MGS by 1, and remove the

item if its frequency reaches 0

5/8/18 Workshop on Data Summarization 24

Parallel Heavy Hitter Identification

• Theorem: Let ε < 1. There is a parallel algorithm for ε-accurate heavy-
hitter identification that
• requires O(1/ε) space,
• adding a mini-batch of size M takes time O(M + 1/ε) work
• depth of the algorithm for adding a mini-batch poly-logarithmic in (M+1/ε).

5/8/18 Workshop on Data Summarization 25

Parallel MG Using Independent Data Structures

5/8/18 Workshop on Data Summarization 26

MGS1

MGS2

MGSp

New Batch Bi Many Independent Copies of
the MG data structure

Parallel MG Using Independent Data Structures

5/8/18 Workshop on Data Summarization 27

MGS1

MGS2

MGSp

New Batch Bi

Parallel MG Using Independent Data Structures

5/8/18 Workshop on Data Summarization 28

MGS1

MGS2

MGSp

Merge

Queries

A Mergeable Summary for Frequent Elements Can be Used (“Mergeable Summaries”, Agarwal
et al. ACM TODS 2013)

New Batch Bi

Drawbacks with Independent Data Structure Approach

1. Poor Memory-Accuracy Tradeoff: Total workspace is a factor of p
times more than the sequential MG algorithm, for the same
accuracy guarantee

2. Merging still a bottleneck for parallelization

5/8/18 Workshop on Data Summarization 29

Parallel MG Using Shared Data Structure

5/8/18 Workshop on Data Summarization 30

Single
Shared

MGS

New Batch Bi

Parallel MG Using Shared Data Structure

5/8/18 Workshop on Data Summarization 31

New Batch Bi

a, b, c, a, b, c

b, c, d, b, c, d

a, a, a, c, c, c

Parallel MG Using a Shared Data Structure

5/8/18 Workshop on Data Summarization 32

New Batch Bi

a, b, c, a, b, c

b, c, d, b, c, d

a, a, a, a, c, c

Compute Histograms of Frequencies

H
Theorem: There is a parallel algorithm buildHist
that takes a sequence a1, a2, a3,.., an, and builds a
histogram of their frequencies, using O(n) work
and O(log n) depth.

Building Block: Parallel Integer Sort (Rajasekaran
and Reif, 89) that takes a sequence of integer keys
of length n, each a between 0 and O(n) and
produces a sorted sequence using O(n) work and
O(log n) depth.

<a,6> <b,4>
<c,6> <d,2>

Parallel MG Using Shared Data Structure

5/8/18 Workshop on Data Summarization 33

a, b, c, a, b, c

b, c, d, b, c, d

a, a, a, a, c, c

H

MGS+

MGSnew

<a,6> <b,4>
<c,6> <d,2>

Combining MGS and H to get MGSnew

1. Parallel Merging of Histograms: MGS and H are histograms consisting of
<item, freq> pairs. Add up corresponding frequencies to get a new histogram
Hnew (done in parallel using linear work, using an algorithm based on hashing)
• Problem: Hnew may have more than S non-zero entries

2. Using a parallel version of QuickSelect, find an integer ⍴ such that at most S
elements of Hnew have a frequency of ⍴ or greater. (linear work parallel
algorithm)

3. Subtract ⍴ from each element in Hnew to get a summary MGSnew with at most S
non-zero entries. This is a MG-summary of all elements so far.

Correctness: A single decrement of a specific item’s counter is still accompanied by
a decrement to at least S counters corresponding to distinct items.

5/8/18 Workshop on Data Summarization 34

Parallel Streaming Heavy Hitter Identification

• Theorem: Let ε < 1. There is a parallel algorithm for ε-accurate heavy-hitter
identification that requires O(1/ε) space, such that adding a mini-batch of size M
takes work O(M + 1/ε) work. The depth of the algorithm is poly-logarithmic in (M
+ 1/ε).

• Observation:
• Matches the space-accuracy tradeoff of the sequential Misra-Gries algorithm
• Work-Efficient, if we set the mini-batch size M = Ω(1/ε)

• Also handle the sliding windows version of this problem

• Further details in: “Parallel Streaming Frequency-Based
Aggregates”, Tangwongsan, Tirthapura, Wu, ACM SPAA 2014

5/8/18 Workshop on Data Summarization 35

Shared vs. Independent Data Structures for
Heavy Hitter Identification

Single Shared Data Structure Provides
• Better space-accuracy trade-off than Independent Data Structures
• Does not require a further merge step during answering a query

Similar Results hold for other frequency-based aggregates
• Sketch-based algorithms, such as Count-Min Sketch

5/8/18 Workshop on Data Summarization 36

Other Aggregates

• Sliding Window Aggregates
• Basic Counting
• SUM
• Heavy Hitters

• Count-Min Sketch

• Further details in: “Parallel Streaming Frequency-Based Aggregates”,
Tangwongsan, Tirthapura, Wu, ACM SPAA 2014

5/8/18 Workshop on Data Summarization 37

Overview

• Parallel Streaming in Shared Memory

• Aggregation Tasks
• Random Sampling
• Frequency Estimation (Heavy-Hitter Identification)

• Comparison with Distributed Streaming

5/8/18 Workshop on Data Summarization 38

Parallel Streaming in Distributed Memory

5/8/18 Shonan Workshop on Processing Big Data Streams 39

Events

Thread 1

Thread 2

Thread p

Splitter Merge

Queries

1. Communication Cost
2. Load Balance

Distributed Streaming

5/8/18 Workshop on Data Summarization 40

Queries
Server 1

(Warwick)

Server 2
(Bangalore)

Server 3
(Iowa)

Coordinator

1. Communication Cost Important
2. Load Balance not under control

of algorithm

Many works on this
Cormode 2013 for a
survey

Parallel and Distributed Streaming Models

Shared Memory Parallel

Distributed Memory Parallel

Distributed Streaming

5/8/18 Workshop on Data Summarization 41

More General

Streaming, Parallel, Distributed

5/8/18 Workshop on Data Summarization 42

Sequential
Streaming

Single Pass
Processing of

Data

Bounded
Memory

Processing time
per item, Query

time
Distributed
Streaming

Message
Complexity

Parallel
Streaming

Parallel Time
and Work

Conclusions

• Other Tasks in Parallel Streaming?
• Clustering
• Graph Algorithms
• More expensive, the better

• Relations between different streaming models

• Parallel and Incremental Algorithms

5/8/18 Workshop on Data Summarization 43

