

LIQUID AIR ENERGY STORAGE Large scale, Long duration

LIQUID AIR ENERGY STORAGE (LAES)

Pumped Hydro Capability No Geographical Constraints

Stuart Nelmes Engineering Director

Copyright of Highview Power Storage © All rights reserved. No part of this publication may be reproduced, distributed or transpliced in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Highview Enterprises Ltd.

Liquid Air Energy Storage (LAES)

is based on **proven components** from century-old industries

and offers a **low-cost** solution

for high-power, long-duration energy storage

that can be built **anywhere**.

Agenda

Company Timeline

HIGHVIEW POWER STORAGE

2005

2008 The power recovery cycle demonstrated in lab-scale tests

Highview enters into a licence agreement with General Electric

Multiple feasibility studies awarded, including an award from the U.S. Navy

2016

Highview's grid scale High Grade Cold Store (HGCS) commissioned at the 5MW Pilsworth demonstration plant

Future

The new conceptual GigaPlant 200MW/1.2GWh

Installation of complete pilot CryoEnergy Storage plant

2011

Installation of power recovery cycle in pilot plant

2010

Highview signs cooperation agreement with the Messer group

Highview and project partners, Viridor, awarded funding for a 5MW LAES demonstration project by the UK Government

Viridor

Transforming waste[®] 2014 Frost & Sullivan awards Highview with Global Large-Scale Energy Storage Technology Innovation Award

FROST 🕉 SULLIVAN

2015

Highview expanding into the US with new office in New York, a key market for LAES

350 kW / 2.5 MWh Pilot

5MW / 15 MWh Demonstrator

Wide range of services performed by different types of energy storage

Benefit	Time	End-user	Distribution	Transmission	Utility System	Independent operators	
Energy (\$/kWh)	Hours	Energy Mngt.	T&D inves	tment deferral		Pumped Hydro	
Power (\$/kW)	nutes			Liquid Air V			
Reliability (\$/kW)	Air	Batteries			Renewa	ble smoothing	
Operations (\$/kWh)	Seconds	Flywheels Super Capacitors		system su	oport	Ancillary	
						Services	
		10 kW	100 kW	10's	MW	100's MW	

Wide range of services performed by different types of energy storage

Benefit	Time	End-user	Distribution	Transmission	Utility System	Independent operators	
Energy (\$/kWh)	Hours	Energy Mogt	T&D inves	tment deferral		Pumped Hydro	
Power (\$/kW)	nutes	ivingt.		CAES Liquid Air			
Reliability (\$/kW)	Ξ		Batteries		Renewa	ble smoothing	
Operations (\$/kWh)	Seconds	Flywheels Super Capacitors		system su	pport	Ancillary services	
		10 kW	100 kW	10's	MW	100's MW	

Why energy storage?

Source: Adapted from http://reneweconomy.com.au/californias-duck-curve-has-arrived-earlier-than-expected-36106/ © Highview Enterprises Limited, 2017

How does LAES work?

Off-peak or excess electricity is used to power an **air liquefier** to produce liquid air. The liquid air is stored in a tank(s) at low pressure.

To recover power the liquid air is pumped to high pressure, evaporated and heated. The high pressure gas drives a turbine to generate electricity.

The three components are **independently sizeable**

LAES – Standalone Configuration

LAES cycle produces zero emissions and works with benign materials

Major Equipment Suppliers for LAES

Leveraging an **established supply chain** through relationships developed through our projects

Layout

Adaptable layout to work within your footprint and height constraints

- Indicative footprints for 6h systems:
 - 20 MW: 0.5 acres
 - 200 MW: 4 acres
- Layout can be configured to the available space and shape of the plot.
- Equipment can be selected according to height requirements (vertical/horizontal tanks)

- 1. Compressor house
- 2. Air cleaner
- 3. Cold box and cold expanders
- Liquid air storage
- 5. Cryo pumps
- 6. Containerised power turbine and generator (2 x 10MW)
- 7. Heat exchanger containers
- 8. High grade cold stores
- 9. Hot water storage
- 10. Electrical intake and switch-house

HIGHVIEW

A highly customisable storage solution offering unique advantages

Performance – Round Trip Efficiency

Efficiency depends on temperature of waste heat and availability of cold and on scale

© Highview Enterprises Limited, 2017

 $-\Pi GH$

Highview's patented cycle maximizes recoverable energy

Capable of dispatch faster than a classic peaking unit

Costs reduce with scale and can be optimised by careful configuration

Lifetime cost

Levelized Cost of Storage =
$$\frac{\sum_{t} \left((CAPEX_{t} + O \& M_{t} + Replacement_{t} + Fuel_{t}) * (1+r)^{-t} \right)}{\sum_{t} \left(Electricity \ Generated_{t} * (1-r)^{-t} \right)}$$

SOURCE: Data from Lazard LCOS 2.0 (https://www.lazard.com/media/438042/lazard-levelized-cost-of-storage-v20.pdf)

© Highview Enterprises Limited, 2017

+|G|

Positive returns add up by stacking sources of revenue

Low marginal cost of additional energy capacity (as little as 20 \$/kWh_{CAPEX}*)

Low-cost Reserve Capacity can be held for events such as black start or infrequent peak events to avoid T&D upgrades.

*as low as \$20/kWh with heat available, as low as \$40/kWh without.

Integration of LAES with thermal plant offers mutual benefits

Optimise plant operation with potential to:

- Reduce cycling
- Reduce fuel costs
- Influence merit order placement

Reduce cost with potential to:

- remove LAES sub-systems
- share components
- share services

Improve performance of the whole system by:

- boosting LAES efficiency
- potentially boosting power plant efficiency
- leveraging plant synergies

Improved Peaker offering: enhanced capacity and storage services

- 900 °F waste heat
- Up to 70% Round-Trip Efficiency
- Charge off peak / dispatch with the gas turbine
- Developed in collaboration with General Electric

Example 2: steam cycle

LAES with a baseload plant can be a more flexible asset

Example 2: steam cycle

Next generation LAES (Hybridisation)

Enhanced LAES system utilising ultra capacitor and flywheel technologies

Demonstration project currently in construction phase will be operational summer 2018

The benefits include;

- Near instantaneous import response
- Near instantaneous export response
- Reduced main turbine start-up

Contact Us

Highview Power Storage

info@highview-power.com

www.highview-power.com

+44 (0)207 484 5600

Copyright of Highview Power Storage © All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Highview Enterprises Ltd.

