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Sequential Streaming
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Shared Memory Parallel Machines

• Server machines commonly have tens to hundreds of cores 
and 100+ GB of shared memory

• How can we harness their power for stream processing?
• How best to increase throughput?
• Can we retain memory-accuracy tradeoffs?
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Shared Memory Parallel Streaming
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Goals of Parallel Streaming

1. Parallel Update: When a new minibatch is received, can the sketch 
be updated in parallel, increasing the throughput?

2. Query: When a query is received, can it be answered quickly?

3. Accuracy: Can the memory/accuracy tradeoff of the sequential 
algorithm be preserved?
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Parallel Streaming in Shared Memory
Stream is a Sequence of “Mini Batches”
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Measure of Parallel Effectiveness:
Work-Depth Model

• Abstracts away the details of modeling a parallel computer
• Algorithm written as a computation graph (a DAG)

• Work of the algorithm is the total number (cost) of operations in the 
computation graph

• Depth is the longest directed path from the input to the output
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Example: Adding n numbers
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Work-Depth to Speedup, Efficiency
An algorithm written using the work-depth model can be translated to other related models, such as the PRAM model.

Brent’s Theorem: Any algorithm that can be expressed as a circuit of  total work W and depth D and with 
constant fan-in nodes in the circuit model can be executed in O(W/P + D) steps in the CREW PRAM model.

Addition in ! "
# + log( ) parallel time steps on a CREW PRAM, using P processors.

Speedup with P processors = O "
+
,-./01 "

Speedup =Θ 3 as long as P = O(n/log n)

Algorithms written using the work-depth model can be translated into parallel programs using e.g. Cilk Plus (Intel)

“Gold Standard” for Parallel Algorithms in Work-Depth model:
• Work-Efficient: Work is the same order as the best sequential algorithm
• Depth is poly-logarithmic in the input size
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Overview

• Parallel Streaming in Shared Memory

• Aggregation Tasks
• Random Sampling
• Frequency Estimation (Heavy-Hitter Identification)

• Comparison with Distributed Streaming 
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Problem 1: Random Sampling

• Let !"= size of minibatch #" and $" = ∑'()" !' the number of 
elements so far. The desired sample size = s.

• Sampling Without Replacement: For each time i = 1 . . . t , maintain 
random sample R  of size min{s, $"} chosen uniformly without 
replacement from *" = ⋃'()

" #"
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Sequential Reservoir Sampling Without 
Replacement

• Initialization: R = {}, and Insert the first s elements in the stream into R

• When element e arrives at position i (i > s)
• With probability s/i, replace a randomly chosen element in R with e
• With probability (1-s/i), leave R unchanged

• When there is a query for a random sample
• return R

• Easy to parallelize this algorithm when a minibatch arrives

• However…. Algorithm has a work of ! "# for processing a minibatch $# with nielements
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Improved Work (Sequential) Reservoir 
Sampling

• When a new minibatch Bi arrives, skip directly to the elements that will be 
selected into the sample (Vitter 1985) – Algorithm Z uses a process to 
generate random variable ! ", $ where n is the number of elements 
processed so far

• Total work (and depth) per minibatch = % " log )*+,
)*

, much better, but 
still linear in s
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Work-Efficient Parallel Reservoir Sampling (1)
Hyper-geometric random variable H(p,q,r) for integers p,q ≤ r

• Suppose there are q RED balls and (r − q) BLUE balls in an urn. Then 
H(p,q,r) is the number of RED balls drawn in p trials where in each 
trial, a ball is drawn at random from the urn without replacement. 

• There is an algorithm for generating 
H(p,q,r) in O(1) time (e.g. Stadlober 1990)
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Work-Efficient Parallel Reservoir Sampling (2)
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1. Generate H = H(s,ni,Ni) that equals how many samples  in Rnew come from Bi

rather than from Si-1

2. To choose H elements from Bi in parallel 

1. Generate HL, HR, how many samples in H come from  BiL and from BiR

2. In Parallel

1. Generate HL elements from BiL

2. Generate HR elements from BiR

3. Replace H randomly chosen elements in R by the newly chosen elements

BiL BiR

Total Work = Order of 

magnitude of change in R

Work is optimal

Depth is logarithmic in s, ni

Sample Rnew

See also Sanders et al. 

ACM TOMS 2018



Work-Efficient Parallel Reservoir Sampling

• Expected work = order of magnitude of change in the sample, which 
can be seen to be optimal

• Lemma: There is a work-efficient parallel algorithm with optimal (up 
to constant factors) total expected work to process a minibatch and 
depth logarithmic in sample size s and minibatch size ni
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Comparison with Vitter 1985 (Algorithm Z)

• Algorithm Z is sequential, while ours is parallel algorithm

• Algorithm Z applies in case when the size of the input Ni is unknown, 
and we have described the case when Ni is known – The unknown Ni
case can be parallelized as well
• If Ni is known, our algorithm is a better sequential algorithm as well
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Alternate Approach Using Independent Data Structures
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Alternate Approach Using Independent Data Structures
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Parallel Stream Sampling from a Sliding 
Window

• Two versions:
• Fixed Size Window: Window size W is fixed and known at processing time 

• Sequential Algorithm uses a reduction to the case of infinite window (Braverman, Ostrovsky, Zaniolo, 
2009)

• Similar reduction in parallel

• Variable Size Window: Window size is a parameter that is provided at query time – common 
solutions use “bottom-k” sampling (BDM02, GL08, XTB08, BOZ09)
• Each stream element gets a randomly chosen weight from [0,1]
• Sample equals the set of s elements with the smallest weights within window
• Invariant: Maintain only those elements which are not dominated by s or more elements that came later
• Parallelizing this case needs an alternate view of work-efficient reservoir sampling than is provided by 

Vitter’s Algorithm Z

• Tangwongsan and Tirthapura, “Parallel Random Sampling in the Minibatch
Streaming Model”, submitted, 2018.
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Work-Efficient Parallel Sampling from a 
Variable-Length Sliding Window

• Lemma: Let W be the maximum possible window size. For fixed s ≤ W, there is a 
data structure for Variable Window Sampling, consuming expected 
O(s + slog(W/s)) space, supporting
• insert(Bi) in O(s + s ln(W/s)) work and O(log W) depth
• sample(q, t) in O(q) work and O(log W) depth.

• Algorithm Ideas:
• Size 1 sampler for a sliding window
• Divide new minibatch Bi into multiple “tracks” – each track skips s elements to 

get to the next one
• Sample elements in different tracks in parallel, and post-process the result
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Overview

• Parallel Streaming in Shared Memory

• Aggregation Tasks
• Random Sampling
• Frequency Estimation (Heavy-Hitter Identification)

• Comparison with Distributed Streaming 
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Problem 2: Heavy Hitter Identification (Frequency 
Estimation)

• Consider a stream where each element e is chosen from {1,2...,M}. 
Let fe denote the number of occurrences of element e. 
N is the total number of elements in the stream. 
Given thresholds ε < φ < 1.

• ε-Accurate Frequency Estimation: For each element e, maintain an 
estimate ge such that (fe - ε N) ≤ ge ≤ fe

• Heavy Hitter Identification: Output all elements e such that fe≥ φN
and no element such that fe < (φ - ε )N 
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Sequential Misra-Gries Algorithm (MG)

• The MG summary (MGS) is a set of up to S = 1/ε <item,frequency> pairs

• When item e arrives:
1. If e in MGS, then increment frequency of e
2. Else

1. If MGS has less than S items, add <e,1> 
2. Else, decrement frequency of each item in MGS by 1, and remove the 

item if its frequency reaches 0
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Parallel Heavy Hitter Identification

• Theorem: Let ε < 1. There is a parallel algorithm for ε-accurate heavy-
hitter identification that 
• requires O(1/ε) space, 
• adding a mini-batch of size M takes time O(M + 1/ε) work
• depth of the algorithm for adding a mini-batch poly-logarithmic in (M+1/ε).
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Parallel MG Using Independent Data Structures
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Parallel MG Using Independent Data Structures
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Parallel MG Using Independent Data Structures
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Drawbacks with Independent Data Structure Approach

1. Poor Memory-Accuracy Tradeoff: Total workspace is a factor of p 
times more than the sequential MG algorithm, for the same 
accuracy guarantee

2. Merging still a bottleneck for parallelization
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Parallel MG Using Shared Data Structure
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Parallel MG Using Shared Data Structure
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Parallel MG Using a Shared Data Structure
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Compute Histograms of Frequencies

H
Theorem: There is a parallel algorithm buildHist
that takes a sequence a1, a2, a3,.., an, and builds a 
histogram of their frequencies, using O(n) work 
and O(log n) depth.

Building Block: Parallel Integer Sort (Rajasekaran
and Reif, 89) that takes a sequence of integer keys 
of length n, each a between 0 and O(n) and  
produces a sorted sequence using O(n) work and 
O(log n) depth.

<a,6> <b,4> 
<c,6> <d,2>



Parallel MG Using Shared Data Structure
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Combining MGS and H to get MGSnew

1. Parallel Merging of Histograms: MGS and H are histograms consisting of 
<item, freq> pairs. Add up corresponding frequencies to get a new histogram 
Hnew (done in parallel using linear work, using an algorithm based on hashing)
• Problem: Hnew may have more than S non-zero entries

2. Using a parallel version of QuickSelect, find an integer ⍴ such that at most S 
elements of Hnew have a frequency of ⍴ or greater. (linear work parallel 
algorithm)

3. Subtract ⍴ from each element in Hnew to get a summary MGSnew with at most S 
non-zero entries. This is a MG-summary of all elements so far.

Correctness: A single decrement of a specific item’s counter is still accompanied by 
a decrement to at least S counters corresponding to distinct items.
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Parallel Streaming Heavy Hitter Identification

• Theorem: Let ε < 1. There is a parallel algorithm for ε-accurate heavy-hitter 
identification that requires O(1/ε) space, such that adding a mini-batch of size M 
takes work O(M + 1/ε) work. The depth of the algorithm is poly-logarithmic in (M 
+ 1/ε).

• Observation:
• Matches the space-accuracy tradeoff of the sequential Misra-Gries algorithm
• Work-Efficient, if we set the mini-batch size M = Ω(1/ε)

• Also handle the sliding windows version of this problem

• Further details in: “Parallel Streaming Frequency-Based 
Aggregates”, Tangwongsan, Tirthapura, Wu, ACM SPAA 2014
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Shared vs. Independent Data Structures for 
Heavy Hitter Identification

Single Shared Data Structure Provides
• Better space-accuracy trade-off than Independent Data Structures
• Does not require a further merge step during answering a query

Similar Results hold for other frequency-based aggregates
• Sketch-based algorithms, such as Count-Min Sketch
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Other Aggregates

• Sliding Window Aggregates
• Basic Counting
• SUM
• Heavy Hitters

• Count-Min Sketch

• Further details in: “Parallel Streaming Frequency-Based Aggregates”, 
Tangwongsan, Tirthapura, Wu, ACM SPAA 2014
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Overview

• Parallel Streaming in Shared Memory

• Aggregation Tasks
• Random Sampling
• Frequency Estimation (Heavy-Hitter Identification)

• Comparison with Distributed Streaming 
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Parallel Streaming in Distributed Memory
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Distributed Streaming
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Parallel and Distributed Streaming Models

Shared Memory Parallel

Distributed Memory Parallel

Distributed Streaming
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Streaming, Parallel, Distributed
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Conclusions

• Other Tasks in Parallel Streaming?
• Clustering
• Graph Algorithms
• More expensive, the better

• Relations between different streaming models

• Parallel and Incremental Algorithms
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