Hybridizing energy storage systems to improve cost-effectiveness and expand service range

Dr Haris Patsios

haris.patsios@newcastle.ac.uk

Hybrid & Integrated Energy Storage - mainstays of a carbon-free energy system 18th December 2017, The Shard, London

National Centre for Energy Systems Integration

Overview

- Newcastle Research on Hybrid Energy Storage Systems
 - Hybrid Systems Sizing and Technology Selection
 - Complementing Renewables
 - Multiple Applications considering uncertainty
 - Industrial Applications
 - Laboratory facilities and integration

Why?

- Increased Flexibility
- Expanded service provision
- Increased competitiveness
- Future-proofing
- Expand lifetime
- Inform technology development

The team:

Stalin Munoz Vaca, Timur Sayfutdinov, John Nwobu, David Greenwood, Janusz Bialek, Phil Taylor, Haris Patsios

What is the issue?

 Large-scale Renewable Generators are required to provide Mandatory Frequency Response (MFR)

What is the issue?

 Large-scale Renewable Generators are required to provide Mandatory Frequency Response (MFR)

Methodology

Maximizing Revenue by optimally sizing ES technologies for complementing renewables in MFR

- Generator, ES1 and ES2 are considered active elements for participating in MFR
- The ES can also be used for Arbitrage when possible
- The revenue streams for Total System Profit (TSP) are the Wholesale Market and Freq. Market
- Objective function considers annualized cost of purchasing the ESS and cost of degradation. The TSP is scaled to the project lifetime

$$TSP = PT \cdot \left(-C_{HESS} \cdot CRF + \sum_{t=t_0}^{N} I_{WM(t)} + I_{FREQ(t)} - C_{DEG(t)} \right)$$

- Optimal solution achieved through linear programming
- Constraints of sub-component operation (generator and ESS), self-discharge losses, service and market regulations, and revenues calculation.

- Case Study
- A 50MW wind farm with hybrid ESS composed of NaS and Supercapacitors

ES Parameters	NaS	SUPERCAPACITOR
Max SOC (%)	95	95
Min SOC (%)	10	10
Round Trip Efficiency (%)	75	80
Cost of Energy (£/kWh)	450	8820
Cost of Power (£/kW)	200	132
Cost of Degradation (£/kWh)	0.1	0.0079
Daily Self-Discharge (%)	10	10

	Results		
	Revenue (Millions)	ESS Description	
Single ESS	£219.65	NaS: 4.7MW/2.4MWh	
HESS	£220.32	NaS: 4.5MW/2.25MWh Supercap: 643kW/3kWh	
NO – ESS	£217.1	No Storage	

System Revenue (MFR and Arbitrage)

Incremental System Revenue (MFR and Arbitrage)

■ One Tech - MFR ■ One Tech - MFR+Arbitrage ■ HESS - MFR ■ HESS - MFR+Arbitrage

Results

MAXIMUM REVENUES: COMPARISON OF TECHNOLOGIES

- Optimal sizing and technology selection of ESSs for multiple power system applications.
- Methodology tested for Energy Arbitrage and Peak Shaving services.

Methodology

- Algorithm for evaluating lifetime profitability
- Includes historical data analysis, optimization process, probabilistic analysis, and profitability evaluation for every expected demand and energy price scenario.

Case Study

age Systems Technology Selection and

Case study

- Scenarios are found based on assumptions of expected changes in demand and energy price
- 365 days of historical demand data from actual trials (CLNR), Energy price data taken from Nord Pool Spot

 Considering demand and price growth for a 15-year horizon

Problem definition

ES system characteristics and constraints

No	Technology	Roundtrip efficiency , (%)	Cycle Lifetime, (cycles)	Calendar Lifetime, (years)	Self- Discharge rate, (%/day)	Energy Capacity Cost, (£/kWh)	Power Capacity Cost, (£/kW)	Energy to Power ratio
ES1	Li-ion	95	5 000	15	0.2	490	325	0.1 - 6
ES2	ZnBr	70	3 000	15	0	320	320	2 - 8
ES3	VRFB	70	10 000	15	0	490	325	4 - 15
ES4	NaS	75	4 500	15	0	285	285	6 - 7.2
ES5	Lead-acid	85	1 500	15	0.2	260	320	0.25 - 6
ES6	SC	90	1 000 000	15	10	8 100	175	0.005 - 0.025

Skolkovo Institute of Science and Technolog

Skoltech

Results

Optimization problem solved for every expected scenarios of demand and energy price

Results

- Probability Mass Function is found for every expected scenario of demand and energy price with respect to historical data
- Expected profitability is found for every optimal solution with respect to PF

	Ĺ	Jptimal Solut	ion	
Technology	E, MWh	P, MW	CAPEX, M£	Expected Profit, M£
Li-ion	17.7	6.6	10.8	
NaS	16.4	2.8	5.5	229.8
Total	34.1	9.4	16.3	

1 4

Industrial Application

"redT's vanadium redox flow machines address the disadvantages of conventional batteries such as lithium-ion, lead-acid or supercapacitors. A hybrid system combines both types of technology to serve complex energy needs.

- Vanadium flow machines are an energy centric technology, ideally suited to energy intensive applications (standard duration 5 hrs and range up to 7.5hrs or 15hrs depending on size and application)."
- "Battery technology, on the other hand, is power-centric, making it ideally suited to occasional, high power, short duration discharge (less than 3 hours) cycles"

Independent and simultaneous operation of flow machine and lithium battery to maximise revenue

Innovate UK

Lithium/Lead acid battery provides about 15%

Knowledge Transfer Partnerships

KTP Partnership Co-funded by Innovate UK

Commissioned redT 1.08MWh Redox Flow Machine at Olde House (Cornwall UK)

Flow/Lithium Hybrid Energy Storage Systems

- First Commerical Vanadium flow and lithium hybrid energy storage in Australia
- 300kW 1MWh Hybrid flow and lithium energy storage system
- 180kW/900kWh of redT flow machine coupled with a 120kW at approx 100kWh C1 rated lithium battery
- System used for arbitrage charging during off-peak and discharging during high peak times. Peak shaving through solar PV at later stages
- R&D Facility for Hybrid Energy Storage commissioned Q1 2018 at Wokingham
- Assembly and manufacturing through our manufacturing partners JABIL and Heights Manufacturing
- Open and flexible testing and demonstration plaftorm to refine soultions and next generation product line.
- A Collaboration with Newcastle University to improve energy managmenemt systems of the hybrid.

redT to supply first vanadium flow/lithium hybrid energy storage solution to Australia

redT Facility at Heights Manufacturing

Industrial Application - Energy Management of Hybrid Energy Storage Systems

torage Newcastle

Collaboration with Newcastle University to improve energy management, refine business cases and maximise revenue and benefits to investors and customers

- Maximise revenue through Arbitrage during off peak and on peak periods with Solar PV generation.
- Energy Management of Lithium/Lead battery for short duration events (10 - 15% of uncaptured annual demand) with VRFB for longer duration events
- Explore **new revenue streams possible** (e.g. ability to simultaneously stack two services to customers)
- **Optimise daily schedules** to maximise revenues
- Improve energy dispatch scheduling and sizing for of both assets

Laboratory facilities dedicated to hybrid energy storage system integration

Science Central - The Site as a Living Laboratory

Multi-Scale Analysis of Facilities for Energy Storage (MANIFEST)

£5m/4 years EPSRC-funded project (EP/N032888/1) started Sept. 2016

Wide collaboration of universities that shared £30m capital investment from the 2013 'Eight Great Technologies' call.

Vision:

- To be the catalyst which leads to
 - improved understanding of physical processes,
 - accelerated technology development, and
 - shared learning from the operation of energy storage technologies.
- To drive further collaboration between institutions.
- To maximise the impact from these capital facilities in the international energy landscapes.

www.birmingham.ac.uk/UKESTO

http://gtr.rcuk.ac.uk/projects?ref=EP/N032888/1

j.radcliffe@bham.ac.uk O.Saeed.1@bham.ac.uk

Conclusions

- **Combinations** of energy storage technologies with complementary characteristics can **unlock a wider set of network services** and increase revenues against using a single technology
- Co-locating storage combinations with RE generation units provides major benefits in resolving power network issues and can assist decarbonisation
- Energy storage technology selection and sizing as investment tools can be used to inform the design of new technologies and services and improve existing ones

UKES 2018 – UK Energy Storage conference

Hosted by CESI in partnership with Imperial College London, the Energy Storage Network, Energy Superstore Hub

- Tuesday 20th March 2018 Thursday 22nd March 2018
- CALL FOR POSTERS OPEN
- ukenergystorage.co

Urban Sciences Building, Newcastle University

