Achilles Ahimbisibwe, Research Assistant

Workshop on Energy in Low Income Tropical Housing,

Comparison As A Strategy For Low EE Construction

ELITH

KМ

Context

- Widespread apathy and misconceptions around sustainability (Green Wash)
- ELITH project engages built environment professionals at different levels,
- Themes:

Development and Resilience.

Resource Efficiency: Firewood

Domestic Wood Usage

- 3/4 of households in Uganda use firewood for cooking
- 1/5 five households, 21% use charcoal.
- Biomass fuels constitute the main fuel for cooking for 96% of households.

Sourcing wood;

- 72% got it from the Bush/Forest,
- 16% got it from own plantations,
- 13% bought from the market.

THE UNIVERSITY OF

WARWICK

 Firewood from the bush/forest has implications on environment protection.

UNIVERSITY OF

(UBOS 2014)

popular Species

Sesbania sesban, desired by 85%

WARWICK

Eucalyptus spp., with 83%,

Calliandra calothyrsus (73%),

Ricinus communis (68%),

Ficus natalensis (63%) and

Mangifera indica (58%)

Good combustion characteristics (produce quality fire with hot

UNIVERSITY OF

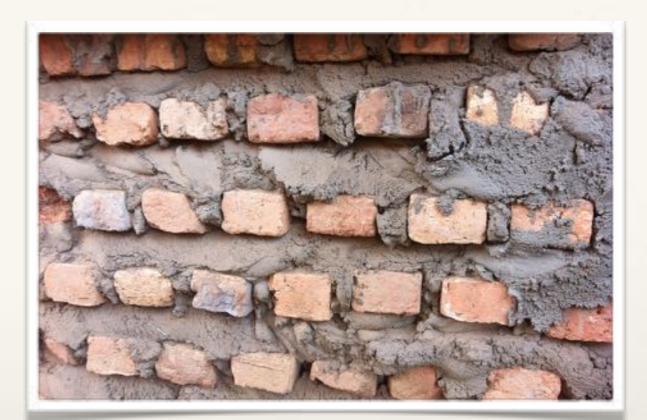
CAMBRIDGE

flame, produce less smoke and burn for a longer period)

* 9 Tonnes per kiln

EPSRC

- Losing Indigenous species
- Rushing Eucalyptus plantation
- Rain or Strong wind 40% losses

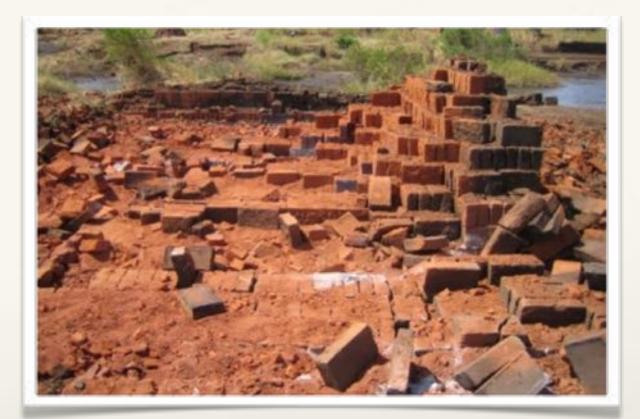

DFID

CHANGE

Housing NEED Vs Construction Practice

Who is Building Uganda?

- * Homeowner
- Building technician
- Local artisan
- * Engineer
- Architect



Other associated waste

Fired Clay Brick

Layer	Element	t (m)	Volume	EE - MJ
1	Plaster	0.025	0.025	97.2
2	Fired Clay Brick	0.120	0.105	1,620.36
3	Plaster	0.025	0.025	97.2
4	Cement Mortar	0.120	0.070	167.61

- + Traditional
- + Popular
- Revised Alternative

Brick Wall Concrete Wall ISSB Wall

CAMBRIDGE

=	1,982.37 MJ
=	547.43 MJ
=	299.40 MJ

The University of Nottingham Ningbo, China The Inventory for Carbon and Energy (ICE) tool provides a summaried database for Embodied Energy and Carbon Coefficients estimated from UK industial fuel consumption data; listed below are a **few** materials from the tool that one can use to test wall thickness and material choices to estimate walling choice Energy values.

Material	EE - MJ/kg	Estimated from UK industrial fuel consumption data	
BRICK			
Fired Clay Brick	6.43	Computed by ELITH team in Uganda by measuring fuel at different kilns in Nkozi area	
General (Common Brick)	3.00		
Limestone	0.85		
EXAMPLE: Single Brick	6.9 MJ per brick	Assuming 2.3KG per brick	
MORTAR			
Mortar (1:4)	1.11		
Mortar (1:6)	0.85		
Mortar (1:1:6 Cement:Lime:Sand mix)	1.31		
Mortar (1:2:9 Cement:Line:Sand mix)	1.03		
ISSB			
Cement stabilised soil @ 5%	0.68	Assumed 5% cement conten	
Cement stabilised soil @ 8%	0.83	Assumed B% cement conten	
CONCRETE BLOCK			
Block - 8 MPa Compressive Strength	0.59	Estimated from the concrete block mo proportions, plus an allowance for concrete block curing, plant operations and transpor of materials to factory gate	
Block - 10 MPa	0.67		
Block -12 MPa	0.72		
Block -13 MPa	0.83		
PLASTER	1.8		
PAINT			
Waterborne Paint	59.00		

Problem 1: Finding Suitable Materials

Mortarless Wall Construction

Report Covering Experiments Conducted on 02-14/09/13 Mark Le Conte, Hannah Price, Prabhjit Riat and Eliot Shore

University of Warwick

Supporting

Opinion Leaders

"Multi-Pronged approach"

Demonstration Projects

- ACTogether
- HYT (Haileybury Youth Trust)

Community discourse on aspirations and perceptions.

- Subsidising Interventions via larger developers **
- (Umuganda / CRS Developer -> Low Cost) •
- Philanthropy •

DFID :

Engaging young people in the discussion

UNIVERSITY OF CAMBRIDGE

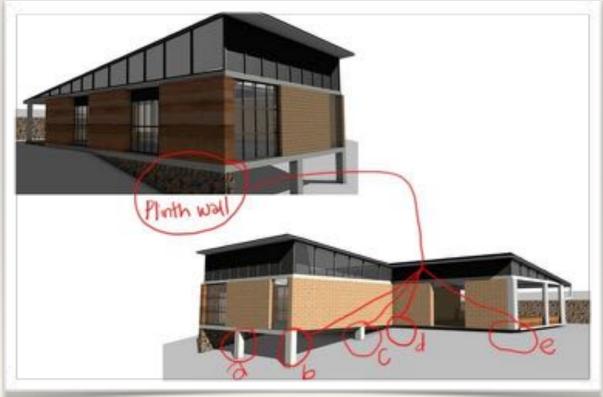
KM

of Nottinghan

WARWICK

Nairobi Skills Centre: Eng. students from Augsburg, JKUAT & UMU

Rwinkwavu Residence for PIH: MASS design group

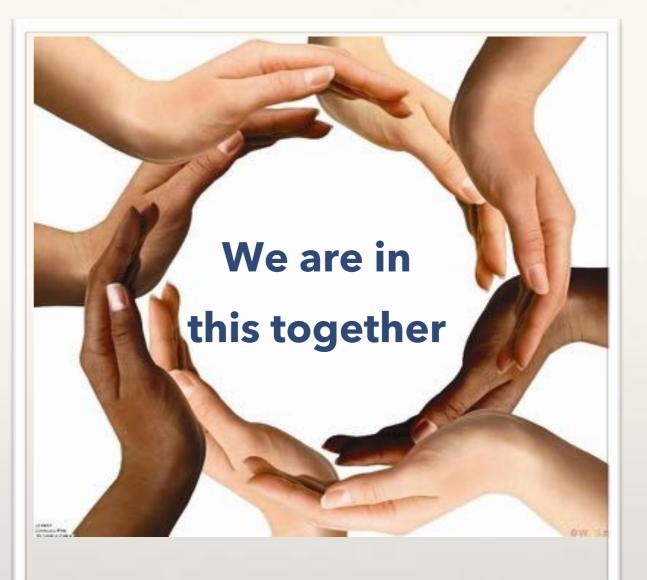


UMU student lead Design Build

- Stone Plinth
- Compressed Earth Blocks
- Rammed Earth walls
- Dialogue with community opinion leaders

Funded under the JENGA project

Joint Development of Courses for Energy Efficient and Sustainable Housing in Africa



Thank you

