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CAES variants

Diabatic CAES
« Heat of compression lost;
« Reheat using natural gas.

Aur Inake
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Adiabatic CAES ®_
* Heat of compression stored
and re-used during discharge.

Air Intake

Isothermal CAES

« Compression and expansion take place at near ambient temperature,
with environment as heat store. 2



Choices in CAES

Overall architecture
 Diabatic / Adiabatic / Isothermal

Alir storage
« Above ground / underground / underwater
 Isochoric / Isobaric air storage

Thermal energy storage (TES)

* Pressurised water / packed bed thermocline / phase
change / molten salt

« Direct heat exchange with TES / indirect (with HX)



Dominant costs

2012 Black & Veatch study of 262 MW plant with 15 hours
of storage predicted capital cost of $900/kW (c.f. £900/kwW
for Larne).

$60/kW , 7%

$30kW , 3% = Turbine

$270/kW , 30%

Cavern cost accounts for
40%. High fixed and low
marginal costs of salt cavern
mean this depends only
weakly on capacity.

Compressor
m Balance of plant
m Cavern

= Engineering, procurement,
construction management services

\$130rkw 14% ™ Owner's cost

Cavern
Total: $900/kW -30% + 75% $50/kW , 6%

For small-scale CAES, the cost of pressure vessels scales
with gauge pressure x volume.



Use of pressure containment

Exergy in isochoric store with pressure ratio, I

Brp_air = ( store)x[(r logr — I’X ZEE['//:)O))}

Exergy in isobaric store with press. ratio, I

e 00 = (9 Vi M (rlogr—(r-1)

Or, if the HP air is displaced naturally by hydrostatic head
(removes energy input for pumping)

Bip .ir = (po store) [(r log r) ]

361.5

460.5




Compressing and cooling air

Compression Cooling

1J of work on ambient air

—> —>
pO’ TO P, Tl

1J of heat
between T, and T,

1J of work on pre-heated air

— —

1J of heat
between T, and T,

Result

All exergy in
pressurised air
(if To=T),)

Exergy split
between air and
high temperature
heat



Pressurised air vs thermal storage

Modelled as reversible with isobaric storage
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Exergy split for adiabatic CAES with pre-heat

Storage pressure 80 bar

Max temperature (after

300

400 500
Tpre—heat (K)

600

700

. 1000K
compression)
Bstored/ Bair
Isothermal CAES 1.00
Adiabatic CAES 2.08
Adiabatic CAES with pre-heat 3.01

to 660K

For a given pressure store size, pre-heating air increases
the total exergy stored significantly.



Effect of pre-heated compression

200kW / 3200kWh system with isobaric air storage
3 stage compression to 250 bar, 69% roundtrip efficiency

No pre-heat Pre-heat to 400K
800 . . . 800 | —— Hot compression
—— Compression — Expansion
700 | —— Expansion | 700 |
600} 600}
= 500 = 500 X
400} 400 | /
300 ' - - 300 L—Z— ' - -
5000 5500 6000 6500 7000 5000 5500 6000 6500 7000 7500
S (J/kgK) S (J/kgK)
Air store size: 74m?3 Air store size: 58m?3

28% smaller 8



Solar-integrated CAES

Pre-heated CAES variant lends itself to integration with
solar thermal generation.

Resulting system combines grid-scale energy storage with
large-scale generation.



Solar-integrated CAES - charging

Low
Isothermal Compressor grade
with heat rejection thermal
store
Air in ¥
>

Three stage adiabatic (hot)
compression with intercooling
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Connections to thermal stores omitted for clarity

High
grade
thermal
store

Pressure store
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Solar/waste
heat collection 10



Solar-integrated CAES - discharging

Low
Isothermal Compressor grade
with heat rejection thermal

store

Three stage expansion with
single stage reheat -

4 $+ 3

Air OUt =g=

Connections to thermal stores omitted for clarity

High
grade
thermal
store

Pressure store

Solar/waste
heat collection 11



Solar-integrated CAES

200kW/3200kWh system with isobaric air storage

3 stage compression to 250 bar

1000
Hot compression
900 | Isotherr.nal compression
—— Expansion

800 -
— 700+
=600

500 | /

:ﬁy/ .
400 | ‘ (.
5000 5500 6000 6500 7000

S (J/keK)

7500
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Applications

Most relevant where there Is strong solar resource/waste
heat and low-cost pressure storage, such as salt caverns
or deep water.

Candidate locations include:

« Chile

« Mediterranean countries, esp. Spain
« Gulf of Mexico

* India

Where solar resource is not available, waste gases may be
used as a least-worst solution.
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Conclusions

A variant on CAES incorporating pre-heating and solar
thermal capture has been proposed.

Preliminary modelling indicates greatly increased exergy
storage for a given pressure store.

Further work

Techno-economic assessment of costs and value of
generation and storage service provided.

Engineering design of high-temperature compression
machinery.
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GIES versus non-GIES

A) Non-GIES System
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