Why Buildings Fall Down: Some Stories from Materials Science

Dr. Mark Olweny Dr. Paul Thomas Mr. Achilles Ahimbisibwe Ms. Maria Atuyambe

Faculty of the Built Environment Uganda Martyrs University

Why Buildings Fall Down: Some Stories from Materials Science

Dr. Paul Thomas | Dr. Mark Olweny Mr. Achilles Ahimbisibwe | Ms. Maria Atuyambe

Faculty of the Built Environment, Uganda Martyrs University, Kampala, Uganda

The Art[s] teaches us nothing

Henry Miller

The "Art[s] teaches us nothing, except the significance of life" Henry Miller

Background

- Reports of buildings collapsing are now ubiquitous
- After each incident, there are claims, blames and threats
- But each subsequent year another building comes down

Background

- What are some of the reasons for this?
- More often than not the blame is placed on the Architects, Engineers and the Municipality
- But is this the extent of the problem

what is the primary material of this wall?

What is our appreciation of what is going on?

"All small hardware shops in Uganda master the craft of opening and perfectly sealing the [cement] bags. The honest ones just reduce the quantity. The bad ones mix in other things" (Buwembo, 2009: 14)

What is our appreciation of what is going on?

"All small hardware shops in Uganda master the craft of opening and perfectly sealing the [cement] bags. The **honest** ones just reduce the quantity. The **bad ones** mix in other things" (Buwembo, 2009: 14)

Making Concrete

"Concrete can be proportioned by volume using a box, commonly known as a gauge box. The gauge box has an open bottom. No particular dimensions are prescribed. Hence, the box is of flexible dimensions to facilitate handling, as long as the same one is used throughout."

.... The main applications are: NON STRUCTURAL

Measuring Box Measuring Frame

RECOMMENDED MIX PROPORTIONS

HIRAS CERTARIES SUITARIE FOR-		NUMBERS DENOTE VOLUME PROPORTIONS			
MIMA GEMENT IS SUTTABLE I	on-	CEMENT	SAND	AGGREGATE	
STRUCTURAL APPLICATIONS / REINFORCED CONCRETE (Sumpanded sizes, were sight useents)		1	1	2	
UNREINFORCED CONCRETE	1	3	175	3	
MORTAR FOR BRICKLAVING			3	_	
MORTAR FOR PLASTERING		1	4		
NOTE LINE THE BARE HOR CONTAINED. THE MEASURAGE ALL THE METERMALS IN A BATER - SEE MILLING PROPORTIONS AND		+	8-	F	

	Mix 1		Mix 2 (1:2:4)		Mix 3	
	kg/batch	part.vol. (ℓ)	kg/batch	part.vol. (ℓ)	kg/batch	part.vol. (ℓ)
med.aggr.	17.5	6.481	21.269	7.877	21.144	7.831
fine aggr.	17.5	6.481	20.62	7.637	20.537	7.606
sand	23.31	8.633	21.983	8.142	21.647	8.017
cement	15.05	5.19	8.538	2.944	10.667	3.678
water	7.525	7.525	6.7	6.7	6.7	6.7
air*	-	~0.7	_	~0.7	_	~0.7
total	80.885	35.01	79.11	34	80.695	34.532

	Mix 1		Mix 2 (1:2:4)		Mix 3	
	kg/batch	part.vol. (ℓ)	kg/batch	part.vol. (ℓ)	kg/batch	part.vol. (ℓ)
med.aggr.	17.5	6.481	21.269	7.877	21.144	7.831
fine aggr.	17.5	6.481	20.62	7.637	20.537	7.606
sand	23.31	8.633	21.983	8.142	21.647	8.017
cement	15.05	5.19	8.538	2.944	10.667	3.678
water	7.525	7.525	6.7	6.7	6.7	6.7
air*	_	~0.7	_	~0.7	_	~0.7
total	80.885	35.01	79.11	34	80.695	34.532

	Mix 1		Mix 2 (1:2:4)		Mix 3	
	density (kg/m³)	strength (N/mm²)	density (kg/m³)	strength (N/mm²)	density (kg/m³)	strength (N/mm²)
7 days	2315	25.8	2325	13.4	2340	19.7
14 days	2290	29.7	2315	17.8	2330	25.4
28 days	2300	34.2	2290	20.5	2310	28.1
Calculated		32.9		19.7		27.0

	MIX 1		MIX 2 (1:2:4)	MIX 3	
Cement Content (kg/m³)	430		251	309	
	1:1:2	1:2:2	1:2:4		1:3:6
Cement Content (kg/m³) - Cal.	475	377	265		185

Educational approach ...

"In the end, education's most essential mission is to develop within each student the capacity not only to build with competence, but to judge wisely in matters of life and conduct."

(Boyer and Mitgang, 1996)

