

Contents

Les Petits-Dalles, near Dieppe, 2013

Role of conditions along the spreading path of a 'flow-like' landslide:

- Slope geometry: abrupt slope change
- Materials:
 - **Distribution & Thickness**
 - **Properties**

- 2 Small scale experiments: deposition, erosion, time evolution
- 3 FEM ALE model: M-C elasto-plastic material for flow and deposition
- 4 Recents efforts: testing and modelling under different conditions

Real rock avalanches: chosen settings S-Ashburton, New Zeoland New Zeoland Mas H=341 m | 14 36 H=204 m | 14 36 H=204 m | 14 37 m | 15 38 H=204 m | 14 36 Rock-debris-avalanches (dry) on open slopes with simple geometries Large scar, relatively short slope and flat No- to strong interaction with basal layer or surface Real rock avalanches: chosen settings From, Canada H=473 m | 15 38 H=100 m | 14 36 H=100 m | 15 00 m | 15 0

Previous Experiences

Granular column collapse on erodible layer: effect of layer properties

(Crosta et al., 2009)

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Previous Experiences

Granular column collapse on erodible layer: effect of layer properties

Effect of the strength and stiffness of a basal rigid surface/material

Previous Experiences a granular step-like rock slope failure: Arvel, 1922

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Previous Experiences

Deposit geometry (material properties, saturation)

Previous Experiences

Deposit geometry (material properties, thickness)

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Experiments: apparatus, materials, methods

- · Simple apparatus
- · Release mechanism
- Different materials
- Variable:
 - Volume of material (1.5-5.1 L; $H_0 = 5-8.5 \text{ cm}$)
 - Slope angle (*θ*=35-66°)
 - Erodible layer (0-2 cm)
- Data acquisition:
 - High speed cameras: 60-600 fps
 - Laser beam: 120 Hz
 (beam spot: 5 mm, accuracy: 5 mm)

Test conditions: materials, geometry

- Different basal materials in difeerent combinations (slope, flat, → plexiglas, wood)
- Slope angle (35° 60°)
- Granular flow materials (sand, gravels)
- Shallow layer in flat portion (sand, water)

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Deposit characteristics: sand/smooth, sand/sand

- Smooth surface: long open apron
- Slope < 45°: stepped surface laying on the inclined slope

Avalanching angle

 Slope > 45°: lobate/lunate deposit with wavy surface detached from sloping chute

Deposit: internal structure

- Colored sand layers
- Internal deformation a
- Erosion
- Thrusting & folding
- Double-layering

Similar to Rowley et al, 2011

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

H/L ratio: mobility vs slope angle, layer thickness

Flow and Deposit evolution: sand/smooth

- Smooth surface:
- 40° slope

- Strong elongation
- Thin tapered deposit
- Backward propagation
- Ramp-like features

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Flow and Deposit evolution: sand/sand

- Sand on sand
- · Erodible sand layer
- 45° slope angle

- Thick deposit
- Dilation at impact
- Breaking wave
- · Shallow frontal wave
- Backward propagation

Flow and Deposit evolution: centerline profiles >> time

120 Hz - aggradation by backward shockwave propagation, progradation

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Flow and Deposit evolution: gravel/sand

- · Gravel on sand
- · Erodible sand layer
- 66° slope angle
- Gravel piggy back transported by the pushed sand wave

Flow and Deposit evolution: effect of base material

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Flow and Deposit evolution: front position, velocity

- Spatio-temporal plots
- Fall velocity
- Front propagation velocity

3D Numerical Modeling: FEM-ALE results -0.9 t = 0.8 st = 0.9 svertical distance (m) -1.0 0.8 s t = 0.8 st = 0.9 st = 1.1 ssurface erodible sand layer original erosion -0.4 -0.1 0.1 t = 1.2 s horizontal distance (m) Max deposit Max runout thickness (cm distance (cm) c) Laboratory test 7.5 105 Numerical sim. 8.3 110

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

2D Numerical Modeling: internal deformation

Real world analogues: deposit geometry

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Real world analogues: evolution Impact and rebound Elm rock-avalanche, CH, Heim 1882 b) a) Snow avalanche jet in a quasi-steady state Hakonardottir et al., 2003 c) d) Folding and thrusting Arvel, CH, Choffat 1929 e)

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Flow and Deposit evolution: shallow water/front velocity

Interaction with shallow water: hydroplaning

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Recent efforts: Flow and Deposit evolution interaction with dry shallow cohesive layers

Interaction with thin layer of dry kaolin with overthrusted and suspended ring and thrust features

Recent efforts: Flow and Deposit evolution Interference features → wet layer conditions?

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Recent efforts: Flow and Deposit evolution Lateral confinement and interference features

Conclusions 1/2

Sliding and elongation/compression as frequently assumed in thin layer basal shearing approximation do not fit the real behaviour → relevant internal shear at slope break

→ where thickness is relevant

- → erosion is important
- → behaviour strongly sensitive to slope changes

Main Features:

- 1) «reflection» and dilation of the flow at slope breaks
- 2) complex flow motion (e.g. steep front, multiple fronts)
- 3) **composite deposition** mode (frontal deposition, ramp-like deposits) controlled by the different boundary conditions
- 4) complex interaction with basal layer combining **erosion**, **expulsion**, **intense shearing**
- 5) extreme effects of water function of water depth

Crosta et al, ISGG2015 10-11 September 2015 University of Warwick, School of Engineering

Conclusions 2/2

Tentative Numerical Analysis considering

- 1) different failure and entrainment modes are replicated
- 2) basal dragging and wave-like features
- 3) different Constitutive laws -> "standard" material properties
- Support interpretation of dense shear flow and deposit
- 'Fully' integrated/interacting slide water systems
- Limited in simulating extreme elongation
- Changing properties (eg. Final profile of the landslide mass)
- Computational demanding for extremely long wave modelling
- Extreme variability of natural conditions

