Shear bands in dense granular flow: Towards a local rheology Effects of friction, softness, cohesion

Kuniyasu Saitoh, Abhinendra Singh, Vanessa Magnanimo, and Stefan Luding

Multi Scale Mechanics (MSM), Faculty of Engineering Technology, MESA+, University of Twente, The Netherlands

Contents

- 1. Introduction
- 2. Coulomb's law of friction
- 3. Motivation mu(I) rheology
- 4. Set-up and shear bands
- 5. Rigid particles
- 6. Dependence on stiffness (and gravity)
- 7. Effect on shear band
- 8. The least dissipation principle
- 9. Effect of particle's friction
- 10. Effect of particle's cohesion
- 11. Microstructure
- 12. Conclusion

Macroscopic friction - rheology

Time scales

$$au_s = 1/\dot{\gamma}$$
 $au_c = \sqrt{\overline{m}/k_n}$ $au_g = \sqrt{\overline{d}/g}$ $au_P = \sqrt{\overline{m}/P\overline{d}}$ $au_R = \tau_P/\tau_g$

Dimensionless numbers

Inertial number
$$I = \tau_P/\tau_s$$

"Softness" parameter
$$P^* = (\tau_c/\tau_P)^2$$

Friction coefficient

$$\mu(I) = \mu_0 + aI + \dots$$

$$\mu(P^*) = \mu_0 - b \Big(P^*\Big)^{1/2} \text{ in quasi-static regime}$$

Angular velocity profile

$$\omega(r,h) = \frac{\Omega}{2} \left[1 + \operatorname{erf}\left(\frac{r - R(h)}{W(h)}\right) \right]$$

Position R(h) Width W(h)

Distance from the split bottom $R_s - R(h)$

[D. Fenistein & M. van Hecke, Nature 425 (2003) 256]

Effect of particle's cohesion

Cohesive contact model

Force network anisotropy with cohesion

The Bond number

$$B_O = \frac{f_{\min}}{\langle f \rangle}$$

Effect of particle's cohesion

Cohesive contact model

Force network anisotropy with cohesion

The Bond number

$$B_O = \frac{f_{\min}}{\langle f \rangle}$$

Summary

Effect of stiffness/softness and gravity

Friction coefficient in quasi-static regime $\mu(P^*) \approx \mu_0 - b$

 $\mu(P^*) \approx \mu_0 - b\sqrt{P^*} \quad P^* = P\overline{d}/k_n$

SB approaches the split (outward)

with softness, which was also confirmed by the least dissipation principle.

Effects of particles' friction

SB moves inward and the width decreases with friction

Effects of cohesion

SB moves inward and the width increases with cohesion

Conclusion

Dependence on stiffness (gravity) in inertial flow states

$$\mu(I, P^*) = \mu_0 + aI^{\alpha} - bP^{*\beta}$$
?

Effects of particle's friction and cohesion on $~\mu$

i.e.
$$\mu(I,\mu_{\scriptscriptstyle p})$$
 $\mu(I,Bo)$

Conclusion

Dependence on stiffness (gravity) in inertial flow states

$$\mu(I, P^*) = \mu_0 + aI^{\alpha} - bP^{*\beta}$$
?

Very small strain rate?

Conclusion

Dependence on stiffness (gravity) in inertial flow states

$$\mu(I, P^*) = \mu_0 + aI^{\alpha} - bP^{*\beta}$$
?

Very small strain rate: $\mu\left(I < I^*, p^*\right) = \mu_0^{\text{local}}\left(p^*\right)\left[1 - \alpha \ln\left(I/I^*\right)\right]$ [Koval et al. PRE 2009]

Conclusion

Dependence on stiffness (gravity) in inertial flow states

$$\mu(I, P^*) = \mu_0 + aI^{\alpha} - bP^{*\beta}$$
?

Relation of μ to microstructure?

Conclusion

Dependence on stiffness (gravity) in inertial flow states

$$\mu(I, P^*) = \mu_0 + aI^{\alpha} - bP^{*\beta}$$
?

Effects of particle's friction and cohesion on $~\mu$

i.e.
$$\mu(I,\mu_{\scriptscriptstyle p})$$
 $\mu(I,Bo)$

Outlook

Non-local constitutive relations?

fluidity
$$f \equiv \dot{\gamma}/\mu$$
 $\nabla^2 f = \frac{1}{\xi^2} (f - f_{\text{loc}})$

[D.L. Henann & K. Kamrin, PNAS 110 (2013) 6730]

Conclusion

Dependence on stiffness (gravity) in inertial flow states

$$\mu(I, P^*) = \mu_0 + aI^{\alpha} - bP^{*\beta}$$
?

Effects of particle's friction and cohesion on $\,\mu$

i.e.
$$\mu(I,\mu_{\scriptscriptstyle p})$$
 $\mu(I,Bo)$

Outlook

Non-local constitutive relations?

fluidity
$$f \equiv \dot{\gamma}/\mu \qquad \nabla^2 f = \frac{1}{\xi^2} \big(f - f_{\rm loc} \big)$$

[D.L. Henann & K. Kamrin, PNAS 110 (2013) 6730]

Thank you!

[1] "Does gravity have an effect on the slow shear rheology of granular matter?", A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, N.JP 17, 043028, 2015

[2] "Effect of cohesion on shear banding in quasi-static granular material", A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, Phys. Rev. E 90, 022202, 2014