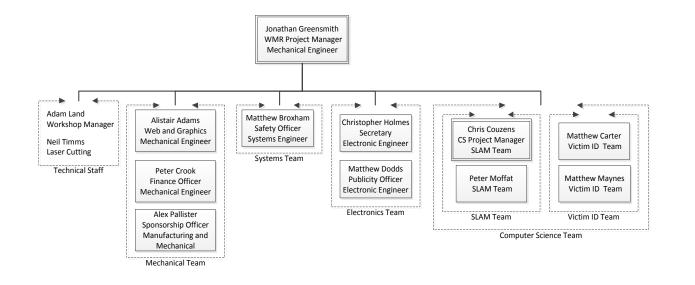
Warwick Mobile Robotics

Presentation of work performed in the 2010/2011 project

Overview

- Introduction
- Feature changes
- Analysis of competition
 performance
- Finance and Sponsorship
- Conclusions

The WMR Team


- Multidisciplinary team
 - Mechanical, Manufacturing, Systems and Electronic
- Team assigned admin and tech roles

Management

- Team divided into teams to clarify roles
 - Computer Science team included in organisation
- Structure not rigid
 - Functional working groups formed

USAR Robots

USAR-T, Teleoperated Urban Search & Rescue

USAR-A,

Autonomous Urban Search & Rescue

Aims

- Develop USAR-T and USAR-A Systems
 - Mechanical
 - Electronic
 - Control
- Commercial viability
- RoboCup German Open

Objectives

- Identify and address weaknesses with the previous platforms
- Raise sufficient sponsorship to fund project
- Continually increase awareness of WMR brand

The Competition

The RoboCup Rescue Competition

• Purpose:

 "To develop and demonstrate advanced robotic capabilities for emergency responders using annual competitions to evaluate, and teaching camps to disseminate best-in-class robotic solutions."

The RoboCup Rescue Competition

- Points scored through victim identification:
 - Visual
 - Thermal
 - Audio
- Real-time mapping
- Payload delivery.

The RoboCup Rescue Competition

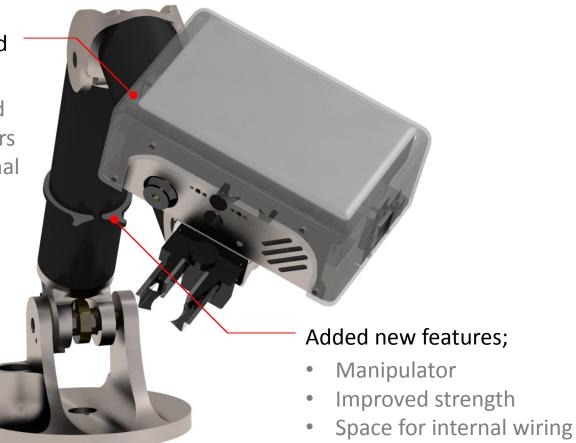
Yellow (Autonomous) Arena

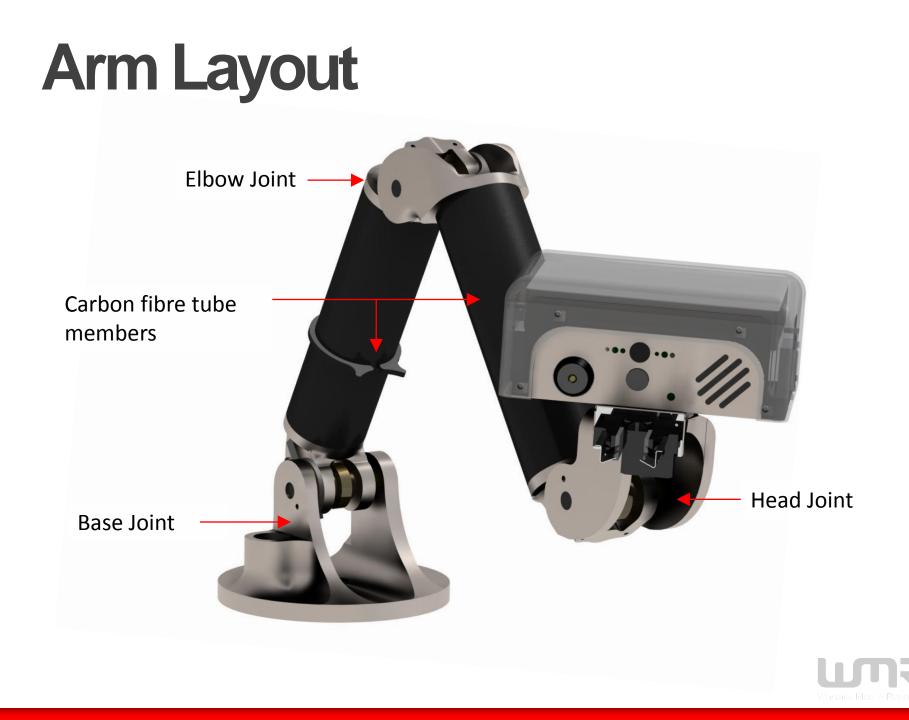
Red Arena - Ramps and Stairs

Red Arena - Step Fields

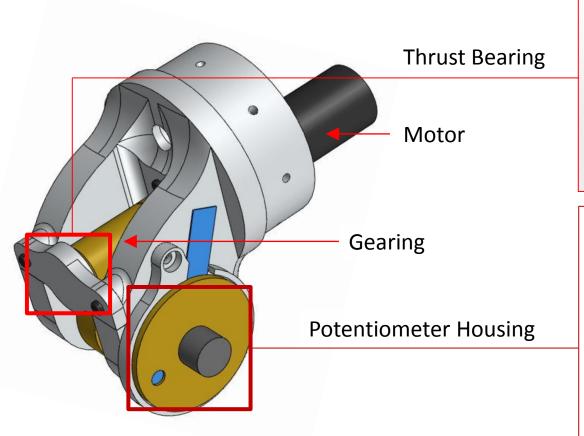
USAR-T

Teleoperated Urban Search & Recue Platform


 Designed to deal with more complex terrain & tasks.

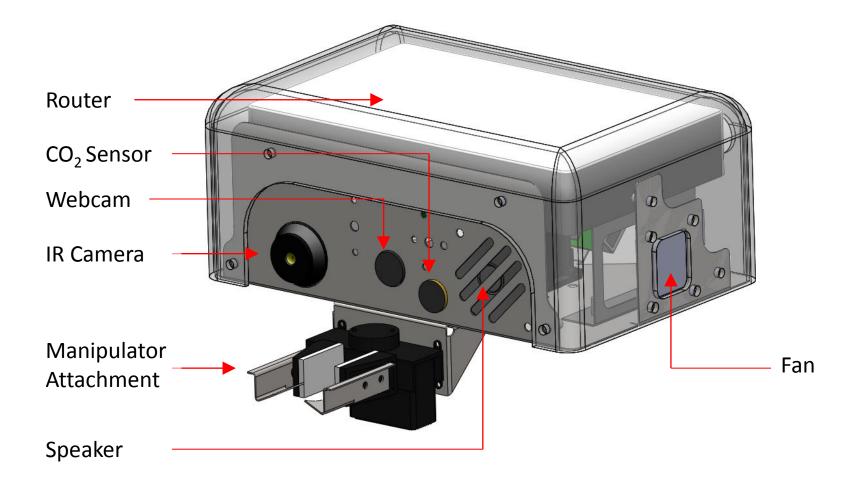

Features of the New Arm

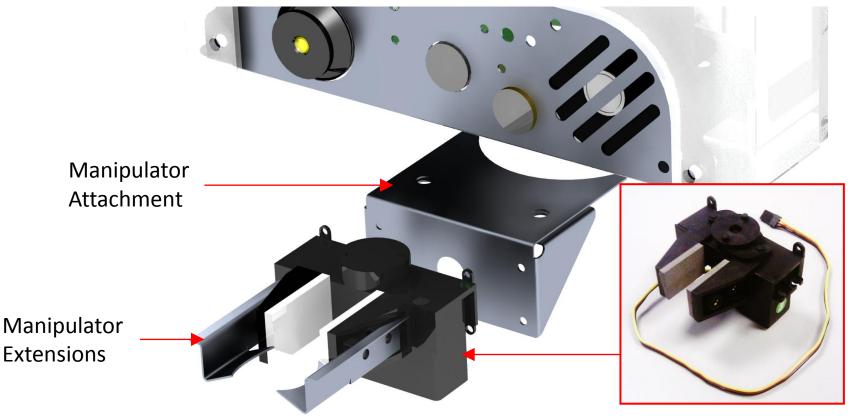
Addressed problems with old arm;


- Excessive play in the head
- Vulnerable potentiometers
- Not designed for additional payloads

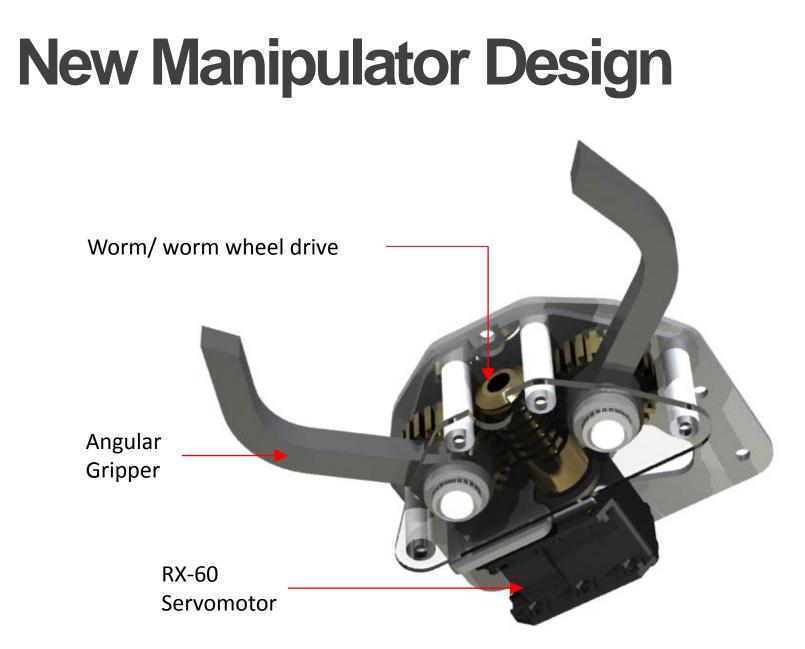


Core Joint





Head Design



Manipulator Design

Active Robots, Little Gripper Kit

Other Modifications

- Reinforced Arm Base plate
- Stack handles and casing

Improved the handling of the electronics stack

Redesigned motor clamps

Previous clamps distorted under load

USAR-T Electronic Control Systems

Electronics

- General configuration remains the same
 - Was able to use existing stack plates
 - Hardware may have changed purpose
- Positioning of components changed significantly

Loose electronic moved elsewhere

- New electronics hardware
 - Xsens IMU
 - New Router
 - Bespoke Battery Monitor

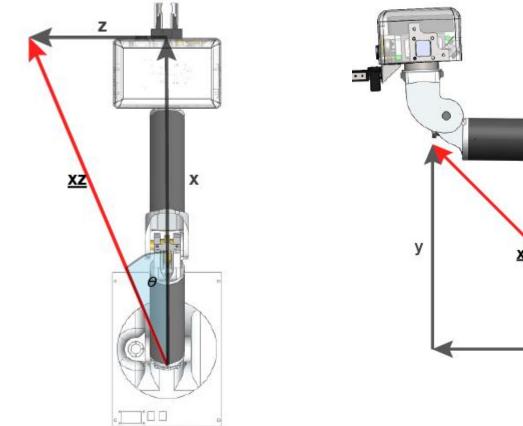
Arm Control

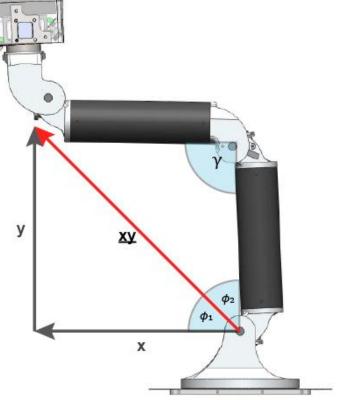
• Same basic electronic configuration

More powerful controllers for shoulder

- Added an abstract model in code
 - System attempts the physical structure with joints
 - Each joint handles communication to controllers
 - Joints hold own specific information (angles, offsets, etc)

Arm Control


• Old arm could only move using joint positions


- Movement of the arm reduced to angle presets

• Inverse Kinematics allows for xyz movement

IK derivations

Arm Control

- Position tracking
 - Prevents dangerous behaviour through feedback
- With position tracking and xyz movement
 - Translational Operations
 - Linear Interpolation

Manipulator Control

• Uses existing electronics hardware

Servo Controller

- Decoupled software system
- Currently supports grip and un-grip operations

- But easily changeable

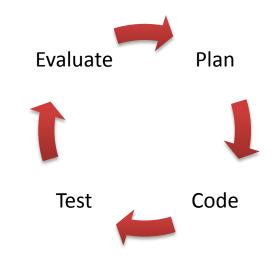
Battery Monitor

- LiPo batteries have a voltage threshold
- Below this threshold they will no longer hold a charge
 - Computer Science really like to break them
- ~2.7V limit but 3V is the recommended limit
 Curve of voltage change is non-linear

Solution

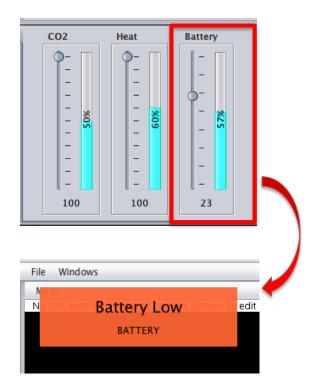
- Monitors voltage with an Atmel microcontroller
- Works without reliance on the computer
 - Power directly from the batteries
 - Sounds a buzzer should voltage drop too low
- Can communicate serially with the computer

Computer sends voltage to the clients



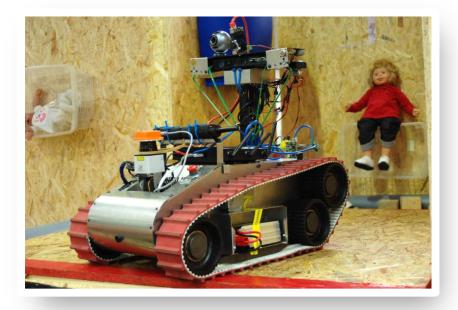
USAR-T Software Development

USAR-T Software


- If it ain't broke don't fix it?
- It was broke, so we fixed it.
- How? Complete Restructuring
 - Agile Development
 - Object Orientation

USAR-T Software

- Client software rebuilt
- New user-friendly interface
- Assisted control systems
- New features added
 - Two-way communications
 - Notification System


USAR-T Software

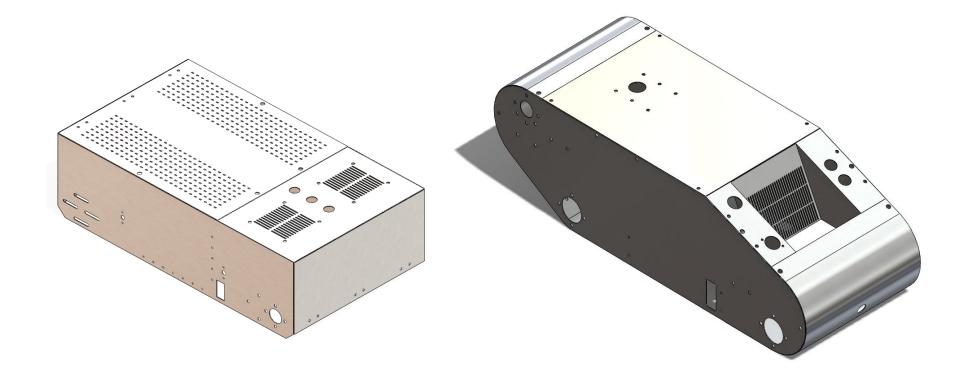
- Server software restructured
- Encapsulation
 - Extensibility
 - Readability
 - Changeability
- Arm Control
- Messaging system

Image: Constraint of the second state of the second sta						
<pre>Matthew-Doddss-MacBook-Pro:~ doddsie\$ nmap -A -vvv 192.168.0.1 Starting Nmap 5.51 (http://nmap.org) at 2011-05-06 21:09 BST NSE: Loaded 57 scripts for scanning. NSE: Starting runlevel 1 (of 2) scan. Initiating Ping Scan at 21:09 Scanning 192.168.0.1 [2 ports] Completed Ping Scan at 21:09, 0.01s elapsed (1 total hosts) Initiating Parallel DNS resolution of 1 host. at 21:09 Completed Parallel DNS resolution of 1 host. at 21:09, 0.02s elapsed DNS resolution of 1 IPs took 0.06s. Mode: Async [#: 2, OK: 0, NX: 1, DR: 0, SF: 0, TR: 1, CN: 0] Initiating 192.168.0.1 [1000 ports] Discovered open port 80/tcp on 192.168.0.1</pre>	0 0	Terminal -	- bash —	80×24		
NSE: Loaded 57 scripts for scanning. NSE: Starting runlevel 1 (of 2) scan. NSE: Starting runlevel 2 (of 2) scan. Initiating Ping Scan at 21:09 Scanning 192.168.0.1 [2 ports] Completed Ping Scan at 21:09, 0.01s elapsed (1 total hosts) Initiating Parallel DNS resolution of 1 host. at 21:09 Completed Parallel DNS resolution of 1 host. at 21:09, 0.02s elapsed DNS resolution of 1 IPS took 0.06s. Mode: Async [#: 2, OK: 0, NX: 1, DR: 0, SF: 0, TR: 1, CN: 0] Initiating Connect Scan at 21:09 Scanning 192.168.0.1 [1000 ports] Discovered open port 80/tcp on 192.168.0.1				/vv 192 . 16	68.0.1	
	NSE: Loaded 57 scripts for NSE: Starting runlevel 1 (NSE: Starting runlevel 2 (Initiating Ping Scan at 21 Scanning 192.168.0.1 [2 pc Completed Ping Scan at 21: Initiating Parallel DNS res ONS resolution of 1 IPs to 0, TR: 1, CN: 0] Initiating Connect Scan at Scanning 192.168.0.1 [1006 Discovered open port 80/to	scanning. of 2) scan. of 2) scan. :09 rts] 09, 0.01s eld solution of 1 olution of 1 ok 0.06s. Mod . 21:09 ports] p on 192.168.	apsed (1 t L host. at host. at de: Async .0.1	otal host 21:09 21:09, 0:	ts) .02s elapse	

USAR-A

Autonomous Urban Search & Recue Platform

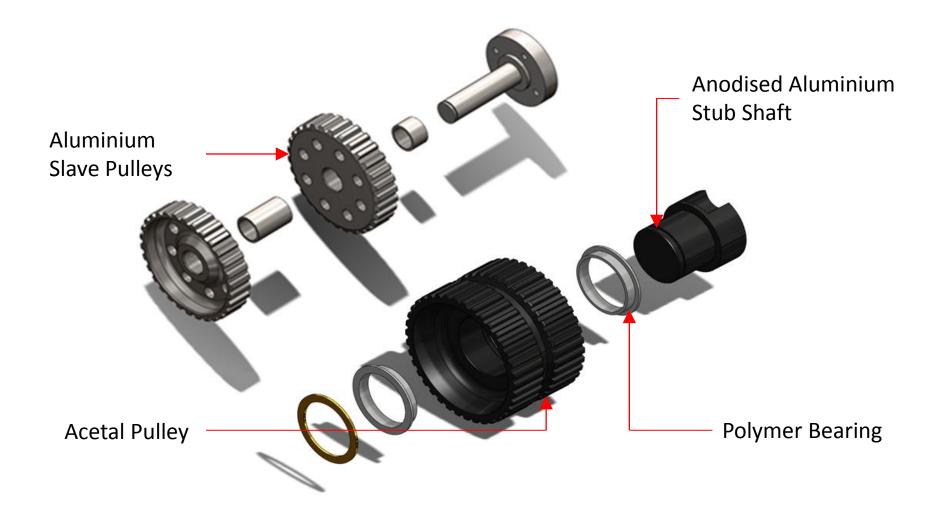
 Autonomous navigation, mapping and victim identification



Mechanical Design Aims

- Increased strength
- Increased standardisation
- Increased Mobility
 - Increased ground clearance
 - Centre of mass
 - Improved drive train

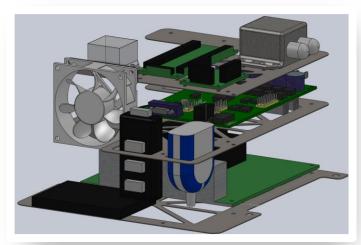
Chassis changes

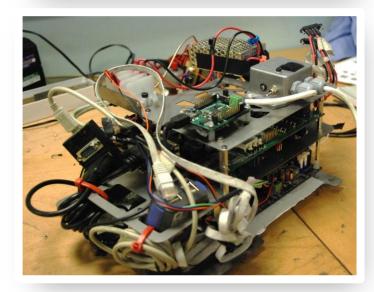


2009/10 Chassis

2010/11 Chassis

Drive-train changes


USAR-A Electronics



USAR-A Electronics

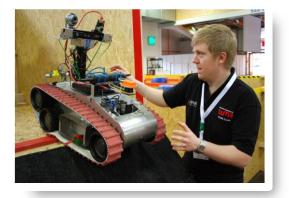
- Required specifications achieved;
 - Accessibility of connectors
 - Reorganisation of wires
 - Vibration reduction
 - Space for adequate ventilation
 - Earthing and fusing



WMR at the Competition

WMR at the Competition

- Chain of events:
 - Miscommunications
 - Manufacturing delays
 - No testing time
 - Hardware failure
- Demonstrated mobility and manipulation of payload to judges
- Still recommended for the World competition in Istanbul


WMR at the Competition

Awarded best in mobility

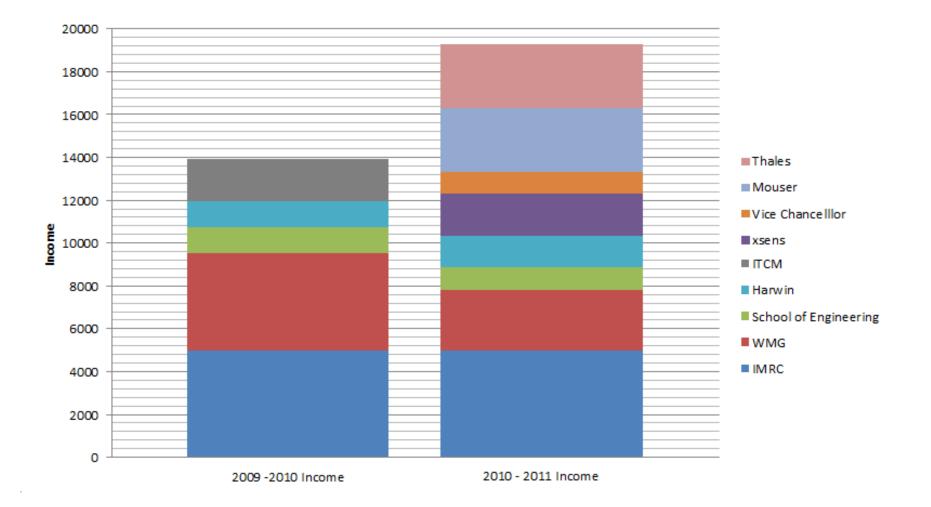
- Using the augmented USAR-A
- Adapted for teleoperation to allow the team to compete

Quality Function Deployment

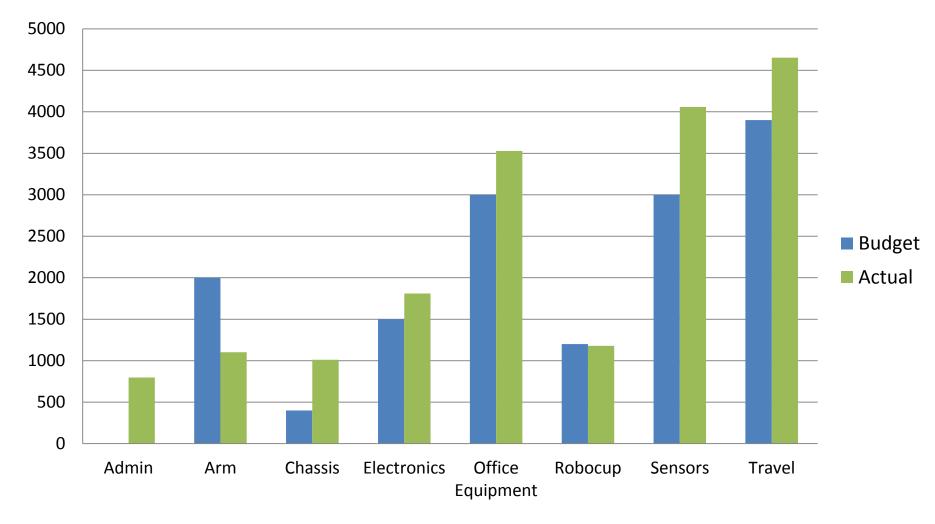
- Quality Function Deployment:
 - Competition points system treated as customer requirements

• Defined order of importance:

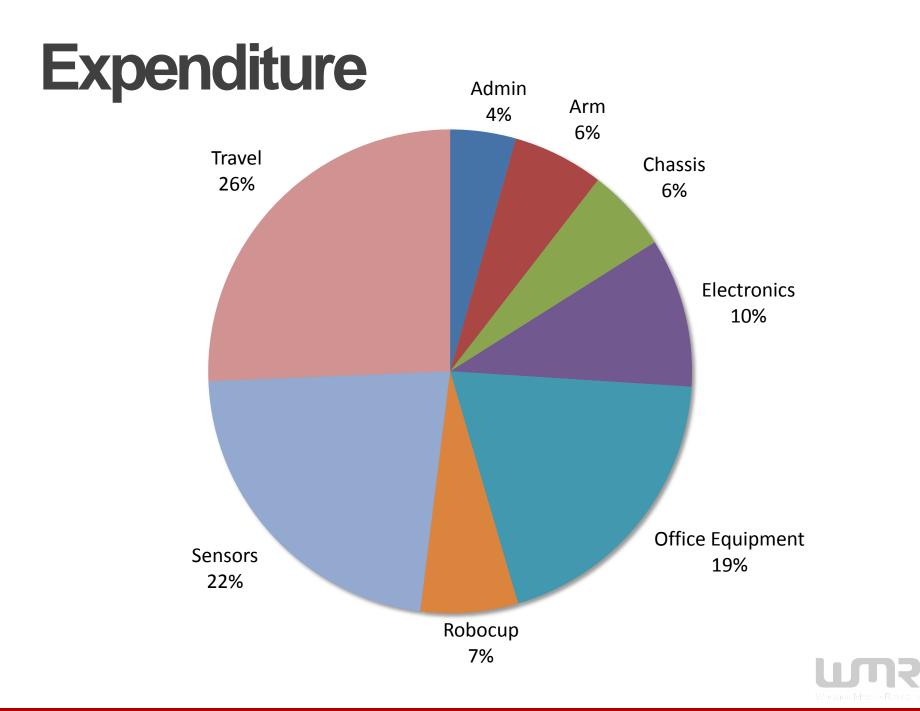
- 1. Camera angles & UI
- 2. Arm design
- 3. Geotiff mapping
- 4. Track and flipper design
- 5. Autonomous functionality
- WMR could have performed better under different circumstances.


	System QFD													Kevin Otto	fy, but properly re
Г	Track, flipper and chassis design		1										robuststra		ry, but property re
E	Arm Design and Kinematics		х									kevin	n otto@ya	hoo.com	
L	Manipulator design			х											emplates/QFD Ter
n	gles ,Visual autonomy and UI (Kinect)		Х	х	х									emplate from De	sign4X Inc.
H	Speaker/Microphone application CO2 Sensor		_	X								Mac/fail	i rebaces er efs	difficient Leasure	
F	IR Camera		_	X		х						Х	Relatio	n with desig	n feature
F	Geotiff mapping (LIDAR and Xsens)			~		~						1		e required fo	
u	s functionality (+ Ultrasound col. det.)		х			х			х	х				ides advant	
Ē					Te	chnic	al Fea	atures	5			С	ompetit	ive compar	rison
	Competition task	Competition Weighting	Track, flipper and chassis design	Arm Design and Kinematics	Manipulator design	Camera Angles ,Visual autonomy and UI (Kinect)	Speaker/Microphone application	CO2 Sensor	IR Camera	Geotiff mapping (LIDAR and Xsens)	Autonomus functionality (+ Ultrasound col. det.)	No functionality	Beiow average tuctionality	Average functionality	Above average functionality
H			F -	4	2	-	0	0	<u><u></u></u>		-	~	ų	4	P
	Navigating: Yellow Arena (4 victims)	280				1				1	1				
	Orange Arena (4 victims)	280	1			1									
	Red Arena (4 victims)	280	1	1		1									
	Black/Yellow Arena (2 victims)	140				1				1	1				
	Visual identification	140		1		1			1						
	Motion sensors	70		1		1									
	Thermal sensors	70		1					1						
	CO2 Sensors	70		1				1							
	Audio: Victim -> Operator	70		1			1								
	Audio: Operator -> Victim	70		1			1								
	Mapping: Geotiff map	140								1					
	Mapping: Location Accuracy	140								1					
	Payload Delivery	280		1	1	1									
		Raw score	560	1050	280	1470	140	20	210	200	420		SUCCI	ESS	2
		Scaled	0.381	0.714	0.19	-	0.095	0.048	0.143	0.476	0.286		resko GETbo	@UniKol	blenz
		Relative Weight	11%	21%	8%	30%	3%	1%	4%	14%	8%		ISTY		
		Rank	4	2	6	1	8	9	7	3	5			Hector	Darmstad
	-			-	_	_	_						cum	LICCLOI L	amstau

Finances



Income



Expenditure

Income	Expenditure	Balance
19297	18140	1157

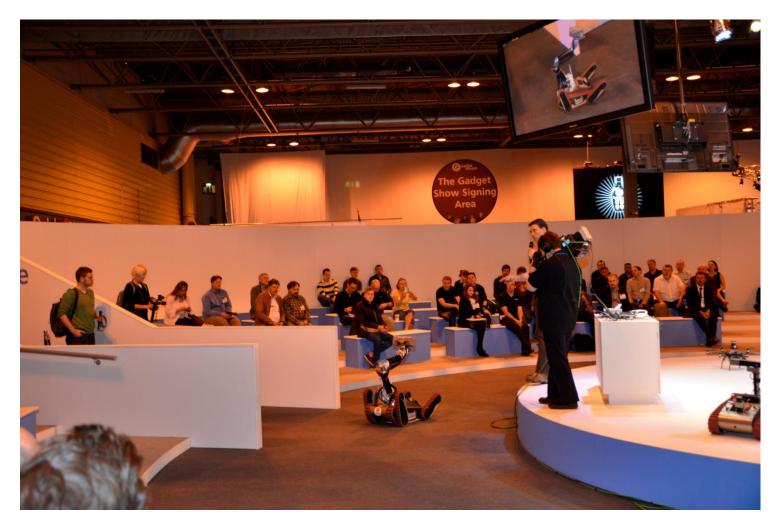
Sponsorship, Publicity & Commercialisation

a tti company

School of Engineering

The Office of the Vice-Chancellor

Publicity: BBC Click



Publicity: Gadget Show

Publicity: Gadget Show Live

Commercialisation

- Analysis of Current Situation
 - Unique Selling Point
 - Market Conditions
 - Possible Customers
 - Competitors
- Meeting with Warwick Ventures
 - 1) License the product
 - 2) Create a spin out company

In conclusion

Ongoing Work

- Autonomous Assistance
- Weight Reductions
- New Manipulator Design
- Further Battery Monitor Integration
- Linear Actuator

Conclusion

Many developments to USAR-T and USAR-A

Position in competition disappointing

- Created opportunities for next years team
 - Improved the handover due to the complexity of the project
- USAR range not yet viable commercial product

Warwick Mobile Robotics

Thank you for your attention