

Company Presentation

ALACAES is a private Swiss company that is developing an advanced adiabatic compressed air energy storage (**AA-CAES**) technology for large-scale electricity

storage

Private Investors

AMBERG
ENGINEERING

Lombardi

- From its inception, ALACAES had strong ties to academia and is the main industrial partner in 3 cross-institutional R&D projects
- ALACAES' industrial partners are key players in their respective sectors

Scientific and Industrial Partners:

Bundesamt für Energie BFE Office fédéral de l'énergie OFEN

Typical wind and solar electricity production vs. grid consumption patterns

Blue: Wind Production

Yellow: Solar Production

Red: Grid Consumption

Typical wind park electricity production fluctuations

Why Large-Scale Energy Storage?

- Compensate intermittent nature of renewable energy sources; i.e. wind and solar
- Shave production peaks and reduce/eliminate curtailment of wind and PV farms
- Deferral of Transmission and Distribution grid expansion by optimizing output of large-scale renewable energy plants
- Stabilize grid during peak consumption periods
- Offer vital role in case of black-outs (black-start ready)

Why Large-Scale Energy Storage?

Conventional CAES Technology

In conventional CAES plants:

- Air is compressed using excess electricity from the grid and stored in underground caverns
- Compressed air is later expanded in turbines to generate electricity
- Compression generates heat that is dissipated to the environment
- In release mode air is heated by means of a fossil fuel burner

Existing Plants: Huntorf (DE) in 1978

- Gas burner to heat the compressed air
- **Salt cavern** for air storage
- 3h of production with a storage capacity of 640 MWh
- Efficiency: 40%

McIntosh (US) in 1991

- Gas burner and heat recuperation
- Salt cavern for air storage,
- 26h of production with a storage capacity 2860 MWh
- Efficiency: 54%

ALACAES Technology

The ALACAES Technology Summarized

- Use of underground caverns as the pressure reservoir easily accessible and vast experience from gas storage caverns
- Packed bed of rocks Thermal Energy Storage (TES) developed for CSP technology – high round-trip efficiency, high reliability
- Placement of the TES inside the pressure cavern TES tank not pressurized,
 costs and complications of the TES solution significantly reduced
- Placement of the turbomachinery inside the cavern (optional) reducing the visibility of the plant and therefore its public acceptance, vast experience from pumped hydro plants
- See also the video on our homepage: www.alacaes.com

Placed in an unused tunnel in the Swiss Alps

Pilot PlantThermal Energy Storage

CAES vs Other Storage Technologies Cost Comparison

 Compressed Air Energy Storage has the lowest cost per installed capacity among all storage technologies*

CAES is a factor of 4-8 cheaper than

Li-ion batteries

 CAES is 30-50% cheaper than pumped hydro plants

^{*}Lazard's levelized cost of storage – 2.0, Dec. 2016

^{*}Sandia Report 2015-1002, Electricity Storage Handbook, Feb. 2015

CAES vs Other Storage Technologies Sustainability

ESOI = Energy Stored on Invested =

Energy stored over lifetime of storage device

Energy required to build it

- CAES has the best sustainability
 performance among all storage technologies
- CAES lifetime is 40-60 years vs. 10-15 years for batteries

	$\frac{\eta^a}{}$	λ^b at depth-of-discharge (DOD)			
	%	100%	80%	33%	$\varepsilon_{ m gate}^{c}$
Li-ion	90	4000	6000	8500	454
NaS	75	2400	4750	7150	488
PbA	90	550	700	1550	321
VRB	75	2900	3500	7500	694
ZnBr	60	2000	2750	4500	504
CAES	70	>25 000 DOD indep.			73
PHS	85	>25 000 D	OOD indep.		101

CAES vs. Pumped Hydro

- CAES has 20-30% cheaper CAPEX
- Smaller environmental footprint
- No dams necessary: Drastically smaller concrete usage
- No artificial lakes created: No damage to local flora and fauna
- Not competing with drinking or agricultural water supply

Summary

- ALACAES is developing a low-cost, zero emission storage technology based on compressed air energy storage (CAES)
- AC-to-AC efficiency = 70-75%
- ALACAES successfully built and tested the world's first advanced adiabatic CAES (AA-CAES) pilot plant in 2016
- Partners are leaders in their respective industries
- Now optimizing plant cost and performance with partners and business development

www.alacaes.com

Follow us on Twitter **y**:@ALACAES