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Positron Emission Tomography (PET)

1. Radioactively label compounds

2. Scan Subjects to produce tomographic data

3. Reconstruct tomographic data to produce images
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Neuroreceptor Imaging
SCH23390 - Dopamine Imaging

128x128x31 - Spatial Dim
20 - Temporal Dim

≈ 107 data points
in a single 4D scan
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Neuroreceptor Imaging
Diprenorphine - Sample time courses
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General compartmental model for PET tracers
Model equation

CT (t) = CP(t) ∗
n∑

i=1

ωi exp(−νi t)

• CT (t): Tissue time-activity function

• CP(t): Blood/Plasma input function

• n: Number of compartments

• ωi : Weight (relative tracer volume)
in compartment i

• νi : Diffusion rate of tracer
in compartment i

• Both ωi and νi must be positive.
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PET compartmental analysis
Volume of distribution

In PET analysis we are interested in the total volume of tracer
present in the tissue (volume of distribution):

VT ≡
∫ ∞
0

n∑
i=1

ωi exp(−νi t)dt =
n∑

i=1

ωi

νi

VT is defined as the area
under

h(t) =
n∑

i=1

ωi exp(−νi t)

(green area in the graph)
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PET compartmental analysis
Standard “Statistics Text Book” Solution

CT (t) = CP(t) ∗
n∑

i=1

ωi exp(−νi t) + ε

Set n equal to a known number (usually 1 or 2 or at most 3). Then
you have known solutions to the general equation which can be
solved using standard algorithms such as Non Linear Least Squares.

A few problems

• How to choose n

• Algorithms often not very stable

• Algorithms often often take a while to converge (and we have
a 105 − 106 spatial points to look at).
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PET compartmental analysis
Linear problem formulation

• Define yj ≡ 1
tj−tj−1

∫ tj
tj−1

CT (t)dt.

• Define Φji ≡ 1
tj−tj−1

∫ tj
tj−1

∫ t
0 CP(τ) exp(−νi (t − τ))dτdt.

The problem can be reformulated as
the linear equation

y = Φω + ε,

where each column of Φ is a basis
vector.

Plot of basis vectors
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PET compartmental analysis

PET Spectral Analysis (Cunningham and Jones, 1993)

min
wi≥0, 1≤i≤n

‖y −Φw‖22.

Solved using NNLS algorithm (Lawson and Hanson, 1974).

DEPICT (Gunn et al, 2002)

min
w

(
‖y −Φw‖22 + λ‖w‖1

)
.

Solved using basis pursuit algorithm (Chen, Donoho and Saunders,
1999).
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Analysis of noise level simulated data
VT mean comparison

NNLS and DEPICT have noise level dependent bias (and
parameter dependent too).
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Bayes Rule

If we know something about the parameters, then this can be
updated when we see the data.

posterior(params|data) ∝ likelihood(data|params)prior(params)

or

p(θ|y) =
l(y |θ)p(θ)

p(y)
∝ l(y |θ)p(θ)

and in PET we usually know something about the parameters
(even if it is only a physiologically reasonable range)

Basis Functions
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Monte Carlo Methods

Idea is to take a sample of data and see what the parameters look
like.
E.g.

θ = Ep(f (X )) X ∼ p

which implies

θ =

∫
f (x)p(x)dx

So we could sample a lot of X ’s (say X1, . . . ,Xn from p in an
independent way) and then evaluate them to get an idea of the
value of θ.

θ̂ =
1

N

N∑
i=1

f (Xi )
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Importance Sampling

Problem 1 - we cant always sample from p.
Idea - Sample from something else q and then adjust.

θ =

∫
f (x)p(x)

q(x)
q(x)dx

which implies

θ = Eq(
f (x)p(x)

q(x)
)

So we could sample X1, . . . ,Xn from q in an independent way and
then evaluate them to get an idea of the value of θ.

θ̂ =
1

N

N∑
i=1

f (Xi )p(Xi )

q(Xi )

so long as q(x) > 0 whenever f (x)p(x) is non-zero.
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Importance Sampling

Problem 2 - we might not even know the normalising constant of p.
Idea - We can still use importance sampling.
Let

p(x) = η(x)/Z

where η is the unnormalised density and Z is the normalising
constant (unknown).

θ =
1

Z

∫
f (x)η(x)

q(x)
q(x)dx =

1

Z

∫
f (x)w(x)q(x)dx

and

Z =

∫
w(x)q(x)

So again we could sample X1, . . . ,Xn from q in an independent
way and then evaluate them both integrals above to idea of the
value of θ.
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Sequential Importance Sampling

Problem 3 - How do you choose a good importance density
Idea - Start somewhere and move slowly towards the right density
In the Bayesian context, start at the prior and move towards the
posterior.

1. Define a sequence pk(θ|y) ∝ l(y |θ)γbp(θ)

2. Sample from p(θ) = p0(θ|y)

3. Iterate:

3.1 Move the sample at iteration b − 1 to a sample at iteration b
by using a Markov Kernel.

3.2 Evaluate the Importance Samples and calculate their weights

Types of Markov Kernel could be e.g. random walks.



Intro SMC SMC-PET

Resampling

Problem 4: Only a few weights dominate
Idea: Resample to get a new set.
We now have a set of samples (X b

i , W b
i ) of our distribution of

interest.
We can measure the variation in those (normalised) weights

ESS =

(
N∑
i=1

(W b
i )2

)−1
This takes a value between 1 and N. If it is too low, say N/2 or
less, then we resample the samples to get a new set each with
weight 1/N.
This new set is then taken to the next iteration.
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Sequential Monte Carlo Samplers
(Del Moral et al, 2006)

Introduction Background Methodology Applications Conclusions & Further Work References References

Approximating p(θ|y), the model parameter posterior

SMC Samplers

SMC Samplers

πb ∝ p(θ)l(y |θ)γb

where

p(θ) = prior of
the model
parameters

l(y |θ) =
likelihood

0 = γ1 ≤ γ2 ≤
. . . ≤ γB = 1,
a tempering
schedule

Prior, π1 ∝ π(θ)

Intermediate, π2

∝ π(θ)l(y|θ)γ2

Posterior, πB
π(θ|y)

Intermediate, π3

∝ π(θ)l(y|θ)γ3

RESAMPLE

Intermediate, π3

∝ π(θ)l(y|θ)γ3
×3 ×3
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Extensions with SMC - Identifiability

Take a similar approach to optimization using simulated annealing:

πb ∝ p(θ)l(θ|y)γb

If γb is allowed to go above one, then if parameter distribution
doesnt degenerate to point mass as γb increases, then parameter is
unidentifiable.
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Model Selection
For a given model M, the normalising constant, ZB

ZB = p(y |M).

It turns out that SMC samplers can be used to give unbiased
estimates of ratios of normalising constants (Del Moral, 2004, Del
Moral et al, 2006), via the reweighting of the particles

Zb

Zb−1
≈ Ẑb

Zb−1
=

N∑
i=1

W
(i)
b−1wb(θ

(i)
b−1:b)

= Normalising Constant for weights at iter b = W̄b

where W
(i)
b−1 are the particle weights and wb(θ

(i)
b−1:b) are the

unnormalised incremental weights (see Del Moral et al, 2006).
ZB , can thus be approximated as:

ẐB = Ẑ1

B∏
b=2

W̄b



Intro SMC SMC-PET

Outline

Compartmental Models for PET

Sequential Monte Carlo

SMC and PET



Intro SMC SMC-PET

SMC PET Implementation

• Subject-by-subject analysis of [11C]-Diprenorphine PET Scans.

• Models chosen from 1, 2, and 3 - tissue compartmental
models

• Gaussian / t-distribution Measurement Errors (again
proportional to true signal).

• Prior specification used incorporate biological meaningful
information (see Zhou et al, 2013)

• Parameter of interest is volume of distribution which can be
derived from all models

• Allows option of model selection or averaging (model selection
used in results)

• N=1000 particles, and approximately 180-200 intermediate
distributions used (random quantity based on CESS).
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PET Results

[11C]-Diprenorphine imaging of the Opioid receptors. Healthy
control part of study into epilepsy.
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Final Estimates of VT and Model Order
[11C]-Diprenorphine
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Computational Results
(Zhou et al, 2012)
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Conclusions

• Compartmental Models are ubiquitous as biomedical models
and naturally lend themselves to SMC analysis

• Compartmental Models give considerable insight and SMC
can help parameter estimation and possibly even identifiability

• PET can interrogate many neurochemical systems and SMC is
now computationally implementable even at the voxel level,
allowing not only parameter estimation but also uncertainty
measures.
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