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3.3. Local volume fraction
Infigure 6, the local volume fraction ν r h( , ) is plotted against the local dimensionless pressure, p*. Because of
slow quasistaticflows, no strong dilation is observed, i.e., no strong dependence of ν on local shear rate. The
packing is rather loose for lower p* and tends to a critical value ν = ±0.642 0.002c , in agreement with [63]. The
data can befittedwell by the functional form

ν ν= +
ν

p

p

*
, (18)c

*

with = ±νp 0.48 0.02* ( νp* can be further expressed in terms of volumetric fabric as reported in [64]).
Interestingly, no significant difference in volume fraction ν is observed for < −p* 10 3, while for > −p* 10 3

within the fluctuations, ν increases almost linearly with p* (the curvature is due to the logarithmic p* axis). The
relation between ν and p* is well established in the case of static packings [64, 65]. Herewe show that the same
relation holds for a slow granular flow, involving considerable small butfinite strain rates.

3.4. Local structure
Shearing of a granular assembly always leads to the buildup of contact anisotropy in the system [66–68]. To
study this property we analyze the deviatoric fabric as defined in (3) and use (5) to quantify anisotropy of the
contact network.

3.4.1. Local anisotropy
Figure 7 displays the local deviatoric fabric, F r h( , )dev , plotted against the local dimensionless pressure p*,
where F r h( , )dev for different values of the particle stiffness and gravity is found to collapse on a unique curve
(solid line). This dependence can bewritten in a similar fashion as (17),

= −
β

( )F p F
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p
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where F r
dev is the anisotropy of contact network in the rigid limit, the exponent is found to be β ≈ ±0.5 0.032 ,

and ≈ ±p 26.3 0.6F
* . The decrease in Fdev with increasing p* can be explained in terms of the increasing volume

fraction ν r h( , )with increase in p*.When the packing becomes denser, particles have less free space to (re)
arrange.Hence they cannot align along the preferential direction, thus anisotropy in response to the local shear
is found to decrease with increase in p*.

Infigures 5 and 7, we observe that the local effective friction and the local contact anisotropy show a similar
trend in the quasistatic state (β β⋍1 2). Infigure 8, we plot μ p( *)0

local against F p( *)dev for different values of κ,
where a linear correlation can be inferred as,

μ μ= +( ) ( )p bF p* * , (20)0
local

iso dev

where μ = ± ≈0.01 0.01( 0)iso is the effective friction coefficient in the (extrapolated) limit of the isotropic
contact network =F( 0)dev and = ±b 1.38 0.02 is a constant of proportionality. This clearly shows that in the
critical state, the shear resistance accompanies the anisotropy in the contact network. The linear relation can be a
consequence of the linear contactmodel, the relationmight be different in case of aHertzian contactmodel. It is

Figure 6.The local volume fraction, ν r h( , ), in the systemplotted against the local dimensionless pressure, p*, on a log-linear scale.
Different symbols represent different values of κ as given in the legend. The solid line represents (18). Local data are shown for
γ γ> = −˙ ˙ 0.1 sc

1.

10

New J. Phys. 17 (2015) 043028 A Singh et al
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FIG. 16: (Color online) Fit parameters (a) ! and (b) f0
plotted against Bond number Bo. Different symbols represent

value of local pressure (as given in the inset).

exponential function [76]

P( f ∗)∼ e−( f ∗/ f0)! (9)

with a characteristic force f0 and a fitting exponent ! . Figure
16 displays the characteristic force and the exponent against
the global Bond number Bo. If Bo < 1, we obtain f0 =
1.4± 0.1 and ! = 1.6± 0.1, which is very close to that pre-
dicted by Eerd et al. [76] for three-dimensional non-cohesive
ensemble generated byMD simulations. For Bo> 1, however,
both characteristic force and fitting exponent decrease with
increasing cohesion. The decreasing fitting exponent hints at
stronger fluctuations in the force distribution. A Gaussian tail
of the probability distribution would indicate a more homoge-
neous random spatial distribution of forces. The deviation to-
wards an exponential distribution can be linked to an increase
in heterogeneity in the spatial force distribution; as mentioned
in previous studies [77–79]. Therefore, we conclude that the
tail of the PDF becomes more exponential with increasing co-
hesion, which implies a heterogeneous spatial distributions of
strong forces.
Also we observe that the fitting exponent decreases with

increasing pressure, which implies that at high pressure where
cohesion is more active due to the contact model the spatial
distribution is more heterogeneous compared to that for low
pressure.

C. Anisotropy of force chain networks in shear bands

In the case of simple shear, there are two non-zero eigen-
values of the strain rate tensor, which are equal in magnitude
but opposite in sign, and the third eigenvalue is zero. The
plane containing the eigen-vectors with non-zero eigenvalues
is called the “shear plane”, where the eigen-vector with zero
eigenvalue is perpendicular to this plane (parallel to the shear
band). We call the eigen-directions with positive, negative,
and zero eigenvalues as the compressive, tensile, and neutral
directions, respectively. Since the compressive and tensile di-
rections are associated with loading and unloading of contacts,
respectively, it is intuitive that in the absence of any external
force, the mean force would be positive in compressive direc-
tion, negative in tensile direction, and almost zero in neutral
direction.

FIG. 17: (Color online) A sketch showing the shear band as
dotted line, shear plane, and three eigen-directions of the
strain rate tensor. Grey lines show inner and outer cylinders,
while solid brown line shows the split, dashed black line
shows the shear band which initiates at the split at bottom
and moves towards inner cylinder as it moves towards the
top. Green arrow represents the eigen-direction for neutral
eigenvalue of the strain rate tensor, which is tangential to the
shear band, perpendicular to this vector is the shear plane
(yellow shaded region), which contains the eigen-directions

for compression (red arrow) and tensile (blue arrow)
eigenvalues.

In our system, both compressive forces and shear play a
combined role, where the neutral direction gets a contribution
from external compressive force only, while the two princi-
pal (compressive and tensile) directions get contributions from
both shear and external compressive force. Because the cohe-
sive force is activated by unloading, it should affect the force
along the tensile direction. Note that the shear band here is not
vertical, instead its orientation changes with depth as shown
in the schematic in Fig. 17. In this figure, the eigen-direction
of the neutral (zero) eigenvalue (green arrow) moves with the
shear band. This turning of the neutral eigen-direction makes
the shear plane tilt as well (which is shown by the yellow
shaded regions). To extract the contacts aligned along these
directions at a given pressure in the system, we first calcu-
late the local strain rate tensor and extract the three eigen-
directions n" . Next, we look for contacts with unit contact
vector nc, which satisfy the condition |nc.n" | ≥ 0.9 . The
contacts which satisfy the condition for compressive eigen-
direction are termed compressive, and tensile and neutral con-
tacts are defined similarly. The forces carried by compressive,
tensile, and neutral contacts are denoted by fcom, ften, and fneu
respectively.
Figure 18 shows the mean forces relative to overall local

mean force, f ′com/ten/neu ≡ 〈 fcom/ten/neu〉−〈 f 〉, plotted against
pressure for different values of Bo. We find that f ′com(> 0)
and f ′ten(< 0) are symmetric about zero, and f ′neu ) 0. Be-
cause the mean force along the neutral direction is indepen-
dent of Bo, the cohesion does not affect the neutral direction
(due to the absence of shear in this direction). However, f ′ten

Effect	  of	  par:cle’s	  cohesion	  
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FIG. 18: (Color online) Mean forces in different
eigen-directions of the strain rate tensor, relative to the

overall mean force plotted against the local pressure in the
system. Different symbols represent the global Bond number

Bo (as given in the inset).

decreases with pressure and cohesion, while f ′com increases
to keep the mean overall force to stay independent of cohe-
sion. Both positive and negative forces are present in all di-
rections. However, the positive and negative forces dominate
in the compressive and tensile directions, respectively. The
anisotropy of forces is more pronounced with increasing pres-
sure and cohesion, as observed in Fig. 8.
Next, we study the PDFs of forces in the compressive, ten-

sile, and neutral directions. Figure 19 displays the PDFs along
each direction for non-cohesive Bo = 0 and highly cohesive
Bo = 2.85 systems, where the forces along different direc-
tions are normalized by the overall mean force. In a non-
cohesive system (Fig. 19(a)), we observe that for f ∗ < 1, the
PDF along the tensile direction is higher compared to that for
the compressive direction, which is intuitive as the majority of
contacts will have smaller forces in the tensile direction. For
f ∗ > 1, however, the PDF along the compressive direction is
higher compared to that along the tensile direction, as force
along the compressive direction should be stronger compared
to that along the tensile direction [80]. For a highly cohesive
system (Fig. 19(b)), a similar behavior is observed for posi-
tive forces, while for small positive and negative forces, due
to attractive forces the probability is higher along the tensile
direction compared to the compressive direction. The PDFs
of forces in the neutral direction lie in between those in com-
pressive and tensile directions, suggesting a close to average
distribution of forces in the neutral direction.
Figure 20 shows the variations of the PDFs along compres-

sive and tensile directions for different values of Bo. If Bo< 1,
the PDFs collapse on top of each other. However, the PDFs
get wider with increasing cohesion aboveBo= 1 (such widen-
ing is more prominent for positive and negative forces in the
compressive and tensile directions, respectively). Again, we
confirm that strong cohesion leads to an increases of positive
and negative forces in the compressive and tensile directions,
respectively. Therefore, the force distributions in the principal
directions gets more heterogeneous with increasing cohesion
for Bo > 1, and hence the heterogeneity of the overall force
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FIG. 19: (Color online) Probability distributions of
normalized forces f ∗ = f/〈 f 〉 in compressive, tensile, and
neutral directions inside the shear bands. Here, we show the
results for high pressure in (a) non-cohesive Bo= 0 and (b)
high cohesive Bo= 2.85 systems. The PDFs of the overall

normalized forces are shown as dashed line.

structure increases.
The results in this section, suggest that for low Bo, com-

pressive forces and shear dominates and governs the distribu-
tion of forces along compressive and tensile directions. The
forces respond to external compression and shear, i.e., due to
shear, particles can rearrange and avoid very large forces. In
contrast, for high Bo, cohesion dominates over external com-
pression and the contact forces respond mainly to cohesion
and shear. Due to the sticky nature of cohesive forces, rear-
rangements of the contact network become difficult, and very
large contact forces as well as strong sticking forces occur
together, and hence the contact network becomes more het-
erogeneous.

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the effect of cohesion on
shear banding in dry cohesive powders. We used a dimen-
sionless parameter the global Bond number Bo to quantify
how strong cohesive forces are relative to compressive forces.
We found that Bo% 1, very well predicts the transition from a
free-flowing, non-cohesive system to a cohesive system. Inter-
estingly, we found that also many other features of the system
show a transition at Bo≈ 1.
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Conclusion	  

Dependence	  on	  s:ffness	  (gravity)	  in	  iner:al	  flow	  states	  

Very	  small	  strain	  rate?	  	  
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0

* βαµµ bPaIPI −+=

flow rheology, we find that a second dimensionless number, the ratio of softness and stress time scales,must be
involved to characterize the bulkflowbehavior. For very slow shear rate the former can be ignored, while the
latter affects the shear strength by decreasing it with an increase in either gravity (and thus local pressure) or
particle softness. For fasterflows, the effective friction is found to increase in general with increasing shear rate.
However, the tails of shear bands feature an anomalously small effective friction—as observed previously
[9, 10, 72]. For the dependence of effectivemacroscopic friction on the preceding three quantities, the change in
localmicrostructure (contact anisotropy) is found to be a key parameter, with similar norm, but different shape
factor.

Open issuesThe deviations observed in μ0
local for slowflowsmight also bewell captured using the non-local

models developed recently byKamrin et al [10, 11, 72]; this work is in progress. Another related issue that
remains untouched is the effect of particle softness and external compression (gravity here) on the non-locality.
A study of effect of pressure (gravity) on primary and secondary velocity fields, as done recently in [73, 74], also
deserves a further study, as well as the effect of softness and pressure on the shear banding. Looking towards the
future, we are now in a position to address various important issues, such as unexpectedly high shear strength of
thematerial at low (normal) stress or reduced gravity and a direct relation between the contact anisotropy and
the shear strength of thematerial. These issues are vital for a better explanation of themacroscopic behavior of
the granular systems fromamacroscopic observation. The current study dealt with a dense systemwith small
interparticle friction (μ = 0.01p ), where the effect of softness on themacroscopic behavior ismore direct than

for large μp. However, an issue that remains unanswered andwill be an extension of this study is whether the

same effect can also be observed for relatively loose systems (with higher interparticle friction). The question of
whether the correlation between contact anisotropy and shear strength is just a consequence of relatively low
interparticle friction or if it will also hold for amore realisticmaterial (with higher interparticle friction) remains
to be answered. Finally, the influence of polydispersity on ourmajorfindings is an open question too.
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AppendixA. Pressure dependence of localmacroscopic friction

In this section, we explore the pressure dependence of our rheological laws as presented in section 4. Figure A1
shows the fits for three different pressure levels (height in the split-bottom cell), namely close to bottom,mid-
height, and top.Wefind for pressure levels thefitted law (22)well describes the data. Figure A2 shows thefitting
parameters α and I*, versus rotation rate Ω π2 for different pressure levels. Interestingly, we observe that bothα
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Figure A1. μ plotted against I for different local pressures in the system (a) p=100, (b) p=200, and (c) p=400 −Nm 2.
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with μ p( *)0
local , a term that involves softness correction, as given in (17).We observe that data from a simulation

using a single gravity = −g( 10 ms )2 and contact stiffness = −k( 100 Nm )n
1 does not give awide variation in μ

and μ = 0.140
local , μ = 0.5,2

local and =σI 0.10 fit well the data. ATaylor expansion (in the range < σI I0 ) for the

preceding equation is μ μ μ μ≅ + − σI( ) ( ) I
I0

local
2
local

0
local

0
, which is similar to the linear frictional law proposed

in [6, 55]. Two different trends emerge, i.e., the shear band center data can be verywellfitted by (21) and for
⩾I 0.01data collapse on a unique curve. On the other hand, for lower values of I, deviations from this relation

are observed, depending on the external rotation rate. The friction coefficient in slowflows (steady state)
becomes smaller than μ0

local, i.e., in our system the granularmaterial is able toflowbelow μ0
local. The deviation of

our data from themain law (21) is consistent with observations in [9, 10], where this deviation is explained based
on the heterogeneity in the stressfield (arising due to strain rate). In our system,we have gradients in stress
arising due to gradients in both strain rate and pressure.

In order to quantify the deviation from (21), wefit the data with:

μ μ α< = −( ) ( ) ( )I I p p I I*, * * 1 ln * , (22)0
local ⎡

⎣⎢
⎤
⎦⎥

where α is a constant and I* is the characteristic inertial numberwhen μ μ≅ 0
local. This relation is inspired by the

relation proposed in [9] for two-dimensional (2D) ring shear cell setup. As the relationwas initially derived for a
2D setupwith constant pressure, we fit it to our data at three different heights (i.e., constant pressure), close to
top, atmid-height, and close to bottom. Infigure 10, different colored dashed lines represent this fit at themid-
height of the system for each value of rotation rate explored.We observe that the prediction is in close agreement
with the data, even though our systemhas different dimensions and boundary conditions. Data and
corresponding fits for different heights (pressures) are reported in appendix A.Wefind that bothα and I* do not
depend on pressure.

4.2. Fabric anisotropy
In order to look for the connection between anisotropic fabric and effective friction coefficient in the inertial
regime, herewe explore the dependence of Fdev on I. Infigure 11, we plot the local Fdev as obtained by
simulationswith different rates of rotation against I .Weobserve that like μ, Fdev varies strongly against I and its
dependence on I can be represented as:

= +
−

+( ) ( ) ( ) ( )
F I p F p

F p F p

I I
, * *

* *

1
, (23)

Fdev dev
0

dev
(2)

dev
0

0

with F p( *)dev
0 being the fabric anisotropy in the quasistatic state (as given in (19)), F p( *)dev

(2) is the threshold
fabric anisotropy, and IF0 is the typical inertial number, which is an order ofmagnitude different from σI0 . Green,
red, and black lines show thefit to the preceding relation at pressure levels 100, 200, and 400 −Nm 2, respectively,
with points in the center of the shear band highlighted (black circles). Fit parameters to these results are
presented in table 3. It is noticeable that unlike μ, I alone is not able to describe Fdev , with the effect of pressure
being prominent in case of slowflows i.e., low I. In contrast, for fast flows, the deviatoric fabric seems to become
independent of pressure.

Figure 10.The local effective friction coefficient plotted against the inertial number I for results from simulationswith different rates
of rotation. The solid black line represents (21), with μ = 0.140

local , μ = 0.3,2
local and =σI 0.026.0 The dotted line shows the Taylor

expansion of (21). Different symbols represent different rates of rotation as given in the legend, lines with the same color represent the
solution of (22). Black circles represent the data in the center of the shear band, other data are shown for γ γ> = −˙ ˙ 0.01 sc

1.
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Appendix B. Pressure dependence of correlation

In this section, we test the correlation between μ and Fdev in quasistatic and extended inertial regimes that was
presented in section 4. Figure B1 shows the data for three different pressure levels namely close to bottom,mid-
height, and top. The solid line shows (20), while the dashed line shows the best fit through the data.We see that
the dashed line is below the solid line, which is consistent with the observation in figure 12. The correlation holds
verywell for all rotation rates, except for the fastest, which seems to fall off from the prediction of (20).

References

[1] JaegerHM,Nagel S R andBehringer R P 1996Granular solids, liquids, and gasesRev.Mod. Phys. 68 1259–73
[2] Duran J 2000 Sands Powders, andGrains-An Introduction to the Physics of GranularMaterials (NewYork: Springer)
[3] Andreotti B, Forterre Y and PouliquenO2013GranularMedia: between Fluid and Solid (Cambridge: CambridgeUniversity Press)
[4] Goldhirsch I 2003Rapid granular flowsAnnu. Rev. Fluid.Mech. 35 267–93
[5] NeddermanRM2005 Statics andKinematics of GranularMaterials (Cambridge: CambridgeUniversity Press)
[6] MiDiGDR2004Ondense granular flowsEuro. Phys. J. E.: Soft.Mat. Bio. Phys. 14 341–65
[7] Jop P, Forterre Y and PouliquenO2006A constitutive law for dense granular flowsNature 441 727–30
[8] Forterre Y and PouliquenO 2008 Flows of dense granularmediaAnnu. Rev. FluidMech. 40 1–24
[9] Koval G, Roux J-N,Corfdir A andChevoir F 2009Annular shear of cohesionless granularmaterials: from the inertial to quasistatic

regime Phys. Rev.E 79 021306
[10] KamrinK andKovalG 2012Nonlocal Constitutive Relation for SteadyGranular FlowPhys. Rev. Lett. 108 178301
[11] HenannDL andKamrinK2013Apredictive, size-dependent continuummodel for dense granular flowsProc. Natl Acad. Sci. USA 110

6730–5
[12] KrohnK et al 2014Massmovement on vesta at steep scarps and crater rims Icarus 244 120–32
[13] Shinbrot T,DuongN-H,Kwan L andAlvarezMM2004Dry granular flows can generate surface features resembling those seen in

Martian gulliesProc. Natl Acad. Sci. USA 101 8542–6
[14] MalinMC1992Massmovements onVenus: preliminary results frommagellan cycle 1 observations J. Geophys. Res.: Planets 97

16337–52
[15] HowardKA1973Avalanchemode ofmotion: implications from lunar examples Science 180 1052–5

Figure A2. (a)α and (b) I* plotted against the external rotation rate for different local pressures in the system.

Figure B1. μplotted against Fdev for different local pressures in the system (a) p=100, (b) p=200, and (c) p=400 −Nm 2. The solid
line represents the corresponding fit as presented in (20), while the dashed line is the bestfit to the data.

17

New J. Phys. 17 (2015) 043028 A Singh et al

The increase in the contact anisotropywith inertial number is in accordance with some recent studies
[49, 68]. It is important tomention that for even higher rates of rotation of the system, i.e., inertial number

>I 0.1, Fdev shows a different behavior as predicted by (23) and a decreasing trend is observed (as reported in
[45]), which is beyond the scope of this work. Thismight be due to the fact that for >I 0.1 the packing becomes
very loose (ν ⩽ 0.55 ). Also for such high rates of rotation, the centrifugal force on grains due to rotation
becomes comparable to the gravitational force. As a result, the top surface is notflat anymore; instead the surface
develops a dip in themiddle, as observed previously [45, 70, 71]. In this range, the kinetic and contact
contributions of the local effective friction μ also become comparable.

Starting fromboth variations of local effective friction and fabric anisotropy as a function of inertial number
I, it is tempting to ask the question if the correlation in (20) holds for the inertial regime aswell. The result is
displayed infigure 12. The solid line shows (20), whichfits well the shear band center data being highlighted by
black circles. It is noticeable that the fit used by the shear band data in the quasistatic state workswell for some
range in the inertial regime >I 0.005. On the other hand the data outside the shear band shows a different
behavior and is found to be below the solid line, which is consistent with the trend observed in case of μ and Fdev

(separately) as a function of I. However, for even fasterflows, a different trend is observed that can also befitted

Figure 11.The local fabric anisotropy Fdev plotted against the inertial number I for results from simulationswith different rates of
rotation. Different symbols represent different rates of rotation as given in the legend. Lines arefit to (23) for pressure levels

=p 100, 200, and 400 −Nm 2 respectively, with fit parameters given in table 3. The arrow shows increasing pressure. Black circles
represent the data in the center of the shear band, other data are shown for γ γ> = −˙ ˙ 0.01 sc

1.

Table 3.Table showing thefit parameters Fdev
0 , Fdev

(2) , and
IF0 in (23) for different values of pressure p (in units of

−Nm 2 ).

p Fdev
0 Fdev

(2) IF0

100 0.1 ± 0.0005 0.17 ± 0.0005 0.012
200 0.095 ± 0.0008 0.17 ± 0.0001 0.011
400 0.085 ± 0.0001 0.17 ± 0.0004 0.009

Figure 12. μ plotted against Fdev for results from simulationswith different rates of rotation, as given in the legend. The solid line
represents (20), while the dashed line (with slope ⋍3.5 ) isfit by the eye. Black circles represent the data in the center of the shear band,
other data are shown for γ γ> = −˙ ˙ 0.01 sc

1. The red dashed line separates quasistatic and inertial regimes, based on the data in figure 8.
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