

Imperial College London

Integrating Solar Thermal Capture with Compressed Air Energy Storage

Michael C Simpson*, Seamus D Garvey, Bharath Kantharaj, Bruno Cárdenas, James E Garvey

Hybrid and Integrated Energy Storage
London
18th December 2017

CAES variants

Diabatic CAES

- Heat of compression lost;
- Reheat using natural gas.

Adiabatic CAES

 Heat of compression stored and re-used during discharge.

Isothermal CAES

 Compression and expansion take place at near ambient temperature, with environment as heat store.

2

Choices in CAES

Overall architecture

Diabatic / Adiabatic / Isothermal

Air storage

- Above ground / underground / underwater
- Isochoric / Isobaric air storage

Thermal energy storage (TES)

- Pressurised water / packed bed thermocline / phase change / molten salt
- Direct heat exchange with TES / indirect (with HX)

Dominant costs

2012 Black & Veatch study of 262 MW plant with 15 hours of storage predicted capital cost of \$900/kW (c.f. £900/kW for Larne).

Cavern cost accounts for 40%. High fixed and low marginal costs of salt cavern mean this depends only weakly on capacity.

Cavern

For small-scale CAES, the cost of pressure vessels scales with gauge pressure x volume.

Use of pressure containment

Exergy in isochoric store with pressure ratio, r

$$B_{HP-air} = (p_0 \times V_{store}) \times (r \log r - r)_{r=(p_L/p_0)}^{r=(p_H/p_0)}$$

Exergy in isobaric store with press. ratio, r

$$B_{HP-air} = (p_0 \times V_{store}) \times (r \log r - (r-1))$$

Or, if the HP air is displaced naturally by hydrostatic head (removes energy input for pumping)

$$B_{HP-air} = (p_0 \times V_{store}) \times (r \log r)$$

e.g. $p_H = 100 p_0$ $p_L = 50 p_0$

214.9

361.5

460.5

Compressing and cooling air

1J of work on pre-heated air

Exergy split between air and high temperature heat

Pressurised air vs thermal storage

Modelled as reversible with isobaric storage

Storage pressure	80 bar
Max temperature (after compression)	1000K
	B _{stored} /B _{air}
Isothermal CAES	1.00
Adiabatic CAES	2.08
Adiabatic CAES with pre-heat to 660K	3.01

For a given pressure store size, pre-heating air increases the total exergy stored significantly.

Effect of pre-heated compression

200kW / 3200kWh system with isobaric air storage 3 stage compression to 250 bar, 69% roundtrip efficiency

No pre-heat

Air store size: 74m³

Pre-heat to 400K

Air store size: 58m³

28% smaller

Solar-integrated CAES

Pre-heated CAES variant lends itself to integration with solar thermal generation.

Resulting system combines grid-scale energy storage with large-scale generation.

Solar-integrated CAES - charging

Solar-integrated CAES - discharging

Solar-integrated CAES

200kW/3200kWh system with isobaric air storage 3 stage compression to 250 bar

Applications

Most relevant where there is strong solar resource/waste heat and low-cost pressure storage, such as salt caverns or deep water.

Candidate locations include:

- Chile
- Mediterranean countries, esp. Spain
- Gulf of Mexico
- India

Where solar resource is not available, waste gases may be used as a least-worst solution.

Conclusions

A variant on CAES incorporating pre-heating and solar thermal capture has been proposed.

Preliminary modelling indicates greatly increased exergy storage for a given pressure store.

Further work

Techno-economic assessment of costs and value of generation and storage service provided.

Engineering design of high-temperature compression machinery.

Acknowledgements

Thanks to EPSRC for supporting this work under:

- NexGen-TEST (EP/L014211/1)
- IMAGES (EP/K002228/1)
- RESTLESS (EP/N001893/1)

Thanks to colleagues also active in compressed air and thermal energy storage at:

- Warwick
- Leeds
- Cambridge
- Birmingham
- Loughborough
- Chinese Academy of Sciences

References

Garvey SD et al., "On generation-integrated energy storage," Energy Policy, vol. 86, pp.544-551, 2015.

Zunft S, "Adiabatic CAES: The ADELE-ING project," presented at SCCER Heat & Electricity Storage Symposium, Villigen, Switzerland, 2015.

Haughey C, "Larne CAES: a project update," Gaelectric, Belfast, Ireland, article, 2015.

Black & Veatch Holding Company, "Cost and Performance data for Power Generation Technologies," 2012.

White AJ, McTigue JD, Markides CN, "Analysis and optimisation of packed-bed thermal reservoirs for electricity storage applications," to be published.

Garvey SD, "Two Novel Configurations for Compressed Air Energy Storage Exploiting High-Grade Thermal Energy Storage," presented at UK-China Thermal Energy Storage Forum, Beijing, China, 2015.

Solar Millennium, "The parabolic trough power plants Andasol 1 to 3," Erlangen, Germany, report, 2008.

Jorgenson J et al., "Estimating the Performance and Economic Value of Multiple Concentrating Solar Power Technologies in a Production Cost Model," NREL, Denver, Colorado, Report NREL/TP-6A20-58645, 2013.

RWE, "Adele – Adiabatic compressed-air energy storage for electricity supply," Essen/Cologne, Germany, report, 2010.

Young-Min, K et al., "Potential and Evolution of Compressed Air Energy Storage: Energy and Exergy Analyses," Entropy, vol. 14, no. 8, pp.1501-1521, 2012.

GIES versus non-GIES

A) Non-GIES System

