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I 109 nodes

Biological networks:
Brain connectome

I 109 nodes

Computer networks:
Web graph

I 232 nodes

Road networks: USA
map in Google Maps
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nodes

5/26



Streaming algorithms

BIG graphs

Social networks:
Google+,Facebook
and Twitter

I 109 nodes

Biological networks:
Brain connectome

I 109 nodes

Computer networks:
Web graph

I 232 nodes

Road networks: USA
map in Google Maps

I 108 intersection
nodes

5/26



Streaming algorithms

BIG graphs

Social networks:
Google+,Facebook
and Twitter

I 109 nodes

Biological networks:
Brain connectome

I 109 nodes

Computer networks:
Web graph

I 232 nodes

Road networks: USA
map in Google Maps

I 108 intersection
nodes

5/26



Streaming algorithms

BIG graphs

Social networks:
Google+,Facebook
and Twitter

I 109 nodes

Biological networks:
Brain connectome

I 109 nodes

Computer networks:
Web graph

I 232 nodes

Road networks: USA
map in Google Maps

I 108 intersection
nodes

5/26



Streaming algorithms

BIG graphs

Social networks:
Google+,Facebook
and Twitter

I 109 nodes

Biological networks:
Brain connectome

I 109 nodes

Computer networks:
Web graph

I 232 nodes

Road networks: USA
map in Google Maps

I 108 intersection
nodes

5/26



Streaming algorithms
... on graphs

I Model

I Vertex set V is known
I Edges arrive one-by-one
I Cannot store all the edges

I Cannot control which order edges arrive in
I More general model also allows edges to be deleted

I Still want to solve our favorite problems
I Max Matching (MM)
I Min Vertex Cover (VC)
I . . . . . .

I Easy upper bound for space is O(n2)

I Finding a min vertex cover has Ω(n2) lower bound
I Reduction from Index
I Essentially need to have stored all edges
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Why, and what are parameterized algorithms?
Potential drawback of Classical Complexity?

I Classical complexity measures the running time of an algorithm as a
function of the input size alone.

I Maximum Matching can be solved in O(m
√
n) time

I Consider the problems of Independent Set and Vertex Cover.

Independent Set
Input: An undirected graph G = (V , E)
Output : Find a set S ⊆ V of maximum size
such that no two vertices of S form an edge.

Vertex Cover
Input: An undirected graph G = (V , E)
Output : Find a set X ⊆ V of minimum size
such that X intersects every edge.

I S is an independent set if and only if V \ S is a vertex cover

I Hence, the classical complexity of Independent Set and Vertex
Cover is the same!

I Any f (n) algorithm for one problem also works for the other.
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Why, and what are parameterized algorithms?
Adding a parameter

I In the classical Vertex Cover problem, the goal is to find a
minimum independent set.

I In the parameterized Vertex Cover problem, given a parameter
k, we only want to know if G has a vertex cover of size at most k or
not.

I The goal is to develop fast algorithms when k is small, even if the
input size n is large.

Definition: A parameterized problem with parameter k and input size
n is said to be fixed-parameter tractable (FPT) if it can be solved in
time f (k) · nO(1), for some function f .
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Why, and what are parameterized algorithms?
Parameterized Vertex Cover vs Independent Set

k-Vertex Cover
Input: An undirected graph G = (V , E)
Output : Does there exist a set X ⊆ V of size
≤ k such that X intersects every edge.

k-Independent Set
Input: An undirected graph G = (V , E)
Output : Does there exist a set S ⊆ V of size
≥ k such that no two vertices of S form an
edge.

I Pick any edge uv , and branch on
choosing either u or v

I Binary search tree of depth k

I 2k · nO(1) algorithm

I
(
n
k

)
= nO(k) is trivial

I No f (k) · no(k) algorithm for any f
(under ETH)

I Thus, Vertex Cover and Independent Set are very different
with respect to parameterized complexity

I Although they were equivalent with respect to classical complexity

I So this notion of parameterized (time) complexity actually does give
us some insight .....
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Parameterized Algorithms
Complexity Classes

I The complexity classes of parameterized complexity are:

FPT ⊆W[1] ⊆W[2] ⊆ . . . ⊆W[i] ⊆ . . .

I FPT: Solvable in f (k) · nO(1) time for some function f
I The “P” of the parameterized world

I W [i ]-hard: Do not expect f (k) · nO(1) algorithms for any f
I The “NP-hard” of the parameterized world
I The classes W [i ] have technical definitions which we skip here
I Clique is an example of a W[1]-hard problem
I Set Cover is an example of a W[2]-hard problem
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Parameterized Algorithms
Kernels

I Different from all the kernels you’ve heard before in this workshop!

I Kernel is the small, essential part of the big, hard input
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Parameterized Algorithms
Kernels

I Kernelization is a formal way of preprocessing the input graph

I Consider an instance (G , k) of k-VC

I Can we build a new graph (G ′, k ′) in time nO(1) such that
I |G ′| = g(k)
I k ′ = h(k)
I (G , k) and (G ′, k ′) are equivalent

I Such a graph G ′ is called as a g(k)-sized kernel for k-VC
I Observation: Any vertex of deg > k has to be part of every VC of

size ≤ k
I Otherwise we need to include all its neighbors into the VC!

I Consider the following kernel”
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Parameterized Algorithms
Kernel ⇔ FPT

I Kernel ⇒ FPT
I Suppose we have g(k)-sized kernel
I nO(1) + exp(g(k)) = r(k) · nO(1)

I FPT ⇒ Kernel
I Suppose we have f (k) · nc algorithm
I Run the algorithm for nc+2 time
I If it actually terminates, we have trivial kernel
I Otherwise f (k) · nc > nc+2 ⇒ f (k) > n2, and whole graph is

f (k)-kernel
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Parameterized Streaming Algorithms
How about we introduce some parameters?

What if we try to design streaming algorithms for the
parameterized versions of the problem, where the space is a

function of both n and k (the solution size)?

k-Vertex Cover
Input: An undirected graph G = (V , E)
Output : Does there exist a set X ⊆ V of size
≤ k such that X intersects every edge.

I Space requirement?
I f (k)
I f (k) · poly log n
I f (k) ·

√
n

I f (k) · n
I f (k) · n · poly log n
I O(n2)

I Play same “game” as before, but for space now instead of time!

I Maybe implement kernels in streaming model?
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Parameterized Streaming Algorithms
O(k2) space algorithm for k-VC in insertion-only streams
C., Cormode, Hajiaghayi, Monemizadeh [’15]

I Maintain a maximal matching M
I Let the vertices of the matching be VM

I For every x ∈ VM
I Keep upto k neighbors (and corresponding

edges) s1 t1

s2 t2

sp tp
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I If p > k, say NO
I Hence p ≤ k

I Let GM be the graph that we store
I Everything except green edges

I Lemma: VC(G) ≤ k ⇔ VC(GM) ≤ k
I Hence, it is safe to only store the smaller

graph GM

I Idea: Any vertex of degree > k must be in
every VC of size ≤ k; otherwise we need
to choose all its neighbors in the VC

Space required is 2p · (k + 1) = O(k2) vertices and edges
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Parameterized Streaming Algorithms
Ω(k2) lower bound for k-VC in insertion-only streams
C., Cormode, Hajiaghayi, Monemizadeh [2015]

I Index problem
I Alice has X = (X1,X2, . . . ,XN ) ∈ {0, 1}N
I Bob has index i ∈ [N], and wants to find Xi
I Lower bound of Ω(N) bits

I Set k =
√
N

I Fix a bijection [k]× [k]→ [N]

I Introduce 2k vertices
I v1, v2, . . . , vk
I w1,w2, . . . ,wk

I For each (i , j) ∈ [k]× [k]
I Alice adds an edge vi − wj iff Xi,j = 1

I Let Bob’s index be (i∗, j∗)

I For each (i , j) ∈ [k]× [k] such that i 6= i∗

and j 6= j∗

I Bob adds two leaves each to vi and wj

VC(G ) = 2k − 2 if and
only if Xi∗,j∗ = 0

v1 v2 vi∗ vk

w1 w2 wj∗ wk
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Parameterized Streaming algorithms
Can we handle edge-deletions?

I C., Cormode, Hajiaghayi, Monemizadeh [’15]
I O(nk · logO(1) n) space algorithm for k-VC in insertion-deletion

streams

I C., Esfandiari, Cormode, Hajiaghayi, Monemizadeh [’15]
I Promise: VC is ≤ k at every timestamp
I O(k2 · logO(1) n) space algorithm for k-VC in insertion-deletion

streams

I C., Cormode, Esfandiari, Hajiaghayi, Mcgregor, Monemizadeh,
Vorotnikova [’16]

I Promise: VC is ≤ k at end of stream
I O(k2 · logO(1) n) space for k-VC in insertion-deletion streams
I Also works for Maximum Matching
I Generalizes to d-uniform hypergraphs
I Sketch on next slide ...
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Parameterized Streaming algorithms
O(k2 · poly log n) space algorithm for k-VC in insertion-deletion streams
C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [’16]

I Promise: VC ≤ k at end of stream

I Color vertices using O(k) colors
I Pick coloring from a family of pairwise independent hash functions

I Forget edges within a color class

I For every pair of color classes
I Pick one edge u.a.r using `0-sampler

I Let G ′ be resulting graph

I With probability 1/2 it holds that
I MM(G) = MM(G ′)
I VC(G) = VC(G ′)

I G ′ is randomized kernel

I Space bound
I There are O(k2) pairs of color classes
I For each pair of color classes we use a `0-sampler
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Parameterized Streaming algorithms
O(k2 · poly log n) space algorithm for k-MM in insertion-deletion streams
C., Cormode, Esfandiari, Hajiaghayi, McGregor, Monemizadeh, Vorotnikova [’16]

I Two applications in non-parameterized streaming algorithms which
use this algorithm as sub-routine

I O(n1/3)-approximation for MM in dynamic streams in O(n · poly log n)
space

I First sublinear approximation for dynamic streams in semi-streaming model

I O(1)-approximation for estimating MM size in planar dynamic
streams in O(n4/5) space

I First sublinear space constant-factor approximation for estimating MM size in planar
dynamic streams
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O(k2 · poly log n) space algorithm for k-MM in insertion-deletion streams
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Implemented on some real-world BIG data...

http://projects.csail.mit.edu/dnd/
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Parameterized Streaming algorithms
Other examples

I Some problems have Ω(n) lower bound for constant k
I Rules out f (k) · n1−β space algorithms for any β > 0

I k-FVS (Feedback Vertex Set)

I Is there a set of ≤ k vertices whose deletion makes the graph acyclic?
I Ω(n) lower bound for k = 0
I Observation: FVS ≤ k implies graph can have ≤ O(k · n) edges

I k-Path

I Is there a path of length ≥ k
I Ω(n) lower bound for k = 3
I Observation: At least nk edges implies existence of k-path
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Looking forward ....

I I’m not aware of that many results on parameterized streaming

I Parameter does not have to be size of solution!
I Treewidth
I Max degree
I Girth
I . . . . . .

I Lower bounds ⇒ birth of new (types of) algorithms

I Let X be a graph problem with an Ω(n) lower bound
I Say can design f (k) · logO(1) n space algorithm for some parameter k
I This means that the parameter k was a barrier to small-space

algorithms
I Helps to pinpoint the reason(s) for intractability!

I Choose your favorite (graph) problems and parameters!
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