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Sailing the Corpus Sea: 

Tools for Visual 

Discovery of Stories 

in Blogs and

News

Bettina Berendt

www.cs.kuleuven.be/
~berendt
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About me
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Thanks to ...

Daniel Trümper

Tool at http://www.cs.kuleuven.be/~berendt/PORPOISE/

Ilija Subašić

Tool forthcoming; 

all beta testers and experiment participants welcome!
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First motivation: 

Global+local interaction; beyond “similar documents“

with respect to what?
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Solution vision: 

Sailing the Internet

Global

Analysis

Search

Local

analysis
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Solution approach: Architecture & states overview (version 1)

Construct composite-similarity neighbourhood
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Retrieval and preprocessing

• Crawler / wrapper (uses Yahoo! / Google News; Blogdigger)

• Translator (uses Babelfish)

• Preprocessing (uses Textgarden, Terrier)

• Named-entity recognition (uses GATE, OpenCalais)

• Similarity Computation

Web

Source doc.s database
Retrieval & Preprocessing
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8Ontology learning (1)

Tool: Blaž Fortuna: http://blazfortuna.com/projects/ontogen
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9Ontology learning (2)
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Inspection of ontology and instances
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Inspection of documents
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More on documents
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The neighbourhood of a document
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Constructing the similarity measure & neighbourhood (I)
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Constructing the similarity measure & neighbourhood (II)
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Constructing the similarity measure & neighbourhood (III)

A news

source

A German-

language blog

Most 

neighbours

are blogs

Most 

neighbours

are English-

language

blogs

English blog

German blog

English news
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Comparing documents
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Comparing documents; utilizing multilingual sources
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Refocusing
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Structuring a neighbourhood
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Ex.: Finding a “story“
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Going further: Towards STORIES

Construct composite-similarity neighbourhood *

Select

Document *

Aspect-based similarity search*

Build

ontology

Select

neighbour-

hood *

Search

Global

Analysis

Local

analysis
Refocus *

Source doc.s database*Ont. Learning (Ontogen)

Import ontology *

Web

Retrieval & Preprocessing *

Specify sources & filters *

* TIME

* HUMAN LEARNING

1. Learn an event model

2. Do this in a way that

encourages the user‘s own sense-making
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Going further: Architecture and states (version 2)

Construct composite-similarity neighbourhood

Select

Document

Aspect-based similarity search

Build

Event model

Select

neighbour-

hood

Search

Global

Analysis

Local

analysis
Refocus

Source doc.s database1. Learn an event model

2. Do this in a way that

encourages the user‘s own sense-making

Web

Retrieval & Preprocessing

Specify sources & filters

* TIME

* HUMAN LEARNING
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Solution approach 1: Find latent topics

Tool: Blaž Fortuna : http://docatlas.ijs.si

• temporal development only by

comparative statics

• no „drill down“ possible

• no fine-grained relational information

���� lacks structure
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Solution approach 2: Temporal latent topics

Mei & Zhai, PKDD 2005

• no fine-grained relational information

• “themes“ are fixed by the algorithm

• no „drill down“ possible

���� no combination of machine and 

human intelligence
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The ETP3 problem

Evolutionary theme patterns discovery, summary & exploration

1. identify topical sub-structure in a set (generally, a time-indexed

stream) of documents constrained by being about a common topic

2. show how these substructures emerge, change, and disappear

(and maybe re-appear) over time

3. give users intuitive and interactive interfaces for exploring the topic

landscape and the underlying documents

and for their own sense-making

– use machine-generated summarization only as a starting point!
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Ingredients of a solution
to ETP3 = Evolutionary theme patterns discovery, summary and exploration

Document / text pre-processing

Document summarization strategy

Selection approach for concepts

Similarity measure to determine relations

Burstiness measure

Interaction approach

STORIES

• Template recognition

• Multi-document named entities

• Stopword removal, lemmatization

• no topics, but salient concepts & relations

• time window; word-span window

• concepts = words or named entities

• salient concept = high TF & involved 

in a salient relation, time-indexed

• bursty co-occurrence

• time relevance, 

a “temporal co-occurrence lift”

• Graphs (& layout)

• Comparative statics or 

morphing

• Drill-down: 

“uncovering” relations

• Links to documents (in 

progress)

ETP3
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“Powerpoint demo“
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An event: a missing child
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A central figure emerges in the police investigations
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Uncovering more details
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Uncovering more details
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An eventless time
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The story and the underlying documents
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Story-space

navigation by

uncovering

and 

advanced

document

search
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Story-space 

search: 

Changes in 

story graphs 

mark the

advent of an 

event
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Data collection and preprocessing

� Articles from Google News 05/2007 – 11/2007 for search term
“madeleine mccann“

� (there was a Google problem in the December archive)

� Only English-language articles

� For each month, the first 100 hits

� Of these, all that were freely available ���� 477 documents

� Preprocessing:

� HTML cleaning

� tokenization

� stopword removal
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Story elements

� content-bearing words

� the 150 top-TF words without stopwords
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Story stages: co-occurrence in a window

“mother“ and “suspect“ co-occur

• in a window of size ≥ 6 (all words)

• in a window of size ≥ 2 (non-stopwords only)
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Salient story elements

1. Split whole corpus T by week (17 = 30 Apr + until 44 = 12 Nov +)

2. For each week

� Compute the weights for corpus t for this week

3. Weight = 

� Support of co-occurrence of 2 content-bearing words w1, w2 in t = 

(# articles from t containing both w1, w2 in window) / (# all articles in t)

4. Threshold

� Number of occurrences of co-occurrence(w1, w2) in t ≥ θ1 (e.g., 5)

� Time-relevance TR of co-occurrence(w1, w2) = 

support(co-occurrence(w1, w2)) in t / support(co-occurrence(w1, w2)) in T ≥

θ2 (e.g., 2) *

5. Rank by TR, for each week identify top 2

6. Story elements = peak words = all elements of these top 2  pairs (# = 38)
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Salient story stages, and story evolution

7. Story stage = co-occurrences of peak words in t

� For each week t: aggregate over t-2, t-1, t ���� moving average

8. Story evolution = how story stages evolve over the t in T 
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Evaluations (so far ...)

3. Learning effectiveness

� Document search with story graphs leads to averages of

� 75% accuracy on judgments of story fact truth

� 3.4 nodes/words per query

1. Information retrieval quality

� Challenge: What is the ground truth

� ���� Build on Wikipedia

� Edges – events: up to 80% recall, ca. 30% 

precision

2. Search quality

� Story subgraphs index coherent document

clusters
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Summary

Navigation in story space ���� story building

+

Document search

+ 

Navigation in document space

lead to understandable, useful + intuitive interfaces
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The Future

� Better language processing

� Linkage information!

� Opinion mining
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Thanks!
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