

Urban Search and Rescue Robotics

Cost Benefit Analysis Report

Contents

Contents		i
Chapter 1.	Introduction1	L
Chapter 2.	Aims and Objectives	2
	Work Undertaken	
	sting Robot	
	w Robot	
3.2.1.	Chassis	
3.2.2.	Drivetrain4	
3.2.3.	Arm	
3.2.4.	Head and Gripper5	
3.2.5.	Power Distribution	
3.2.6.	Battery Monitoring	
3.2.7.	Control Electronics	ĵ
3.2.8.	Software6)
-	Cost and Benefit Analysis9	
	oject Costs9	
4.1.1.	New Robot Development Costs)
4.1.2.	Existing Robot Maintenance Costs 10)
4.1.3.	Competition Costs)
4.1.4.	Labour Costs)
4.2. Cos	t Analysis12	2
4.3. Pro	oject Benefits14	ŀ
4.3.1.	Students14	ł
4.3.2.	University14	ł
4.3.3.	Society	5
Chapter 5.	Conclusion	;
Chapter 6.	Bibliography17	7
	5	
Appendix	A – Example Timesheet	ĺ
Appendix	к В – Full Gantt ChartII	I
Appendix	x C – Sponsor Contributions	I
Appendix	x D – Mass and Cost Distribution Analysis Vi	I

Chapter 1. Introduction

The Warwick Mobile Robotics (WMR) team designed, manufactured and built a new small, light Urban Search and Rescue (USAR) robot (Figure 1), upgraded WMR's existing robot (Figure 2), and took both to the RoboCup German Open competition to assess their capabilities. The costs incurred throughout the project are evaluated with regard to the benefit to students, the university, and wider society.

Figure 1 - New Robot Posing at the Top of the 45^o Slope

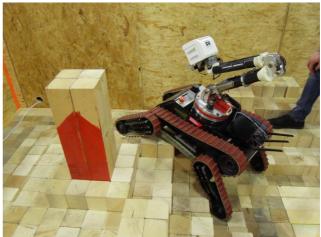


Figure 2 - Old Robot Competing on the Step Field

Chapter 2. Aims and Objectives

- 1. Improve the existing robot:
 - a. Upgrade/enhance the existing USAR robot
 - b. Operator training to allow comprehensive robot control
- 2. Develop a smaller USAR robot capable of searching for simulated victims in a small confined disaster environment with the following core development aims:
 - a. A core modular architecture that allows the platform to be easily modified
 - b. Low cost, lightweight and deployable by one person
 - c. Design with key features such as reliability, reparability and maintainability
 - d. Introduce mapping capabilities to aid the robot in becoming fully autonomous
 - e. Optimise Human Machine Interface (HMI) to aid operator awareness
 - f. Allow future teams to develop this prototype towards a commercially viable design
- 3. Enter the RoboCup German Open 2014 in the "Rescue" category utilising both robots

Chapter 3. Work Undertaken

The work undertaken was divided between the existing robot and the new robot.

3.1. **Existing Robot**

The existing USAR robot was maintained to retain current capabilities rather than upgrading them as the new design was prioritised. Table 1 discusses the issues identified with the robot and corresponding solutions.

	Table 1 - Mai	ntenance Tasks on Old Robot
No.	Issue	Solution
1	Rear flipper motor burnt out	Motor and gearbox replaced and axle bearing realigned to stop axle bending, preventing additional strain on the motor.
2	Arm's wrist motor burnt out	The motor was replaced and a torque limiting setting was introduced to help prevent future damage.
3	Disorganised internal wiring	Unused wires were removed and cable tidies were used to arrange existing wiring.
4	Single webcam cannot be used with 3D headset	The network camera (118g) was replaced with two lightweight webcams (10g total) and a new 3D printed head plate was made to secure them.
5	Rear view camera damaged	The camera was replaced maintaining this capability.

Table 1 - Maintenance	Tasks on	Old Robot
-----------------------	----------	-----------

3.2. **New Robot**

Due to its size and mass, the new robot allows access to smaller environments and can be deployed by one person. The work undertook included:

3.2.1. Chassis

An innovative chassis was produced using extruded aluminium beam, tufnol, water-jet cut aluminium plates, stainless steel brackets and a polycarbonate shell (Figure 3 and Figure 4). This highly adaptable design allows internal components to be packaged efficiently into the chassis, and its size to be modified.

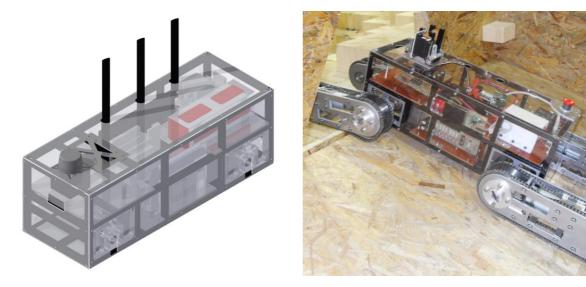


Figure 3 - Final CAD Chassis Design with Shell

Figure 4 – Final Chassis Assembly

3.2.2. Drivetrain

An innovative drivetrain was produced incorporating drive motors and controllers inside each track unit to save space and reduce heating within the chassis. To maximise mobility whilst reducing mass and cost, a design with two pairs of flipper units (with 360^o rotation) (Figure 5). Removing the fixed middle track unit found previously (Figure 6) allowed width and mass to be reduced.

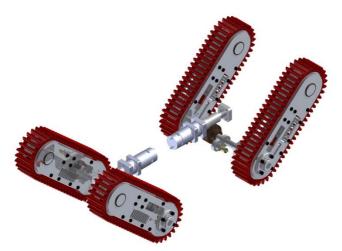


Figure 5 - New Drive Train Consisting of Two Sets of Flippers and Tracks with Enclosed Motors

Figure 6 - Old Robot Style with Fixed Tracks and Flippers, Adding Width and Mass

University of Warwick

3.2.3. Arm

An innovative modular arm design was produced (Figure 7) using identical joints constructed from off-the-shelf extruded aluminium beam. The design has significantly lower mass and cost than the previous design (Figure 8).

Figure 7 - 2014 Mechanical Arm Design

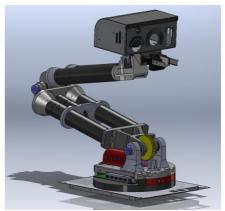


Figure 8 - 2012 Mechanical Arm Design

3.2.4. Head and Gripper

A head was designed (Figure 9) to house two cameras. A modified off-the-shelf gripper was selected capable of manipulating objects up to 100mm wide and up to 1kg. The complete design is 57% lighter than previous designs (Figure 10).

Figure 9 - 2014 Head and Manipulator Design

Figure 10 - 2012 Head and Manipulator Design

University of Warwick

3.2.5. Power Distribution

Two power distribution boards were designed and manufactured (Figure 11). Switchable outputs allow devices to be turned off to conserve power. The existing board (Figure 12) was too large for the new chassis and supplied the wrong voltages.

Figure 11 - Arm Power Board (Left) and Main Power Board (Right)

Figure 12 - 2012/13 Power

Board Design

3.2.6. Battery Monitoring

A battery monitoring circuit was simulated but was not constructed or tested.

3.2.7. Control Electronics

A modular electronic architecture was designed allowing plug and play systems to function independently of each other.

3.2.8. Software

Software was designed using Robot Operating System (ROS) to remotely control the robot and display system, and sensor data. Testing was conducted on the existing robot including mapping (Figure 13) and 3D augmented reality vision with intuitive head tracking (Figure 14 and Figure 15) to improve operator's situational awareness.

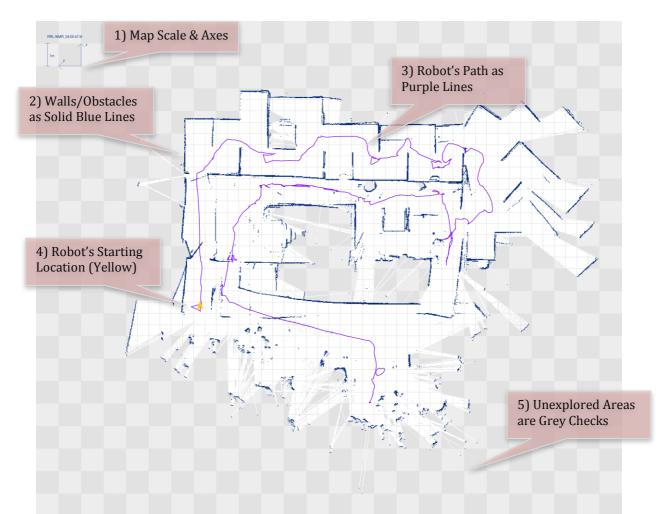


Figure 13 - Map Produced by the WMR Robot at the 2014 RoboCup Rescue Competition (Magdeburg, Germany)

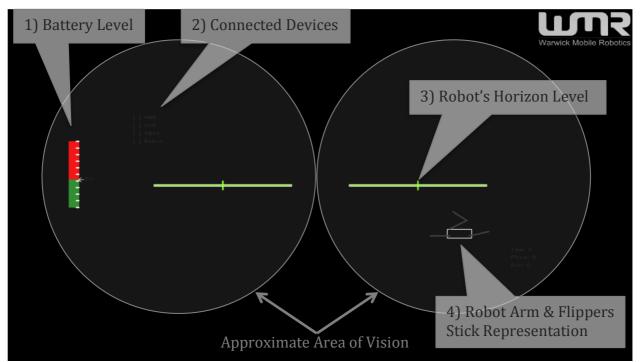


Figure 14 - Augmented Reality 3D Heads-up Display on the Oculus Rift Showing the View from the Left and Right Eye

Warwick Mobile Robotics

University of Warwick

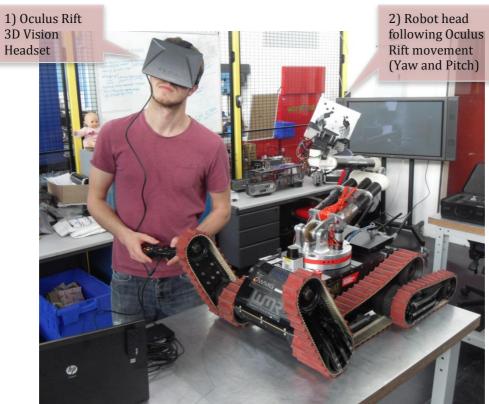


Figure 15 - Robot's Head Mapped to Operator's Head Movement

Chapter 4. Cost and Benefit Analysis

4.1. Project Costs

The full cost of the project totalled £68,348.69. This includes materials, off-the-shelf components,

postage, competition and labour.

Figure 16 provides a high level indication of the expenditure relative to the aims and objectives.

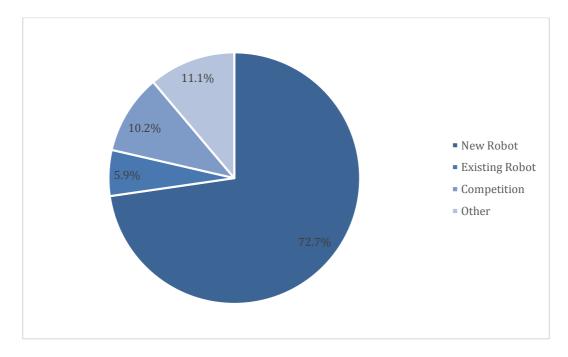


Figure 16 - Breakdown of Full Project Costs

4.1.1. New Robot Development Costs

Table 2 shows that the total development cost for the new robot was £5,849.32. This includes the material costs as well as spare components used for testing and repair.

Table 2: Breakdo	wn of New Robot	Development Costs
Sub-System	Cost (£)	% Total Cost
Chassis	1,364.23	23.3
Drivetrain	2,504.98	42.9
Arm System	1,404.18	24.0
Other	571.93	9.8
Total	£5,845.32	

The material cost for the robot was £4,264.04. A full breakdown is in Appendix D.

4.1.2. Existing Robot Maintenance Costs

14% of the project's material costs were spent on maintaining the existing robot (£984.36).

4.1.3. Competition Costs

Table 3 shows the total competition costs to be £3,134.01.

Table 3: Competition Cost Br	eakdown
Expense	Cost (£)
Team Entry Cost	680.00
People Carrier Hire	759.60
Fuel	235.02
Ferry	190.90
Accommodation (5 nights)	799.00
Food	469.49
Total	£3,134.01

4.1.4. Labour Costs

Table 4 shows the total labour costs to be £58,346.75.

Cost Category	Cost/hr	Individual	Hours	Cost (£)
Director	C7F	Peter Jones	22	1,650.00
	£75	Emma Rushforth	22	1,650.00
Academic	£75	Peter Kimber	1	75.00
Student		Christopher Chavasse	609	9,131.25
		Andrew Parkin	579	8,677.50
		Trevor Whales	482	7,222.50
	£15	Lauren Rutter	370	5,542.50
		James Yardley	364	5,460.00
		Vishal Dhanji	305	4,570.50
		Jannah Aljafri	379	5,677.50
Technician		Carl Lobjoit	218	6,540.00
	£30	Paul Johnson	5	150.00
	£30	School of Eng. Technicians	15	450.00
		Electrical Technicians	5	150.00
External	£50	Stefan Winkvist	15	750.00
Support	£30	Edgar Zauls	13	650.00
			Total Cost	£58,346.75

Table 4: Breakdown of Labour Costs

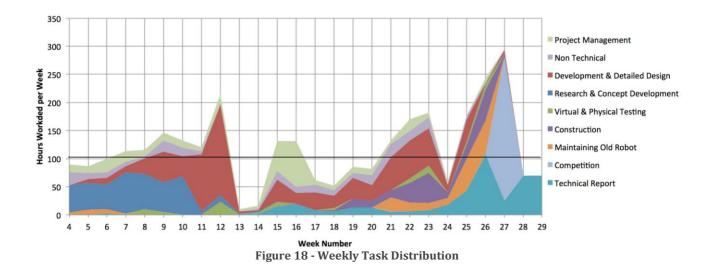

Table 5 shows the breakdown of student labour by sub-system and non-technical tasks. This data was collected via weekly timesheets completed by students (example in Appendix A).

Table 5: Breakdown of Stud	ent Labour by	y Sub-System a	nd Tasks
Sub-System/ Task	Hours	Cost (£)	% Total Cost
Chassis	306	4590	11.3
Drivetrain	218	3270	8.1
Arm System	625	9375	23.2
Electronics and Software	718	10770	12.5
Construction	228	3420	8.4
Project Management	339	5085	12.5
Sponsorship and Publicity	95	1425	3.5
Competition	258	3870	9.5
Finance	74	1110	2.7
Old Robot Maintenance	203	3045	7.5
Other	24	360	0.9
Total	2708	40620	

A Gantt chart was used to plan the project's activities (Appendix B), summarised by Figure 17.

		Term				1				Chris	stmas	;				2					E	aste	er	3
		Week	1 2	3 4	4 5	6	7 8	9 1	0 1	1 12	13 1	4 15	5 16	17	18	19 2	0 21	22	23 2	4 25	26	27	28 29	30 31
Analysis &	Analysis of Project																							
Specification	Design Specification																							
	Idea Generation																							
Design	Detailed Design								+	-														
	Analysis of Designs																							
	Order Materials												\mapsto	1										
Manufacturing	Testing of Materials																							
	Component Manufac	ture													ł									-
	Robot Assembly															-)	-
Build & Test	Robot Programming																				-	->		
	Robot Testing																				-	-		
Competition &	Competition Preperat	ion																						
Publicity	RobotCup Competitio	on																						
	Report Writing	-																						
Academic	Deadlines and Report	S																						
	Fi	gure	17 -	Sum	mai	y G	antt	Cha	rt (Arr	ows	ind	lica	te s	lip	pag	e)							

Figure 18 illustrates the progression of the activities performed over the duration of the project.

The black line in Figure 18 indicates the average weekly hours. The noticeable peaks are week 12 to meet the manufacturing design deadline, and week 26 for the RoboCup Rescue competition.

4.2. Cost Analysis

Table 6 details the total cost of each sub-system combining the material and labour costs where applicable.

	Table 6: Breakdown all To	tal Costs by Sub-System	ı/Task	
Sub-System/ Task	Material Cost (£)	Labour Cost (£)	Total Cost (£)	% Total Cost
Chassis	1364.23	4590.00	5954.23	8.7
Drivetrain	2504.98	3270.00	5774.98	8.5
Arm System	1404.18	9375.00	10779.18	15.8
Electronics and Software	n/a	10770.00	10770.00	15.7
Other ¹	571.93	12425.00	12996.93	19.0
Old Robot Maintenance	984.36	3045.00	4029.36	5.9
Project Management	n/a	5085.00	5085.00	7.4
Assembly and Testing	n/a	3420.00	3420.00	5.0
Sponsorship and Publicity	n/a	1425.00	1425.00	2.1
Competition	3,134.01	3870.00	7004.01	10.3
Finance	n/a	1110.00	1110.00	1.6
Tota	al £9,963.69	£58,385.00	£68,348.69	

¹ This includes labour costs of non-team members

A battery monitoring circuit was simulated but did not reach a level where it met the specification and could be manufactured. Therefore, the £5677.50 labour expenditure cannot be justified.

The legacy cost incurred maintaining the existing robot was 5.9% of the total project cost. This was to maintain WMR's robotic platform capabilities which have been proven through its successful participation at the RoboCup German Open.

Significant progress was made in the manufacture and construction of the new robot, however it was not fully completed within the timescale. The partial manufacture allowed the new design to be critically evaluated at the RoboCup competition against its potential capabilities and associated cost. Major design lessons were learnt from this process, which will be passed onto future teams adding significant value. The total labour cost for sponsorship and publicity was £1425.00. The team managed to acquire £11,045.39 in sponsorship and donations (Figure 19). Appendix C details these contributions.

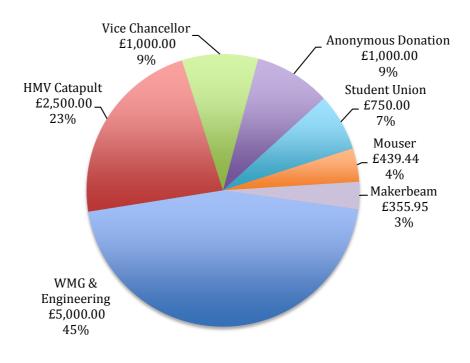


Figure 19 - Breakdown of Sources of Funding

During the year, WMR featured in *The Boar* (Skoulding, 2014). However, the team did not maximise their opportunities to publicise the new innovations.

4.3. **Project Benefits**

4.3.1. Students

- Development of expertise in robotic engineering allows students to pursue employment or further study in related fields
- Experience of collaboration in a multi-disciplinary team
- Experienced a significant proportion of the product development process from specification to construction.
- Construction phase provided the opportunity for development of machining skills
- Developments of professional skills such as negotiation, organization, time management and administration
- Experience of managing external suppliers and sponsor relationships
- An improved appreciation of resources such as money and labour
- New innovative project with significant scope for development for future students

4.3.2. University

- Having identified that the School of Engineering uses WMR as a significant part of their student recruitment strategy, innovative technologies such as Oculus Rift were implemented to continue to attract prospective students
- Student profiles were produced for university publicity material
- Four of the team travelled to Germany and competed in the RoboCup German Open with the existing robot coming 4th overall (out of 9) and 2nd in mobility

- Developed opportunities for future research collaborations with other universities at the competition
- Maintained and developed new relationships with sponsors, including organisations within the university, which can be utilised in future years
- Potential for the project to be used in the development of educational content to support course material (e.g. ES4A1 Advanced Robotics)

4.3.3. Society

- Published technical reports to aid the development of USAR robots by other researchers
- Encouraged secondary school students to peruse engineering careers at WMG and School of Engineering open days
- Where reuse of robotics systems cannot be guaranteed, commercial costs should not exceed £10,000 (Sellafield, (Winkvist, 2013)). By developing a low cost USAR robot, this barrier to use is removed.
- Developed a robot that can access smaller disaster environments
- Developed a robot that can be used as a research platform
- Used a 3D vision system with head tracking to increase operator's awareness

Chapter 5. Conclusion

A new, innovative USAR robotic platform has been designed and developed. Its features enable future teams to progress towards a smaller, lighter and lower cost robot design suitable for commercial applications. The total cost of the project was £68,348.69, which includes the existing robot, new robot and costs associated with the RoboCup competition. The manufacture of the new robot (although only partially complete and therefore not used) allowed the design to be critically evaluated. This added significant value to future teams for areas to investigate. The project has provided substantial benefits to students, the university and wider society. These include personal development of the team, aiding the university in the recruitment of prospective students, and contributing to the development of innovative search and rescue solutions, ultimately saving lives.

Chapter 6. Bibliography

Skoulding, L., 2014. *WMR placed fourth in Robocup Rescue competition*. [Online] Available at: <u>http://theboar.org/2014/04/13/wmr-placed-fourth-robocup-rescue-competition/#.U2Fi8vldWFU</u> [Accessed 13 April 2014].

Winkvist, S., 2013. *Low Computational SLAM for an Autonomous Indoor Aerial Inspection Vehicle.* [Online]

Available at: <u>http://wrap.warwick.ac.uk/59055/1/WRAP_THESIS_Winkvist_2013.pdf</u> [Accessed 1 November 2013].

Appendices

Appendix A – Example Timesheet

Sheet Owner:	WMR
Hours Worked:	Saturday 08/02/14 - Friday 14/02/14
Submission Deadline:	Friday 14/02/14 - 5pm
Total Hours Worked:	29.5

Date	No. of Hours	Activity Type	Activity Description
10/02/2014	5.0	Maintaining Old Robot	Disassembly of Robot - Found problem with burnt out motor - Took steps to find replacement
10/02/2014	1.0	Individual Meeting	Meet with AP to discuss encoders
11/02/2014	4.0	Report	Continue to write up software section for technical report
11/02/2014	1.0	Competition	Plan journey to RoboCup German Open Competition
12/02/2014	1.5	Other	Help at open day in WMG
12/02/2014	4.0	Design	Programming Robot (SLAM Mapping)
13/02/2014	1.0	Group Meeting	Weekly meeting with project directors
13/02/2014	4.0	Design	Updating new WMR laptop & continuing work on old robot
13/02/2014	1.0	Non-Technical Role (e.g. Sponsorship)	Writing Student Profile
14/02/2014	2.0	Construction	Mock up mount for two head cameras for testing with Oculus Rift
14/02/2014	5.0	Design	Work on streaming footage from both cameras to Oculus Rift head set, and implementing a HUD on top of the footage

Activities were defined from drop down menus.

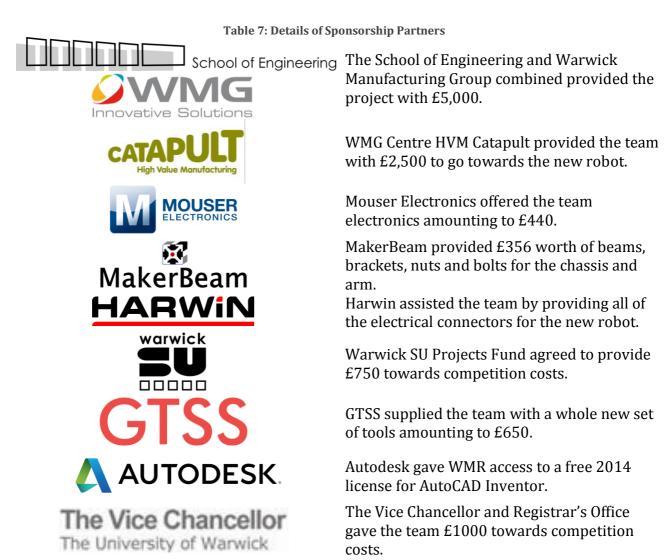
Appendix B – Full Gantt Chart

	October 📅 An.CC./V.JA.UR.THILVD Lamany April		0. MATALAN MA		20	GAMALAN .			* 01/10		69 APP. CCUPLINE UND	AP OCCUR, MULTINA MO		3	2 2	28.6			2 4	2 01	E C	2 28		IN C		ML CI	ML IN	Ten and	31 TC	32 <u>2</u> C		2 1		10	a .	90 1 50				THE D		501	2 Sol	Sol For	100	106 C 100 C
Pred Resou	1 MP.DC. 1444			5 5	14,41 CE	AP, PA	40.00		AP, DC,	AB CC		an AP,00,		U		U I	2 1			u	u g	u B		2				00 Crig		u a	u B		100 M		40	28	* 0		ant c		103 C	105 C 104 C	103 C 104 C 105 E	101 C 104 C 104 C	100 C 104 C 105 C 107 C	
Field	Nov Bq/11/18			Man Beylinks a	fue 19/11/15 a	11/11/11 19		9	Ni Od/10/13	s anionite su			In 11/10/12 IN	Thu BOVED'SH				The Beyrickine P							ACCEPTION OF			Mon 30/13/14 8		Man 17/11/14 0		-	 advision in the second s		Wed RS/ID/D4		New 24/11/14 0									
5 that	All ST\11/pt rob			Two Div/11/18 1	1 (11/11/00 vow	10,000 10	Annual and a second second	9		a statute in			Thu 28/00/14					MON EXTERNA							A DEVENDENT A			Two 21/00/14 N						A Not be the second			Thu 06/00/34 A					Thu 00/04/34 1				
Duration	1 day	Number of Street, or other	2 whic	i velo	1 wh	1 day	20.45 days	100.111		a days	1 day	1-day	NAM AND	1 day	1 day			1 dev	2.75 days	the state of the s	the starts	the starter	5 days	EX-deps	1 dev	1.5 days		1.5 dep						2 days		1 day	E.73-days	-	1.5 days	1 days		1 day	1 dey 1.25 days	1 day 1.25 days 2 day	1 day 1.26 days 1 day 1 day	1 der 1 26 days 2 der 1 der 1 der
Tack Manue	Final Concept Chosen			Circuit Design for Proven Roard & Vier facing Disout Design for Burtwy Monitoring Disout	ligitare design far comparers, orecort & integration	Chose Measur for Drive, Hippers, Avv			gn fudereinion theadline	Analysis of Propert Analysis of Converse Robust			Project Planuage (Net 13-21) Manufacturing	Cheesia		lum.		Turnel Medder		() ^{MLD0}	Auto Munding Plates	5	urià la		Interior Most Lateration	g And	v Sylten25	Ripper Axie Mat Cross Reserve		thorn happent have	24	purt	Top Futer Energieses Stop Plate		2	det	Discent Energiest Micronol Microsoft - Terrer		Manual Additional			liferm - ML - Zhenn - Plank: Worn - MI -Zhenn - Metal			in in	Biom - ML - Zhene - Plank: When - MG - Zhem - Metal Dudie finat Wom daar - Allo ML & Kinien Plank ignodert - Plank & Kinen Plank Apadet Plank Silom Plank Speciel NIO Plank - Offerent oppin & Zhem Plank Speciel NIO Plank - Offerent oppin Silom Plank Speciel NIO Plank - Offerent oppin
	Comple																																													NADO NADO

Warwick Mobile Robotics

University of Warwick

filtered Tadix


Fage 2 Interact Interact

1

	hale	A Inc																																													Dromace	Manual Progress		
	14	C	112 AP	113 AP	114 🖌 C	115 🔽																																						Г			Menne			
	4n	111 C	112	113	114	115	116 , TW	117 TW		119 TW	AT																									X	S		-	+	157 VD 4		0				Estama Milastona	External Milestone Deadline	Progress	
	lanuaro	A IDNIE									ſ			JY,LR,CC	LR L		LR	ra'Ar'oo 🕯	+	131 👖 LR	ſ		Vſ	[2	139 CC	140 CC	141 — CC	142 📥 CC		145 CC	146 📥 CC	148 _ CC	149 📕 CC	150 ≚ CC	151 📥 CC	152 🎽 CC		+	156 CC	1								ks	
	Ortohar												JY,LR	124 📥	126 🗨	E LR	CC,LR					AL																	20						162 🚃 CC	164 ∯ CC	Start-only	Finish-only Finish-only	External Tasks	
	Oct	5																																											1		Duration-only	Duration-only Manual Summary Rollup	Manual Summary	,
Predi Resou	Initials	107 C	111 AP	112 AP	113 C	114 C	119 TW	116 TW		118 TW					124 LK 124 LR	LR	CC, LR	CC, JY, F		LR	-	WF	Ψſ	8	137 55		3 8			138 CC	144 CC		137 CC	148 CC	149 CC	150 CC	151 CC		22	155 CC		157 AP,CC.			y	SC	lactona	Ilestone	sk	
Finish		Wed 09/04/14	Thu 10/04/14	Wed 09/04/14	Fri 11/04/14	Fri 11/04/14	Wed 19/03/14			Tue 18/03/14 Mon 24/03/14		Mon 13/01/14			Wed 11/12/13 Thu 12/12/13	Tue 26/11/13	Thu 28/11/13	Tue 10/12/13	Wed 16/10/13	Mon 13/01/14	Mon 13/01/14	FII 18/ 10/13	Mon 13/01/14	Thu 06/02/14	Mon 06/01/14		Wed 08/01/14			Tue 28/01/14			Thu 06/02/14		Mon 20/01/14	Mon 03/02/14		Mon 07/04/14	Tue 15/10/13			Mon 07/04/14		Fri 18/04/14	Tue 22/10/13	Mon U2/12/13 Tue 26/11/13	Inaction M	Inactive Milestone Inactive Summary	Manual Task	
Start		Tue 08/04/14	Thu 10/04/14	Wed 09/04/14	Wed 09/04/14	Thu 10/04/14	Tue 18/03/14	Wed 19/03/14	Mon 10/03/14	Thu 13/03/14 Thu 20/03/14	Wed 16/10/13	Wed 16/10/13	Wed 16/10/13	Wed 23/10/13	Wed 30/10/13 Thu 31/10/13	Tue 26/11/13	Thu 28/11/13	Tue 10/12/13	Wed 16/10/13	Mon 13/01/14	Fri 18/10/13	Mon-25/11/13	Mon 06/01/14	Mon 06/01/14	Mon 06/01/14	Tue 07/01/14	Tue 07/01/14	Tue 07/01/14	Tue 14/01/14	Tue 07/01/14	Tue 21/01/14	Wed 22/01/14	Tue 07/01/14	Tue 14/01/14	Fri 17/01/14	Tue 21/01/14	Tue 04/02/14	Tue 15/10/13	Tue 15/10/13	Mon 16/12/13	Mon 17/02/14	Thu 03/04/14	Tue 22/10/13	Thu 17/10/13	Thu 17/10/13	Tue 26/11/13	l	. [
Duration		1 day	0.25 days	:- 0.25 days	0.25 days	0.25 days	1 day	1 day	2 days	3 days	63.5 days	63.5 days	5 days	1.2 wks	3.b3 days 1 wk	1 hr	1 hr	1 hr	1 day	0.5 days	61.13 days	1.nr 1-dav2	1 wk	24 days?	1 day?	5 dave	2 days	10 days	5 days	16 days?	t dav?	5 days	23 days	3 days	2 days	10 days	3 days	125 days	2 hrs	1 hr	1 hr	2 days	144 days	132 days	4 days	4.5 days 0.2 days	Cumman	Summary Project Summary	Inactive Task	
		Parts: 2x Side Plate Water jet cut component - 3mm holes deilled	Parts: 1x Bottom Plate Cut to shape and 3mm holes	unieu. Parts: 1x Arm Chassis Mount Water jet cut component - 3mm holse drillod	Parts: 1x Front Plate Water jet cut component - 3mm holes dvilled	Parts: 1x Back Plate Water jet cut component - 3mm holes drilled	Glue Tube into U Channel (Tracks)	Cut U Channel to Length (Tracks)	Cut L Channel to Length (Tracks)	Glue L Channel to Chain (55/Chain * 8) Glue II Channel to L Channel (55 * 4)	& Publicity	dir	Update Sponsorship Pack	Finalise Sponsorship Pack	Arrange Remotech Visit Contact Previous Year's Sponsors to Retain Links	Confirm Mouser Sponsorship	Meeting with Harwin	Meeting with Nick Mallinson (HMV Catapult)	Finalise Sponsorship Deals with Companies	Write to Vice Chancellor		Contact The Boar WMAG Areademy-Publicity-Struct	Contact Local & National Newspapers		ucture	GUI & User Control Program Read in Controller Data & Catur Network	Define GUI design for Oculus Rift	Setup GUI for user to view information	Send & Receive "Heartbeat" over Network	Main Robot Computer Program	Implement Mapping	Check Systems & wait for user	Arm Program (Raspberry Pi)	Send & Receive "Heartbeat" over Network	Send & Receive Control & Sensor Data over Network	Implement Control on Arm (Inverse Kinematics?)	Stream Webcam Images	mpetition Tasks	Competition Registration	Team Member Names Due	Team Fee Due	/s nn Davs	adlines	Deadline Preparation	1st Report Preparation	zna keport Preparation Document Structure	Tack	Split	tone	
% Task Name	u	100% Parts: 2 holes d	100% Parts: 1	100% Parts: 1 3mm h	100% Parts: 1x Fro	100% Parts: 1 holes d	0% Glue Tu			0% Glue Li 0% Glue Li	Spons				100% Contac	100% Confirm		100% Meetin	100% Finalise		Pu	DUM CONTAC	100% Contac	So	100% Define Structure	3				100% Main Robot C			100% Arm Progr		100% Send &	100% Implem		100% Competition Tasks	3			100% Competition Dave	Ac	De	100% 1st Rep			2014.mpp-		

Appendix C – Sponsor Contributions

Table 7 discusses the details of the sponsorship partnerships gained this year.

Appendix D – Mass and Cost Distribution Analysis

Assembly	Sub-Assembly	Categories	Component	Qty. Material	Mass (kg)	% Robot	Cost (£)	% Robot
Chassis	Chassis	Mounting Plates	Tufnol Base	1 Tufnol	0.104	0.42%	10.00	0.27%
Chassis	Chassis	Mounting Plates	Tufnol Middle Rear	1 Tufnol	0.112	0.45%	17.50	0.47%
Chassis	Chassis	Mounting Plates	Tufnol Middle Front	1 Tufnol	0.128	0.52%	17.50	0.47%
Chassis	Chassis	Mounting Plates	Arm Chassis Mount	1 Aluminium 6083-T5	0.051	0.21%	3.80	0.10%
Chassis	Chassis	Mounting Plates	Axle Mounting Plate 1	2 Aluminium 6083-T5	0.184	0.74%	10.00	0.27%
Chassis	Chassis	Mounting Plates	Axle Mounting Plate 2	2 Aluminium 6083-T5	0.184	0.74%	6.00	0.16%
Chassis	Chassis	Mounting Plates	Encoder Mounting Plate	2 Aluminium 6063-T6	0.014	0.06%	22.48	0.60%
Chassis	Chassis	Shell	Bottom Plate	1 Aluminium 6083-T5	0.298	1.20%	0.00	0.00%
Chassis	Chassis	Mounting Plates	Motor Mounting Plate	4 Aluminium 6083-T5	0.228	0.92%	8.00	0.21%
Chassis	Chassis	Mounting Plates	Emergency Stop Plate	1 Aluminium 6083-T5	0.026	0.10%	3.50	0.09%
Chassis	Chassis	Mounting Plates	Battery Housing	1 ABS	0.051	0.21%	2.04	0.05%
Chassis	Chassis	Mounting Plates	Arm Control Box	1 ABS	0.115	0.46%	4.60	0.12%
Chassis	Chassis	Shell	Shell Top Plate	1 Polycarbonate	0.115	0.46%	4.00	0.11%
Chassis	Chassis	Shell	Shell Side Plate	2 Polycarbonate	0.246	0.99%	8.00	0.21%
Chassis	Chassis	Shell	Shell Front Plate	1 Polycarbonate	0.044	0.18%	7.50	0.20%
Chassis	Chassis	Shell	Shell Back Plate	1 Polycarbonate	0.045	0.18%	3.00	0.08%
Chassis	Chassis	MakerBeam	Makerbeam 430mm	8 Aluminium 6063-T5	0.447	1.80%	25.88	0.69%
Chassis	Chassis	MakerBeam	Makerbeam 140mm	10 Aluminium 6063-T5	0.182	0.73%	10.53	0.28%
Chassis	Chassis	MakerBeam	Makerbeam 65mm	2 Aluminium 6063-T5	0.017	0.07%	0.98	0.03%
Chassis	Chassis	MakerBeam	Makerbeam 66mm	6 Aluminium 6063-T5	0.051	0.21%	2.98	0.08%
Chassis	Chassis	MakerBeam	Makerbeam 59mm	4 Aluminium 6063-T5	0.031	0.12%	1.78	0.05%
Chassis	Chassis	MakerBeam	Makerbeam 155mm	4 Aluminium 6063-T5	0.081	0.32%	4.66	0.12%
Chassis	Chassis	MakerBeam	90 Degree Brackets	6 Stainless Steel	0.024	0.10%	63.34	
Chassis	Chassis	MakerBeam	Corner Brackets	45 Stainless Steel	0.315	1.27%	49.76	1.33%
Chassis	Chassis	MakerBeam	Angle Bracket	4 Stainless Steel	0.020	0.08%	9.05	0.24%
Chassis	Chassis	MakerBeam	M3 Square Head 12mm Bolts	71 Stainless Steel	0.036	0.14%	22.68	0.61%
Chassis	Chassis	MakerBeam	M3 Square Head 6mm Bolts	261 Stainless Steel	0.112	0.45%	54.25	1.45%
Chassis	Chassis	Fixings	M3 Bolts	22 Stainless Steel	0.017	0.07%	7.15	0.19%
Chassis	Chassis	Fixings	M3 Nuts	243 Stainless Steel	0.075	0.30%	8.80	0.24%
Chassis	Chassis	Fixings	M3 Nyloc Nuts	40 Stainless Steel/ Nylon	0.019	0.08%	3.76	0.10%
Chassis	Chassis	Fixings	Nylon Spacers	4 Nylon	0.001	0.00%	8.80	0.24%
Chassis	Chassis	Electronics	Pico ITX board	1 n/a	0.300	1.21%	278.51	7.44%

Chassis	Chassis	Electronics	Hard drive	1 n/a	0.092	0.37%	43.38	1.16%
Chassis	Chassis	Electronics	Raspberry Pi camera (with mount)	1 n/a	0.006	0.02%	16.56	0.44%
Chassis	Chassis	Electronics	Raspberry Pi (camera)	1 n/a	0.045	0.18%	27.48	0.73%
Chassis	Chassis	Electronics	Router	1 n/a	0.401	1.61%	162.61	4.35%
Chassis	Chassis	Electronics	РСВ	1 n/a	0.200	0.81%	42.00	1.12%
Chassis	Chassis	Electronics	Emergency stop button	1 n/a	0.041	0.17%	0.00	0.00%
Chassis	Chassis	Electronics	Relay	1 n/a	0.133	0.54%	7.54	0.20%
Chassis	Chassis	Electronics	Relay (arm)	1 n/a	0.056	0.23%	102.12	2.73%
Chassis	Chassis	Electronics	Battery	1 n/a	0.754	3.04%	0.00	0.00%
Chassis	Chassis	Electronics	LIDAR	1 n/a	0.146	0.59%	17.09	0.46%
Chassis	Chassis	Electronics	Speaker (with mount)	1 n/a	0.010	0.04%	5.32	0.14%
				Total System:	5.557	22.37%	£ 1,104.93	29.53%
Assembly	Sub-Assembly	Categories	Component	Qty. Material	Mass (kg)	% Robot	Cost (£)	% Robot
Drivetrain	Track units	Electronics	Motor	4 n/a	1.800	7.25%	121.60	3.25%
Drivetrain	Track units	Manufactured	Side Panel	8 Aluminium	1.744	7.02%	115.60	3.09%
Drivetrain	Track units	Manufactured	Motor Spacing Plate	4 Aluminium	0.072	0.29%	24.00	0.64%
Drivetrain	Track units	Manufactured	Cross Bracer	12 Aluminium	0.072	0.29%	101.40	2.71%
Drivetrain	Track units	Manufactured	Mounting Bar	8 Aluminium	0.136	0.55%	121.60	3.25%
Drivetrain	Track units	Electronics	SyRen 25	4 n/a	0.224	0.90%	238.56	6.38%
Drivetrain	Track units	Manufactured	Worm Support Base	4 Aluminium	0.072	0.29%	0.00	0.00%
Drivetrain	Track units	Manufactured	Coupling	4 Aluminium	0.060	0.24%	57.80	1.54%
Drivetrain	Track units	Manufactured	Coupling Axle	4 Silver Steel	0.104	0.42%	0.00	0.00%
Drivetrain	Track units	Off-the-shelf mechanical	Worm Gear	4 Steel	0.208	0.84%	0.00	0.00%
Drivetrain	Track units	Manufactured	Axle Front	4 Silver Steel	0.152	0.61%	121.20	3.24%
Drivetrain	Track units	Off-the-shelf mechanical	Wheel Gear	4 Phosphor Bronze	0.084	0.34%	0.00	0.00%
Drivetrain	Track units	Off-the-shelf mechanical	Sprocket Front	8 Mild Steel	1.416	5.70%	108.18	2.89%
Drivetrain	Track units	Off-the-shelf mechanical	Sprocket Bush Front	8 n/a	0.032	0.13%	260.20	6.95%
Drivetrain	Track units	Off-the-shelf mechanical	Worm Bush	4 n/a	0.004	0.02%	102.52	2.74%
Drivetrain	Track units	Manufactured	Worm Support	4 Aluminium	0.056	0.23%	167.64	4.48%
Drivetrain	Track units	Manufactured	Worm Support Rod	12 Aluminium	0.120	0.48%	0.00	0.00%
Drivetrain	Track units	Manufactured	Flipper Axle Hat	4 Aluminium	0.180	0.72%	12.00	0.32%
Drivetrain	Track units	Off-the-shelf mechanical	Sprocket Back	8 Mild Steel	2.168	8.73%	0.00	0.00%
Drivetrain	Track units	Off-the-shelf mechanical	Sprocket Bush Back	8 n/a	0.008	0.03%	0.00	0.00%
Drivetrain	Track units	Manufactured	Tensioning Block	4 Acetal Resin	0.800	3.22%	60.00	1.60%
Drivetrain	Track units	Treads	Chain	8 Steel	0.848	3.41%	460.48	12.31%

Drivetrain	Track units	Treads	U channel	4 Aluminium	1.568	6.31%	114.16	3.05%
Drivetrain	Track units	Treads	Tube	4 Rubber	1.344	5.41%	65.00	1.74%
Drivetrain	Track units	Treads	Track fastenings	4 Steel	0.336	1.35%	0.00	0.00%
Drivetrain	Track units	Off-the-shelf mechanical	M5 Bolt	26 Stainless Steel	0.078	0.31%	2.08	0.06%
Drivetrain	Flipper system	Electronics	Motor	2 n/a	0.900	3.62%	4.00	0.11%
Drivetrain	Flipper system	Off-the-shelf mechanical	Worm Gear	2 Steel	0.278	1.12%	4.00	0.11%
Drivetrain	Flipper system	Off-the-shelf mechanical	Wheel Gear	2 Phosphor Bronze	0.692	2.79%	0.00	0.00%
Drivetrain	Flipper system	Manufactured	Motor Axle Extension	2 Silver Steel	0.188	0.76%	4.00	0.11%
Drivetrain	Flipper system	Off-the-shelf mechanical	Spur Gear Axle	2 Delrin	0.014	0.06%	96.48	2.58%
Drivetrain	Flipper system	Off-the-shelf mechanical	Spur Gear Encoder	2 Delrin	0.022	0.09%	43.26	1.16%
Drivetrain	Flipper system	Manufactured	Flipper Axle	2 Silver Steel	0.916	3.69%	12.94	0.35%
Drivetrain	Flipper system	Electronics	Encoder	2 n/a	0.026	0.10%	12.94	0.35%
Drivetrain	Flipper system	Off-the-shelf mechanical	Bearing	6 n/a	0.198	0.80%	37.68	1.01%
Drivetrain	Flipper system	Electronics	Motor control board (flippers)	1 n/a	0.090	0.36%	26.68	0.71%
				Total System:	17.010	68.49%	£1973.44	52.74%
Assembly	Sub-Assembly	Categories	Component	Qty. Material	Mass (kg)	% Robot	Cost (£)	% Robot
Arm System	Joint 1	MakerBeam	MakerBeam - 35mm	2 Aluminium 6082 T6	0.009	0.04%	0.53	0.01%
Arm System	Joint 1	MakerBeam	MakerBeam - 55mm	2 Aluminium 6082 T6	0.015	0.06%	0.83	0.02%
Arm System	Joint 1	MakerBeam	MakerBeam - 62mm	4 Aluminium 6082 T6	0.033	0.13%	1.87	0.05%
Arm System	Joint 1	Other manufactured components	Side Reinforcement	2 Aluminium 6082 T6	0.022	0.09%	0.28	0.01%
Arm System	Joint 1	Other manufactured components	Base Reinforcement	2 Aluminium 6082 T6	0.009	0.03%	0.05	0.00%
Arm System	Joint 1	Motor	RC Servo	1 n/a	0.060	0.24%	19.68	0.53%
Arm System	Joint 1	Other manufactured components	Servo Motor Bracket	1 Aluminium 6082 T6	0.006	0.03%	0.12	0.00%
Arm System	Joint 1	Transmission	Attachment	1 n/a	0.001	0.00%	0.00	0.00%
Arm System	Joint 1	Transmission	Sprocket metal	2 Mild Steel	0.040	0.16%	14.90	0.40%
Arm System	Joint 1	Transmission	Sprocket plastic	0 Derlin	0.000	0.00%	0.00	0.00%
Arm System	Joint 1	Transmission	Chain metal	1 Mild Steel	0.018	0.07%	4.92	0.13%
Arm System	Joint 1	Transmission	Chain plastic	0 Derlin	0.000	0.00%	0.00	0.00%
Arm System	Joint 1	Transmission	Axle 55mm	1 Aluminium 6082 T6	0.007	0.03%	0.26	0.01%
Arm System	Joint 1	Transmission	Worm Metal	1 Unharded Mild Steel	0.024	0.10%	18.17	0.49%
Arm System	Joint 1	Transmission	Worm Plastic	0 Derlin	0.000	0.00%	0.00	0.00%
Arm System	Joint 1	Other manufactured components	Worm Support 5mm	2 Aluminium 5083 T6	0.021	0.09%	0.59	0.02%
Arm System	Joint 1	Other manufactured components	Worm Support 3mm	0 Aluminium 6082 T6	0.000	0.00%	0.00	0.00%
Arm System	Joint 1	Transmission	IGUS bearing - hat	2 Unknown	0.001	0.00%	1.72	0.05%
Arm System	Joint 1	Other manufactured components	Tufnol Slider	2 Carp Brand Tufnol	0.014	0.06%	3.50	0.09%

Arm System	Joint 1	Transmission	Axle 47mm	1 Aluminium 6082 T6	0.006	0.03%	0.26	0.01%
Arm System	Joint 1	Arm Electronics	Encoder	1 n/a	0.016	0.06%	25.43	0.68%
Arm System	Joint 1	Transmission	Worm Gear plastic	1 Derlin	0.016	0.06%	13.39	0.36%
Arm System	Joint 1	Other manufactured components	Mesh Adjuster	2 Aluminium 6082 T6	0.011	0.04%	0.26	0.01%
Arm System	Joint 1	Transmission	IGUS bearing - flat	2 Unknown	0.000	0.00%	1.62	0.04%
Arm System	Joint 1	Fixings	M3 bolt-6mm (8mm total) & Nut	38 Steel	0.027	0.11%	2.98	0.08%
Arm System	Joint 1	Other manufactured components	Upper Joint	2 Aluminium 6082 T6	0.016	0.06%	0.19	0.01%
Arm System	Joint 1	MakerBeam	MakerBeam - 35mm	2 Aluminium 6082 T6	0.009	0.04%	0.53	0.01%
Arm System	Joint 1	MakerBeam	MakerBeam - 62mm	2 Aluminium 6082 T6	0.017	0.07%	0.93	0.02%
Arm System	Joint 1	Fixings	Corner bracket (mod L)	4 Mild Steel	0.012	0.05%	2.60	0.07%
Arm System	Link 1	Other manufactured components	Wrist connector	1 Aluminium 5083 T6	0.011	0.04%	0.14	0.00%
Arm System	Link 1	Other manufactured components	Socket	1 ABS	0.003	0.01%	0.00	0.00%
Arm System	Link 1	Other manufactured components	Ball	1 ABS	0.003	0.01%	0.00	0.00%
Arm System	Link 1	Fixings	Lower ball and socket fixing	1 Mild Steel	0.004	0.02%	0.73	0.02%
Arm System	Link 1	Fixings	Upper ball and socket fixing	1 Mild Steel	0.003	0.01%	0.65	0.02%
Arm System	Link 1	Cable System	35mm M3 nut and bolt	4 Mild Steel	0.010	0.04%	0.31	0.01%
Arm System	Link 1	Cable System	Cable termination upper	4 Mild Steel	0.012	0.05%	11.44	0.31%
Arm System	Link 1	Cable System	Cable termination Lower	4 Mild Steel	0.019	0.08%	5.20	0.14%
Arm System	Link 1	Fixings	M3 bolt-6mm (8mm total)& Nut	6 Mild Steel	0.004	0.02%	0.47	0.01%
Arm System	Link 1	MakerBeam	Open Beam	1 Aluminium 5083 T6	0.099	0.40%	3.23	0.09%
Arm System	Link 1	Cable System	Cable 250mm	4 Steel	0.009	0.04%	0.88	0.02%
Arm System	Link 1	Other manufactured components	Base Reinforcement	1 Aluminium 5083 T6	0.004	0.02%	0.03	0.00%
Arm System	Link 1	Other manufactured components	Elbow T Bracket	2 Aluminium 5083 T6	0.015	0.06%	0.24	0.01%
Arm System	Link 1	Cable System	Top end cable termination	2 Mild Steel	0.032	0.13%	6.56	0.18%
Arm System	Link 1	Cable System	Cable termination upper	2 Mild Steel	0.006	0.02%	5.72	0.15%
Arm System	Link 1	Cable System	Cable termination lower	2 Mild Steel	0.009	0.04%	2.60	0.07%
Arm System	Link 1	Cable System	Cable 35mm	2 Steel	0.001	0.00%	0.07	0.00%
Arm System	Joint 2	MakerBeam	MakerBeam - 35mm	2 Aluminium 6082 T6	0.009	0.04%	0.53	0.01%
Arm System	Joint 2	MakerBeam	MakerBeam - 55mm	2 Aluminium 6082 T6	0.015	0.06%	0.83	0.02%
Arm System	Joint 2	MakerBeam	MakerBeam - 62mm	4 Aluminium 6082 T6	0.033	0.13%	1.87	0.05%
Arm System	Joint 2	Other manufactured components	Side Reinforcement	2 Aluminium 6082 T6	0.022	0.09%	0.28	0.01%
Arm System	Joint 2	Other manufactured components	Base Reinforcement	2 Aluminium 6082 T6	0.009	0.03%	0.05	0.00%
Arm System	Joint 2	Motor	RC Servo	1 n/a	0.060	0.24%	19.68	0.53%
Arm System	Joint 2	Other manufactured components	Servo Motor Bracket	1 Aluminium 6082 T6	0.006	0.03%	0.12	0.00%
Arm System	Joint 2	Transmission	Attachment	1 n/a	0.001	0.00%	0.00	0.00%

Arm System	Joint 2	Transmission	Sprocket metal	2 Mild Steel	0.040	0.16%	14.90	0.40%
Arm System	Joint 2	Transmission	Sprocket plastic	0 Derlin	0.000	0.00%	0.00	0.00%
Arm System	Joint 2	Transmission	Chain Metal	1 Mild Steel	0.018	0.07%	4.92	0.13%
Arm System	Joint 2	Transmission	Chain plastic	0 Derlin	0.000	0.00%	0.00	0.00%
Arm System	Joint 2	Transmission	Axle 55mm	1 Aluminium 6082 T6	0.007	0.03%	0.26	0.01%
Arm System	Joint 2	Transmission	Worm Metal	1 Unharded Mild Steel	0.024	0.10%	18.17	0.49%
Arm System	Joint 2	Transmission	Worm Plastic	0 Derlin	0.000	0.00%	0.00	0.00%
Arm System	Joint 2	Other manufactured components	Worm Support 5mm	2 Aluminium 5083 T6	0.021	0.09%	0.58	0.02%
Arm System	Joint 2	Other manufactured components	Worm Support 3mm	0 Aluminium 6082 T6	0.000	0.00%	0.00	0.00%
Arm System	Joint 2	Transmission	IGUS bearing - Hat	2 Unknown	0.001	0.00%	1.72	0.05%
Arm System	Joint 2	Other manufactured components	Tufnol Slider	2 Carp Brand Tufnol	0.014	0.06%	3.50	0.09%
Arm System	Joint 2	Transmission	Axle 47mm	1 Aluminium 6082 T6	0.006	0.03%	0.26	0.01%
Arm System	Joint 2	Arm Electronics	Encoder	1 n/a	0.016	0.06%	25.43	0.68%
Arm System	Joint 2	Transmission	Worm Gear plastic	1 Derlin	0.016	0.06%	13.39	0.36%
Arm System	Joint 2	Other manufactured components	Mesh Adjuster	2 Aluminium 6082 T6	0.011	0.04%	0.26	0.01%
Arm System	Joint 2	Transmission	IGUS bearing - flat	2 Unknown	0.000	0.00%	1.62	0.04%
Arm System	Joint 2	Fixings	M3 bolt-6mm (8mm total) & Nut	56 Steel	0.039	0.16%	4.48	0.12%
Arm System	Joint 2	Other manufactured components	Upper Joint	2 Aluminium 6082 T6	0.016	0.06%	0.19	0.01%
Arm System	Joint 2	MakerBeam	MakerBeam - 35mm	2 Aluminium 6082 T6	0.009	0.04%	0.53	0.01%
Arm System	Joint 2	MakerBeam	MakerBeam - 62mm	2 Aluminium 6082 T6	0.017	0.07%	1.62	0.04%
Arm System	Joint 2	Fixings	Corner bracket (mod L)	4 Mild Steel	0.012	0.05%	2.60	0.07%
Arm System	Link 2	Other manufactured components	Wrist connector	1 Aluminium 5083 T6	0.011	0.04%	0.14	0.00%
Arm System	Link 2	Other manufactured components	Socket	1 ABS	0.003	0.01%	0.00	0.00%
Arm System	Link 2	Other manufactured components	Ball	1 ABS	0.003	0.01%	0.00	0.00%
Arm System	Link 2	Cable System	Cable termination upper	4 Mild Steel	0.012	0.05%	0.00	0.00%
Arm System	Link 2	Cable System	Cable termination lower	4 Mild Steel	0.019	0.08%	2.92	0.08%
Arm System	Link 2	Fixings	Lower ball and socket fixing	1 Mild Steel	0.004	0.02%	0.73	0.02%
Arm System	Link 2	Fixings	Upper ball and socket fixing	1 Mild Steel	0.003	0.01%	0.65	0.02%
Arm System	Link 2	Fixings	35mm M3 nut and bolt	4 Mild Steel	0.010	0.04%	0.30	0.01%
Arm System	Link 2	MakerBeam	Open Beam	1 Aluminium 6082 T6	0.099	0.40%	3.23	0.09%
Arm System	Link 2	Cable System	Cable 250mm	4 Steel	0.009	0.04%	0.88	0.02%
Arm System	Link 2	Cable System	Top end cable termination	2 Mild Steel	0.032	0.13%	6.56	0.18%
Arm System	Link 2	Fixings	M3 bolt-6mm (8mm total) & Nut	14 Mild Steel	0.010	0.04%	1.12	0.03%
Arm System	Link 2	Cable System	Cable termination upper	2 Mild Steel	0.006	0.02%	0.44	0.01%
Arm System	Link 2	Cable System	Cable termination lower	2 Mild Steel	0.009	0.04%	0.05	0.00%

University of Warwick

Arm System	Link 2	Cable System	Cable 35mm	2 Steel	0.001	0.00%	0.07	0.00%
Arm System	Link 2	Other manufactured components	Wrist connector	1 Aluminium 5083 T6	0.011	0.04%	0.14	0.00%
Arm System	Link 2	MakerBeam	MakerBeam - 35mm	1 Aluminium 6082 T6	0.005	0.02%	0.26	0.01%
Arm System	Link 2	Fixings	Corner bracket (mod L)	4 Mild Steel	0.012	0.05%	2.60	0.07%
Arm System	Joint 3	MakerBeam	MakerBeam - 35mm	2 Aluminium 6082 T6	0.009	0.04%	0.53	0.01%
Arm System	Joint 3	MakerBeam	MakerBeam - 55mm	2 Aluminium 6082 T6	0.015	0.06%	0.83	0.02%
Arm System	Joint 3	MakerBeam	MakerBeam - 62mm	4 Aluminium 6082 T6	0.033	0.13%	1.87	0.05%
Arm System	Joint 3	Other manufactured components	Side Reinforcement	2 Aluminium 6082 T6	0.022	0.09%	0.28	0.01%
Arm System	Joint 3	Other manufactured components	Base Reinforcement	2 Aluminium 6082 T6	0.009	0.03%	0.05	0.00%
Arm System	Joint 3	Motor	RC Servo	1 n/a	0.060	0.24%	19.68	0.53%
Arm System	Joint 3	Other manufactured components	Servo Motor Bracket	1 Aluminium 6082 T6	0.006	0.03%	0.12	0.00%
Arm System	Joint 3	Transmission	Attachment	1 n/a	0.001	0.00%	0.00	0.00%
Arm System	Joint 3	Transmission	Sprocket metal	0 Mild Steel	0.000	0.00%	0.00	0.00%
Arm System	Joint 3	Transmission	Sprocket plastic	2 Derlin	0.006	0.02%	9.52	0.25%
Arm System	Joint 3	Transmission	Chain Metal	0 Mild Steel	0.000	0.00%	0.00	0.00%
Arm System	Joint 3	Transmission	Chain plastic	1 Derlin	0.006	0.02%	7.64	0.20%
Arm System	Joint 3	Transmission	Axle 55mm	1 Aluminium 6082 T6	0.007	0.03%	0.26	0.01%
Arm System	Joint 3	Transmission	Worm Metal	0 Unharded Mild Steel	0.000	0.00%	0.00	0.00%
Arm System	Joint 3	Transmission	Worm Plastic	1 Derlin	0.004	0.02%	9.99	0.27%
Arm System	Joint 3	Other manufactured components	Worm Support 5mm	0 Aluminium 5083 T6	0.000	0.00%	0.00	0.00%
Arm System	Joint 3	Other manufactured components	Worm Support 3mm	2 Aluminium 6082 T6	0.013	0.05%	0.16	0.00%
Arm System	Joint 3	Transmission	IGUS bearing - Hat	2 Unknown	0.001	0.00%	1.72	0.05%
Arm System	Joint 3	Other manufactured components	Tufnol Slider	2 Carp Brand Tufnol	0.014	0.06%	3.50	0.09%
Arm System	Joint 3	Transmission	Axle 47mm	1 Aluminium 6082 T6	0.006	0.03%	0.26	0.01%
Arm System	Joint 3	Arm Electronics	Encoder	1 n/a	0.016	0.06%	25.43	0.68%
Arm System	Joint 3	Transmission	Worm Gear plastic	1 Derlin	0.016	0.06%	13.39	0.36%
Arm System	Joint 3	Other manufactured components	Mesh Adjuster	2 Aluminium 6082 T6	0.011	0.04%	0.26	0.01%
Arm System	Joint 3	Transmission	IGUS bearing - flat	2 Unknown	0.000	0.00%	1.62	0.04%
Arm System	Joint 3	Fixings	M3 bolt-6mm (8mm total)& Nut	44 Steel	0.031	0.12%	3.52	0.09%
Arm System	Joint 3	Other manufactured components	Upper Joint	2 Aluminium 6082 T6	0.016	0.06%	0.19	0.01%
Arm System	Joint 4	Other manufactured components	Servo Holder	1 Aluminium 6082 T6	0.011	0.04%	6.48	0.17%
Arm System	Joint 4	Motor	RC Servo	1 n/a	0.060	0.24%	19.68	0.53%
Arm System	Joint 4	MakerBeam	MakerBeam - 35mm	1 Aluminium 6082 T6	0.005	0.02%	0.26	0.01%
Arm System	Joint 4	Transmission	Attachment	1 n/a	0.001	0.00%	0.00	0.00%
Arm System	Joint 4	Fixings	M3 bolt-6mm (8mm total)& Nut	7 Mild Steel	0.005	0.02%	0.56	0.01%

Arm System	Electronics	Arm Electronics	Raspberry Pi (arm)	1 n/a	0.045	0.18%	27.48	0.73%
Arm System	Electronics	Arm Electronics	Servo motor controller (arm)	1 n/a	0.026	0.10%	86.83	2.32%
Arm System	Electronics	Arm Electronics	PCB (arm)	1 n/a	0.185	0.74%	32.00	0.86%
Arm System	Head	Other manufactured components	Main Plate	1 Aluminium 6082 T6	0.042	0.17%	1.43	0.04%
Arm System	Head	Other manufactured components	Camera Enclosures	2 ABS	0.022	0.09%	2.82	0.08%
Arm System	Head	Arm Electronics	Webcam	2 n/a	0.012	0.05%	35.96	0.96%
Arm System	Head	Arm Electronics	CO2 Sensor	1 n/a	0.027	0.11%	34.97	0.93%
Arm System	Head	Fixings	Enclosure Case Screws	4 Stainless Steel	0.002	0.01%	0.00	0.00%
Arm System	Head	Fixings	M5 Bolts	4 Stainless Steel	0.012	0.05%	0.32	0.01%
Arm System	Gripper	Gripper	Main Gripper with Mounts	1 Aluminium	0.090	0.36%	9.95	0.27%
Arm System	Gripper	Gripper	Pinion Gear	1 n/a	0.008	0.03%	0.00	0.00%
Arm System	Gripper	Gripper	Clutch	1 n/a	0.027	0.11%	0.00	0.00%
		Gripper	Fastener for Clutch and Gear	1 Stainless Steel	0.003	0.01%	0.00	0.00%
	Gripper	Motor	Medium Servo	1 n/a	0.021	0.08%	8.95	0.24%
		Fixings	Servo Fastener	1 Stainless Steel	0.008	0.03%	0.00	0.00%
		Fixings	M3 Bolts	12 Stainless Steel	0.009	0.04%	0.48	0.01%
	Gripper	Fixings	M3 Nut	12 Stainless Steel	0.004	0.01%	0.36	0.01%
		Gripper	New Fingers	4 Aluminium 6082 T6	0.017	0.07%	2.00	0.05%
				Total System:	2.269	9.14%	£663.11	17.72%
				Total Mass (kg):	24.836	Cost (£):	£3,741.48	