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Abstract 

 

This thesis details research into the modelling of the dynamic responses of electronic 

nose systems to odour inputs. Most electronic nose systems contain an array of 

between 4 and 32 odour sensors, each of which respond in varying degrees to a range 

of different gaseous stimuli. In almost all electronic nose systems in use today, the 

steady-state responses of the odour sensors are extracted and passed to one of a variety 

of pattern recognition systems. The primary aim of this thesis is to investigate the use 

of information contained within the dynamic portion of the sensor response for odour 

classification. 

 

System identification techniques using linear time-invariant black box models are 

applied to both extracted steady state and full dynamic data sets collected from 

experiments designed to assess the ability of an electronic nose system to discriminate 

between the strain and growth phases of samples of cyanobacteria (blue-green algae). 

The results obtained are compared with those obtained elsewhere using the same data, 

analysed with nonlinear artificial neural networks. 

 

A physical model for the electrochemical mechanisms resulting in the measured 

responses is translated into a mathematical model. This model consists of a system of 

coupled nonlinear ordinary differential equations. The model is analysed, and the 

theoretical structural identifiability of the model is investigated and established. 

 

The parametric model is then fitted to data collected from experiments with simple 

(single chemical species) odours. An odour discrimination method is developed, based 

upon the extraction of physically significant parameters from experimental data. This 

technique is evaluated and compared with the previously explored black box modelling 

techniques. 

 

The discrimination technique is then extended to the analysis of complex odours, again 

using the cyanobacteria data sets. Successful classification rates are compared with 

those obtained earlier in the thesis, and elsewhere with neural networks applied to 

steady state data. 
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Chapter 1  
Introduction 
 

The five primary senses of sight, smell, hearing, touch and taste constitute the 

mechanisms by which we receive information from our surroundings. Without them 

we would be unable to interact with anyone or anything. Throughout history, scientific 

advancement has been driven by man’s desire to describe and understand the world 

around him, via the information carried to him via these senses. 

 

The information conveyed in optical or auditory stimuli is relatively easily understood, 

inasmuch as it is comprised of a pattern of frequencies of either light or sound waves. 

It is indeed possible to record and reproduce such stimuli. This is not the case for the 

chemical stimuli which evoke olfactory responses. Whilst it is true that such stimuli 

are essentially just mixtures of different gases present in the air which we are 

breathing, it is a highly non-trivial task to objectively and completely describe them. A 

typical odour to which we might be exposed may be made up of tens, hundreds, or 

thousands of different chemical compounds (Gardner and Bartlett 1999, p.35). In 

theory, a given odour could be completely described by the vector of concentrations of 

all of its chemical constituents, but this is not practical, since there are hundreds of 

thousands of compounds which are capable of producing an olfactory response, some 

of which can do so at extremely low concentrations. 
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The information conveyed to us via our sense of smell does not come to us in the form 

of a complete chemical analysis of the compounds present in the air around us, nor 

does it need to be. Mammals use their noses to identify certain odours which are 

important to them – in finding food, in identifying food which has gone off or is 

poisonous, in finding a mate, in identifying individuals. These odours are not sharply 

and precisely defined, rather they are characterised by a pattern of concentrations (or 

relative concentrations) of a set of compounds, which may have many elements. In 

seeking to describe an odour, there are thus two approaches which may be used – an 

analysis which breaks down the gas mixture into each of its chemical constituents and 

describes it in terms of concentrations for each, or an analysis which more closely 

mimics the mammalian system, whereby the odour is described by an expression of a 

much smaller number of key features. 

 

The human sense of smell has been studied quite extensively, and attempts have been 

made to break down olfactory stimuli into a small number of ‘primary odours’. 

Typically the number of primary odours has been set at between five and seven 

(Amoore 1977; Murphy 1987), the idea being that any odour can be described by some 

combination of intensities of these primary odours. This description of olfactory 

stimuli in terms of (independent) primary odours is based on our perception of the 

odours, rather than corresponding directly to the manner in which odours are sensed in 

the biological system. In the mammalian olfactory system, there are of the order of a 

hundred million olfactory receptor cells, of about a thousand different types, located 

high within the nose (Gardner and Bartlett 1999, pp. 37-38). The fact that we can 

detect more than a thousand different odours suggests that each type of receptor cell 

responds to more than one different odour. Thus the receptors (or mammalian sensors) 

are not independent, instead they have overlapping sensitivities to different odours. 

The responses of these receptor cells are transmitted as electrical signals, along the 

axon of the receptor cell, to the olfactory bulb situated within the brain. Here the first 

level of sensory processing occurs, where the signals from each example of a given 

type of receptor cell are combined into just a few glomeruli. From here, the 

information is transmitted to the olfactory cortex and higher brain (Nagle et al. 1998). 

Researchers in the field of artificial olfaction have, in recent years, attempted to mimic 

the mammalian system by using a relatively small number of different sensors, each of 

which responds in varying amounts to different chemical gas stimuli. A great deal of 
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research has been conducted into both the sensor hardware technology, and the 

processing of the data produced by these sensors. A summary of the hardware and 

signal processing technologies used to date is presented in the following chapter.  

 

 

1.1 Aims of this thesis 

 

This thesis describes the work of the author in attempting to improve the performance 

of an electronic nose system based on one particular type of sensor hardware 

technology: tin oxide sensors. As will be discussed in the following chapter, the 

majority of signal processing techniques currently employed (across all types of gas 

sensors) make use only of the steady state responses of the sensors used. It has been 

postulated, and indeed demonstrated (Vilanova et al. 1996; Wilson and DeWeerth 

1995; Hines et al. 1999; Gutierrez-Osuna et al. 1999; Nakamura et al. 1994; Llobet et 

al. 2001a), that discarding the information contained within the dynamic responses of 

the sensors is not necessarily wise. Hence, the work detailed in this thesis focuses on 

the development and evaluation of odour classification methods based on models for 

the dynamic responses of tin oxide sensors to various stimuli (both simple and 

complex). The performances of the techniques developed here are also compared with 

existing techniques based on static information only. 

 

 

1.2 Summary of thesis 

 

In the following chapter, background material relevant to the investigations detailed in 

this thesis is explored and discussed. In Chapters three and four, very simple linear 

black box modelling techniques are applied to data from electronic nose experiments 

involving biological samples that produce complex odours. The experiments were 

performed by Dr. H. W. Shin at the University of Warwick. The black box modelling 

techniques employed have previously been applied to inverse modelling of steady state 

electronic nose data (Marco et al. 1996), but here they are also employed for odour 

discrimination based on the full dynamic responses of the sensors in an array. The 

classification performance is also compared with the results obtained elsewhere (Shin 

et al. 2000) with the same data, using nonlinear neural network techniques. 
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Chapter five details the hardware and data-sampling software of an experimental test 

system constructed in order to facilitate the gathering of high quality dynamical data 

from simple odours. The majority of the hardware was designed and constructed by 

Prof. Julian Gardner, Mr. Ian Griffiths, and Dr. James Covington, all of the University 

of Warwick, with minor modifications made by the author. The software to control the 

system and record the data was written almost entirely by the author, with some 

subroutines provided by Dr. James Covington. 

 

Chapter six describes the general modelling approach to be utilised in the subsequent 

parametric modelling of the electronic nose system. A discussion of the modelling of 

each of the critical components which make up the system is provided. The practical 

and theoretical issues of using (forward) models for the system in order to classify 

odours are explored. 

 

In Chapter seven, a physical model for the interaction between a simple odour 

(comprising a single chemical species) is described, and translated into a system of 

ordinary differential equations. The system of equations is reduced, and analysed in 

terms of its steady states, and typical initial conditions. Subsequent to a suitable 

reparameterisation, the identifiability of the model is established. 

 

Chapter eight details the development of techniques to utilise the model described in 

chapter seven for odour classification. Computational numerical methods are used to 

fit the parameters in the model to the responses of tin oxide sensors in the experimental 

test system to simple odours. The values of fitted parameters are used to identify the 

input odours. 

 

In Chapter nine the techniques developed in chapter eight are applied to the biological 

data previously used in chapters three and four. A comparison is thus made between 

the simple black box models of Chapters three and four, the results reported elsewhere 

on the same data using nonlinear artificial neural networks, and the results obtained 

using the newly-developed physical parameter extraction technique. 
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Finally, in Chapter ten, the results and findings of the previous chapters are 

summarised and discussed. 
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Chapter 2  
Electronic nose system technology 
 

Although the idea of developing artificial olfactory systems was suggested as early as 

1920 (Zwaardemaker and Hogewind 1920), it was not until the middle of the twentieth 

century that actual working instruments were reported. The concept of an ‘electronic 

nose’ was not formally defined until much later, when in 1994, the following definition 

was proposed, and came to be accepted (Gardner and Bartlett 1994): 

 

“An electronic nose is an instrument, which comprises an array of electronic chemical 

sensors with partial specificity and an appropriate pattern-recognition system, capable 

of  recognising simple or complex odours.” 

 

So an electronic nose system is comprised of hardware which converts odour inputs to 

electronic signals, and software which converts those signals into an odour 

classification. The hardware essentially consists of an array of electrochemical odour 

sensors with overlapping sensitivities, which respond to a variety of target odours. 

Aside from some electronic filters to reduce signal noise, these sensor responses are 

passed directly to some form of software signal processing system. This signal 

processing system may take many forms. The dynamic sensor output is generally fed 

through some form of pre-processing, to extract either steady state or dynamic 

information from the response. This extracted information is then passed to some form 

of pattern recognition system that attempts to classify the odour input based on the 
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information from each sensor in the array, combined with some past information (e.g. 

calibration information or parameters calculated from some training set). 

 

In this chapter, the history of electronic noses is presented, and a selection of the 

different hardware systems and signal processing techniques used to date are 

introduced and discussed. Some examples of current and proposed applications of 

electronic nose instruments are also given. 

 

 

2.1 The historical development of electronic noses 

 

 

As mentioned above, the development of artificial olfaction dates back to 1920, when 

it was suggested by Zwaardemaker and Hogewind that odours might be detected via 

monitoring the electrical charge on a fine spray of water containing the dissolved 

odourant substance (Zwaardemaker and Hogewind 1920). However, they were unable 

to produce a working instrument based on this principle. It was much later that the 

development of the first operational instruments was reported. During the period from 

the mid-fifties to the mid-sixties, several groups began to achieve some success, using 

a number of different systems. Moncrieff’s approach, the details of which were 

published in 1961, used thermistors coated in a variety of different substances to non-

specifically detect different odours (Moncrieff 1961). At about the same time, Wilkens 

and Hartman were developing a system using an array of true electrochemical sensors, 

making use of redox reactions at an electrode in contact with a porous rod saturated 

with an electrolyte (Hartman 1954; Wilkens and Hartman 1964). It was discovered in 

1953 that the adsorption of gases on the surface of a semiconductor can produce 

measurable changes in the electrical resistance of the material, though this was not 

used in artificial olfaction systems until later (Brattain and Bardeen 1953). In 1965, 

two other groups published work detailing two other methods of detecting odours. One 

made use of conductivity modulation (Buck et al. 1965), the other of modulation of the 

contact potentials of certain materials in the presence of odours (Dravieks and Trotter. 

1965). 
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Much later, in the 1980s, interest in the field increased and the idea of electronic nose 

systems, as they are understood now, blossomed. Publications from researchers at The 

University of Warwick (Gardner and Bartlett 1991) and from a group in Japan (Madou 

and Morrison 1989; Grate and Frye 1996) heralded the beginning of renewed research 

activity around the world. The first conference dedicated to electronic noses was held 

in Iceland in 1991, and resulted in the first book on the subject (Grate et al. 1995). 

Though the artificial olfaction systems developed had by then been colloquially 

referred to as electronic noses for some time, it was not until 1994 that the definition 

given at the start of this chapter was suggested and adopted (Gardner and Bartlett 

1994). Worldwide there are now many academic research groups and at least a dozen 

commercial companies active in the field, with a growing number of instruments in use 

in a wide range of applications. The hardware and software technologies that have 

been developed in this time, and the applications that have been explored, are detailed 

in the following sections. 

 

 

2.2 Electronic nose hardware 

 

The most important components in an electronic nose system must be the odour 

sensors themselves, which may take many forms; some of which are described in the 

following sections. However, regardless of the particular type of sensor, in order to 

detect and recognise an odour there must be hardware to convert the changes which 

take place in the sensing material into a form which can be processed by computer 

software. A simplified diagram of the hardware of a typical electronic nose system is 

given in Figure 2.1 below. 
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Figure 2.1 The hardware components of a typical electronic nose system. 

 

The first stage in the interface between the sensing material of a sensor and the 

computer software is the process of detecting the physical or electrochemical changes 

that occur in the sensing material and converting this to an electrical signal. This can 

be a non-trivial process, especially given the fact that the changes produced in the 

sensing materials are often very small. This signal must reflect the physical or 

electrochemical properties of the sensing material which are altered by the presence of 

odours. The details of this stage are very specific to the sensor type, so are discussed 

appropriately in the subsections below. Generally, once the response of the sensor to 

its chemical surroundings has been converted to an electrical signal, this signal is 

passed through filters and amplifiers, before undergoing conversion to a digital signal 

and being processed by the software in a computer. 

 

In addition to the odour sensors, electronic nose systems frequently contain other 

sensors to monitor important factors such as the temperatures in various parts of the 

system, the humidity in the carrier gas, the gas flow rates in the odour delivery system, 

and maybe even the mass flow rates in the gas system for some highly controlled 
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systems. The outputs of these sensors will also be fed through analogue to digital 

converters to the processing computer. 

 

Most electronic noses contain, in addition to their sensor systems, hardware to control 

the odours to which the sensors are exposed. The complexity of this hardware varies 

greatly. The simplest might be essentially just a manually controlled air pump which 

sucks air containing the odourant over the sensors, perhaps for a handheld nose unit. 

The most complex would comprise many components, integrated with auxiliary 

sensors, in order to tightly control the chemical composition of the input to the sensor 

array. Such a system might contain strict temperature control of the samples, mass 

flow control of the carrier gas (which might well be nitrogen or artificial air from a 

tank), humidity and temperature control of the carrier gas, and mass flow control of the 

headspace of the samples. Such a system would be capable of ensuring a great deal of 

control and stability of the interfering factors (i.e. those factors other than the 

differences between odour samples) which might influence the measured responses of 

the odour sensors. 

 

 

2.2.1 Metal oxide semiconductor sensors 

 

Metal oxide semiconductor (MOS) chemoresistive sensors are probably the most 

commonly-used odour sensors in electronic nose systems. The majority of sensors of 

this type are based on tin dioxide, which is an n-type semiconductor. Variations in the 

sensitivity of the sensing material to different odourants are achieved through doping 

the material with catalytic metals such as palladium or platinum (Gardner and Bartlett 

1999, p. 74). The use of tin oxide-based sensors was investigated more than 20 years 

ago, for simple, specific applications (such as the detection of carbon monoxide 

(Windischmann et al. 1979)), and the technology has remained popular as the field of 

electronic noses has grown. There are a number of reasons for this popularity. A range 

of tin oxide sensors has been commercially available for over ten years, making the 

construction of an array with a wide range of sensitivities relatively cheap and simple. 

The electronic circuitry required to operate the sensors is also relatively cheap and easy 

to construct, and the sensors themselves are very sensitive to a wide range of organic 
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compounds. The basic configuration of a Taguchi type tin dixode gas sensor, such as 

those made by Figaro Engineering Inc. of Japan, is shown in Figure 2.2. 

 

Electrode 
lead

Electrode 
lead 

Ceramic 
tube

Heater 

Sintered 
tin oxide 

Figure 2.2 Configuration of a basic tin dioxide gas sensor. 

 

The physical structure and operation of the sensor is essentially very simple. The 

conductivity of the metal oxide sensor varies when it is exposed to different odours. 

An electrode at each end of the sensing material is connected to electronic circuitry 

which measures the conductivity of the material. Aside from the sensing material and 

these electrodes, the only other significant part of the sensor is an integral heater coil. 

This is required since the sensors must be operated at elevated temperatures – normally 

between 250°C and 550°C (Madou and Morrison 1989, p. 83; Gardner and Bartlett 

1999 p. 77). This is for two reasons – firstly, at temperatures below 100°C water is 

absorbed onto the surface of the sensing material and greatly affects the ability of the 

sensor to detect odours. Secondly, the sensitivity of the sensor to target odours is 

heavily temperature-dependent, so the temperature is maintained at a high level to 

ensure maximum sensitivity. However, this temperature requirement is the reason for 

one of the main drawbacks of this type of sensor – a  high power consumption 

(typically around 1W for a Taguchi type sensor). 

 

The mechanisms by which exposure to odours produces changes in the conductivity of 

MOS sensors depend upon the exact type of sensor, and the nature of the analyte 

species. The mechanisms have been studied in some detail and the electrochemical 

 11
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reactions that can occur for a wide range of analytes are known (Madou and Morrison 

1989; Williams 1991; Windischmann et al. 1979; Strässler and Reis 1983). The basic 

reaction mechanism (seemingly valid for simple combustible gases such as methane or 

carbon monoxide) has two stages: 

 

• ionisation of oxygen and binding of ions to the sensor material, and 

• combustion of analyte, leading to liberation of electrons, and resulting in 

increased conductivity. 

 

The level of ionisation of the oxygen species depends upon the operating conditions 

(temperature, pressure etc.). Also, depending upon the analyte in question (and again 

the operating conditions), there may be subsequent stages where the combustion 

product undergoes further reactions. A particular example of the mechanism above is 

used to form the basis of a mathematical model for MOS sensor dynamics in Chapter 

7. 

 

The relationship between the change in the number of free electrons in the sensor 

material and the resulting change in the sensor conductivity is not simple. Were the 

sensor made from a single crystal, the change in the number of free electrons would 

directly produce the change in conductivity observed. However, the majority of 

commercial devices consist of a sintered polycrystalline material, in which the 

mobility of the charge carriers is crucial to the conductivity. The conductivity in such a 

device is given by: 

 

nen ′= μσ ,     (2.1) 

 

where σ is the conductivity, μn is the mobility of the electron, e is the charge on an 

electron and n' is the concentration of charge carriers (Gardner and Bartlett 1999, p. 

75). In a sintered polycrystalline device, the observed change in conductivity is too 

great to be explained by the change in n' alone, and instead is attributed to large 

changes in μn with changes in n'. This change in mobility is explained by a lowering of 

the potential barrier height between adjacent grains in the polycrystalline material, 

making hopping between grains significantly easier and thus the overall electron 

mobility (and thus conductivity of the device) greater. 
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The potential barrier is dependent on the operating temperature, as are the reaction 

rates in the mechanism for the modulation of the number of charge carriers. This 

explains the strong temperature dependence of the observed sensor responses. MOS 

sensors are also influenced by changes in the humidity of the carrier gas, and can be 

‘poisoned’ by irreversible or slowly reversible reactions with various species. This 

poisoning can lead to what is known as ‘long term drift’ whereby the response of a 

sensor is not exactly reproducible over long periods of time. In some applications, 

permanent poisoning is possible, in others the effect is more akin to a memory effect as 

the poisoning species are slowly desorbed from the sensor material. Regardless of the 

mechanism causing the drift, it can lead to a need for frequent recalibration or a need 

for a signal processing technique which produces classifications which are as 

independent of drift as possible, or which are capable of automatic recalibration. 

 

The experimentally observed dynamic responses of MOS sensors in fixed operating 

conditions are generally well approximated by first or second order models. Examples 

of these dynamic responses can be seen in section 2.3.1, and in most succeeding 

chapters. The relationship between the analyte concentration and steady-state sensor 

response is generally considered to be a power law (so-called Freundlich isotherm), 

although this can sometimes be successfully approximated by a linear relationship over 

a suitable range of concentrations (Windischmann et al. 1979; Gardner and Bartlett 

1999, p. 76). 

 

More recently, micro-machined hotplate sensors have been produced, using a much 

smaller amount of tin oxide sensing material. These sensors overcome many of the 

traditional disadvantages of MOS sensors, since they have much lower power 

consumptions (of the order of mW) and low production costs since they can be batch 

fabricated (Al-Khalifa et al. 2001). 

 

 

2.2.2 Conducting polymer sensors 

 

Conducting polymer (CP) sensors are broadly similar in construction to MOS sensors, 

the crucial difference being that the sensing material is made from an organic polymer, 
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rather than a metal oxide semiconductor. The use of conducting polymers in odour 

sensors has been investigated since at least as far back as the early 1980s (Persaud and 

Pelosi 1991). Like MOS sensors, the presence of target odours is monitored with CP 

sensors via changes in the electrical conductivity of the sensing material. However, the 

mechanisms by which the conductivity of the sensor material is changed are different. 

In fact, the mechanisms by which the conductivity is altered are still not entirely 

known. There have been many candidate explanations, however it seems most likely 

that the true answer is some combination of the five possible mechanisms listed below 

(Gardner and Bartlett 1999, p. 84): 

 

• The analyte molecule could affect charge transfer between the polymer and the 

electrode. 

• The analyte might lead to oxidation or reduction of the polymer chain, thus 

imprisoning or liberating charge carriers. 

• The analyte might affect the mobility of charge carriers along the polymer 

chains, through interactions with the charge carriers themselves. 

• The analyte might interact with counterions within the polymer, and thus affect 

the mobility of the charge carriers along the polymer chains. 

• The analyte might affect the mobility of charge carriers between polymer 

chains. 

 

Although the relative importance of each of the mechanisms suggested above has not 

been positively established, empirical evidence suggests that the overall mechanism of 

the interaction behaves similarly to a simple binding action, where analyte molecules 

dynamically adsorb and desorb from a fixed number of binding sites in the polymer 

material. A simple mathematical model for a simple odour undergoing this kind of 

reversible binding produces first order response dynamics which fit well with the 

response curves observed, and Langmuir-type saturation curves for the steady state 

response versus odour concentration which again match very well with experimental 

data (Gardner and Bartlett 1999, p. 85). 

 

Unlike metal oxide sensors, conducting polymer sensors operate at room temperature, 

thus they generally do not require a heater. This results in a much lower power 

consumption than MOS sensors. Conducting polymer sensors also typically have fast 
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response times (around two to 20 seconds). They can be fabricated fairly cheaply, and 

very small arrays of devices can be made (e.g. the array of 32 CP sensors used in the 

Cyranose R320 handheld unit made by Cyrano Sciences, Pasadena, California). These 

advantages make CP sensors popular for a range of applications, and the subject of 

much further research. However, the sensitivity of CP sensors is generally substantially 

inferior to that of MOS sensors, and they are currently prone to long-term drift, and are 

highly sensitive to the interfering influence of humidity variations. Thus they are far 

from the perfect sensors, but their utility is likely to continue increasing as advances 

are made in polymer technology and applicable signal processing techniques. 

 

 

2.2.3 Acoustic wave sensors 

 

Unlike MOS and CP sensors, acoustic wave sensors do not use changes in the 

electrochemical properties of an odour-absorbing material to detect the presence of 

analytes. Acoustic wave sensors consist of a piezoelectric substrate, such as quartz, 

which is coated with a material that absorbs the target odourous species. The presence 

of the target gas species is detected via the effect of the sorbed molecules on the 

propagation of acoustic waves (usually at frequencies between 1 and 500 MHz) 

through the piezoelectric material. Depending on the coating and analyte in question, 

the adsorption of the analyte into the sensing material may affect the acoustic 

properties of the sensor via a mass change of the sorbent coating, or via changes in the 

elastic properties of the coating, or indeed a combination of the two. The choice of 

coating is critical to operations of the sensor. A range of different coating materials 

have been used, from surface attached molecules (Grate et al. 1995), through 

monolayer films (Moriizumi 1998) to layers of polymeric films (Slater et al. 1992). 

The most commonly used coatings are ‘rubbery’ polymers, into which odours 

permeate more quickly than harder polymers. A range of different polymers can be 

used to produce a set of sensors with varying sensitivities to a range of target analytes. 

Indeed the choice of sensor can be made based upon knowledge of the solvation 

properties of the candidate polymer coatings and the target species. 

 

There are two main types of acoustic wave sensors: those utilising surface acoustic 

waves (known as SAW devices), and those using bulk acoustic waves (BAW devices). 
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In SAW devices, a Rayleigh wave is set up on a plate of piezoelectric material coated 

with a sorbent material, and the propagation of this wave on the surface of the material 

is monitored, usually in terms of a shift in frequency from the initial wave to the 

received wave. There are two common configurations for SAW devices. In the first 

(known as a delay line SAW device), an a.c. voltage is applied to one pair of 

interdigitated electrodes on the surface of a plate of piezoelectric material. The surface 

wave propagates parallel to the fingers of the electrodes, across an area coated with 

sorbent material to a second pair of interdigitated electrodes, which receives the wave 

and transmits its properties (usually frequency or delay) via a suitable interface to the 

processing system. A diagram showing this sensor configuration is given in Figure 2.3. 

In the second SAW sensor format (known as a resonator SAW device), only a single 

pair of interdigitated electrodes is used to both transmit and receive the wave. Again 

the wave is transmitted perpendicular to the electrodes, across a sensing area, but then 

is reflected by a groove or ridge in the crystal surface, back across the sensing area to 

the electrodes (Gardner and Bartlett 1999, pp. 96-97; Grate and Frye 1996, pp. 40-45). 
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Figure 2.3 Basic configuration of a delay line surface acoustic wave device. 

 

Bulk acoustic wave devices (often referred to as quartz crystal microbalances (QCM or 

QMB)) have a simpler construction. They essentially only consist of a slice of a single 
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crystal of quartz, typically around 1cm in diameter, with an electrode on either face, as 

illustrated in Figure 2.4. 
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Figure 2.4 Schematic showing the basic construction of a BAW odour sensor. 

 

The required properties for the sorbent material which is coated onto one of the 

electrodes are the same as those for SAW devices. However, the method of detecting 

the changes in the properties of the coating, effected by the adsorption of the analyte 

into the material, is slightly different. In BAW devices, the presence of an analyte is 

detected via changes in the resonant frequency of the sensor. 

 

Both SAW and BAW devices suffer from being strongly influenced by variations in 

temperature (mainly due to thermal expansion of the polymer coating) and humidity. 

They also have relatively slow response times (typically 100 to 1000s) and associated 

recovery times. SAW devices are generally five to ten times more sensitive to mass 

changes caused by the adsorption of analyte molecules, and are thus currently more 

popular for electronic nose research (Gardner and Bartlett 1999, pp. 93-98). 

 

 

2.2.4 Field effect based sensors 

 

Field effect devices which are sensitive to exposure to gases have existed since the 

early 1970s (Lundström et al. 1991). There are two main types: metal-insulator-

semiconductor field effect transistors (MISFETs) and metal-insulator-semiconductor 

capacitors (MISCAPs) (Gardner and Bartlett 1999, pp. 99-99). More recently, research 
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has been conducted (successfully) into the use of conducting polymers, rather than 

metals, as the gate material (Covington et al. 2000). The basic principal of these 

sensors is that certain gaseous species can react with the gate material, and produce 

measurable changes in the properties of the transistor or capacitor (Madou and 

Morrison 1989; Gardner and Bartlett 1999). 

 

 

2.2.5 Pellistors 

 

Pellistors are sensors for detecting combustible (flammable) gases, and have been in 

production for over 35 years (Jones 1991). They measure the energy liberated when a 

combustible gas is oxidised. A typical pellistor consists of a platinum wire coil, 

surrounded by a bead of porous alumina, which contains precious metal catalysts. The 

wire coil is used both as a heater, to raise the temperature of the pellistor to 

approximately 500ºC (Gardner and Bartlett 1999, p. 104), and as a resistance 

thermometer, to measure changes in the temperature of the coil that are brought about 

as a result of oxidation processes occurring within the sensor bead. Pellistors are fairly 

sensitive and have fast response times (typically around 20s). However their response 

is entirely non-specific (to different combustible gases) and they have a fairly high 

power consumption (around 350mW (Jones 1991). They are not currently in 

widespread use in electronic nose systems, but current research may produce pellistors 

that are more suitable for this application. 

 

2.3 Signal and data processing in electronic nose systems 

 

The signals produced by the sensor array are generally passed, via filters and analogue 

to digital converters to a computer in order to be processed and transformed into 

information that is useful to the user. There is no single ‘right’ way to process the data 

from the array; the best choice depends upon the hardware used, the application 

considered, and the information required.  
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2.3.1 Pre-processing 

 

The first stage in the software signal processing procedure is usually the extraction of 

the required information from the sensor responses, and after possibly transforming it 

some way, to collect it together in a suitable form to pass on to the pattern recognition 

system. This stage is known as ‘pre-processing’. 

 

The majority of electronic nose systems available commercially and in industrial use 

make use of the static responses of the odour sensor arrays (i.e. the steady state values 

of the sensor outputs), ignoring the dynamic response of the sensor (Hines et al. 1999; 

Di Natale et al. 1995; Gutierrez-Osuna et al. 1999; Nakamura et al. 1994). A typical 

odour sensor output will have an essentially stable (over the short-term) baseline. 

When exposed to an odour, the output of the sensor will either rise or fall (depending 

on the choice of sensor and analyte), and then, assuming that the concentration of the 

odour remains stable for long enough, the sensor output will re-establish a new stable 

equilibrium value. A typical response of a metal oxide semiconductor (MOS) sensor is 

plotted in Figure 2.5, along with the baseline and static response outputs. 

 

Figure 2.5 A typical response of a MOS odour sensor to a square pulse of acetone, xb 

is the sensor baseline, and xa the steady-state response. 
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The two steady state sensor outputs (in air or carrier gas and in odour) of the sensor are 

extracted from the dynamic sensor response, and may be manipulated in a number of 

ways before being passed to the pattern recognition system. Some commonly used pre-

processing algorithms are given below (Gardner and Bartlett 1999): 

 

• Absolute response:   ax

• Difference:  ( )ba xx −  

• Relative difference: 
b

a

x
x

 

• Fractional difference:  
( )

b

ba

x
xx −

. 

 

Where xb is the sensor output baseline, and xa is the steady state sensor output when 

exposed to an analyte. Pre-processing of static information is discussed in more detail 

in Chapter 3. Often logarithmic versions of the above algorithms are also used in an 

attempt to linearise the response (Gardner 1991). These values are calculated for each 

sensor, and then used to produce a vector (one element per sensor in the array) that 

describes the static response of the array. 

 

The choice of appropriate static pre-processing algorithm depends on a number of 

factors, not least of which are the sensors used and the likely range of operating 

conditions. For example, if the sensors exhibit a drift or temperature dependence of 

baseline, but not magnitude of response, then the ‘difference’ algorithm might be 

suitable. For many sensors though, the ‘fractional difference’ algorithm is thought to 

provide the best reduction in temperature-dependence (Gardner 1991). 

 

Pre-processing for analysis of dynamic sensor response signals can take a number of 

forms. One approach is to simply extract the relevant portions of the dynamic 

responses, and pass them unchanged to a classification system that uses the full 

dynamic response. Variations on this include processing algorithms which are similar 

to those used to reduce the effects of temperature and drift, such as a ‘dynamic 

difference’ algorithm where the baseline is subtracted from each sampled data point 

over the response. Such techniques are used in Chapter 4. Another possibility is the use 

of filters which produce a discrete approximation to the derivative of the sensor output 
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at each time point, again to attempt to counteract the interfering effects of sensor drift 

and temperature influences. Alternative methods of pre-processing dynamic data 

mostly involve the extraction of parameters which characterise the dynamics of the 

response (e.g. the parameter estimation techniques developed in Chapter 8, or the 

estimation of a ‘constant’ in (Vilanova et al. 1996)).  

 

In addition to each of the pre-processing methods described above (which act on the 

outputs of individual sensors), there may also be some form of array pre-processing 

incorporated into the signal processing system. This can take a number of forms, such 

as normalisation of the array output, where each element of the array response vector is 

scaled by the length of the vector, so that the response vector always has length one. 

Often the responses of each sensor are also transformed in order to remove the 

possibility of emphasis being placed on sensors due to the magnitudes or variances in 

their responses. For example, subsequent to being exposed to a large training set, a 

transformation might be established for each sensor in order to map the outputs of each 

to the range zero to one, and possibly to map the likely variances to be the same for 

each sensor. 

 

 

2.3.2 Processing of steady-state data 

 

As mentioned above, the majority of data processing techniques used for electronic 

nose systems operate on parameters extracted from the steady-state responses of the 

sensors in the array. In this section, a selection of the most popular techniques for 

modelling these steady-state responses, and converting them to odour classifications is  

introduced and discussed. Some of the techniques described below are directly 

applicable as classification tools, and some are more often used for visualisation and 

evaluation of the odour discrimination potential of the multi-dimensional data 

collected from nose systems. Some can be regarded as straightforward supervised 

learning techniques, where a training (or calibration) set is used in order to estimate 

parameters linking the odour inputs to the nose system with the resulting pre-processed 

sensor outputs (such as black-box models, and artificial neural network techniques). 

Others are unsupervised methods where no information regarding the classes to which 

different response vectors should belong is supplied, and the separation of the data into 
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classes is performed purely based on the response vectors themselves (e.g. cluster 

analysis or principal components analysis)(Gardner and Bartlett 1999). 

 

 

2.3.2.1 Forward and inverse linear models 

 

The simplest forward model for the static response of an array of sensors to an odour 

would be that each sensor responds linearly to each component of the odour. So if an 

odour was described by a vector c of the concentrations of m gas components, the 

response vector x of an array of n sensors would be given by 

 

cx A= ,     (2.2) 

 

where A is an n × m array. Using this model, the coefficients of A are calculated from 

calibration experiments (assuming sufficient experiments can be carried out with 

different combinations of the potential gas constituents). Thus this is a supervised 

learning technique. Once an estimate for A is obtained, provided that the number of 

sensors n is greater than the number of potential components m, calculation of an 

estimate for the concentration vector of an unknown input odour is simply a matter of 

using linear algebra to produce a least squares solution to equation 2.2. This sort of 

model is attractive because of its simplicity and ease of implementation, and its ability 

to provide a quantitative estimate of the concentrations of each of the gas components. 

However, its effectiveness is clearly limited by the assumptions that the responses of 

the odour sensors to different gases are linear and independent. For most sensors, even 

after pre-processing, these assumptions are only valid at low concentrations and over a 

limited range of concentrations. There is also no feature of the model that can take into 

account any ‘memory’ of recent array exposures, so that the initial calibration is 

required to hold until later calibration experiments are performed. Thus the technique 

relies wholly on the pre-processing to provide counteraction of temperature or long-

term drift effects. As mentioned above, the number of sensors in the array must be 

greater than or equal to the number of candidate components in the gas mixture. With 

current hardware, this restricts the technique to applications where the odours are 

composed of a small number of species, since the majority of instruments have arrays 

of 32 or less sensors. Complex odours, such as those produced by biological samples 
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or foods and beverages often contain many more species than this. In these 

circumstances it is more appropriate to use the more qualitative techniques described 

below, where the output is a selection from a small number of classes, rather than an 

estimate of the concentrations of each of the chemical species which might be present.  

 

A more commonly-used variation on the above model for sensor responses is an 

inverse linear model. For this technique, linearity is assumed for an inverse model of 

the sensor responses. This means that the gas input concentrations are assumed to 

depend linearly on the sensor responses, i.e. 

 

xc B= ,     (2.3) 

 

where again c is the (m-dimensional) vector of gas component concentrations and x is 

the (n-dimensional) vector of (pre-processed) sensor outputs. B is an m × n array. Once 

B is obtained from calibration experiments, the process of converting a response vector 

to an estimate of the constituents of the input is trivial. The estimation of the 

coefficients of B are usually obtained via multiple linear regression (MLR) or partial 

least squares (PLS) (Gardner and Bartlett 1999, pp. 144-145; Gutierrez-Osuna 2000). 

For details of MLR and PLS see, for example, Beebe et al. 1998. The use of this model 

is subject to essentially the same limitations as the forward linear response model. 

 

 

2.3.2.2 Nonlinear response models 

 

Since the (static) responses of odour sensors are generally nonlinear with respect to 

analyte concentration, the above linear models are only valid over fairly small 

concentration ranges. As mentioned in section 2.3.1, one method used to overcome this 

problem and extend the usefulness of the model is to use a pre-processing algorithm 

which attempts to linearise the responses (e.g. a logarithmic algorithm for sensors 

which respond via a power law). Another method is to extend the linear (forward or 

inverse) response models to different functional forms. This can be done either by 

simply extending to higher order polynomial response functions (Sundgren et al. 

1990), or by assuming a response to be of a functional form such as a power law 

(Hierold and Muller 1989). Since the coefficients for the function(s) postulated for the 
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model must be calculated from a calibration experiment, this too is a supervised 

learning technique. 

 

 

2.3.2.3 Black box models 

 

Linear time-invariant black box models are not dissimilar in structure to the linear 

response models discussed in section 2.3.2.1. However, there are two crucial 

differences. The first is that they are often used (as inverse system models) to produce 

a classification of the odour input, rather than a quantitative estimate of the 

concentrations of each postulated gas component. The second is that instead of 

attempting to produce this classification based solely upon the response vector x of the 

sensor array for a given response, the structure of the models allows for previous 

response vectors (i.e. to previous odour exposures) and indeed classifications into 

account. This is again a supervised learning technique. 

 

For a detailed description and examples of the use of black box models, see chapters 3 

and 4, and Searle et al. 2002. 

 

 

2.3.2.4 Cluster analysis 

 

Cluster analysis is an unsupervised multivariate statistical technique, the object of 

which is to split a set of multivariate data into groups according to how ‘close’ they are 

in multivariate space. As such it is frequently used to assess the discrimination power 

of a nose system for a given application. If cluster analysis is performed on a test set of 

known odours, and the cluster analysis grouping of the data matches the desired set of 

classes then it can be asserted that the sensor array and pre-processing used possess the 

ability to discriminate between the classes (Gardner 1991). 

 

The most commonly-used form of cluster analysis is known as hierarchical cluster 

analysis (HCA). Since cluster analysis is concerned with forming groups based on 

similarity of data vectors, a measure of distance between points in multi-dimensional 

space is required. This is known as the distance metric, and can be selected from a 
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number of options. Normally the data vectors are pre-processed in such a way that the 

size and variation along each dimension of the data set is approximately equal, so most 

commonly the n-dimensional Euclidean metric is used: 
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however, variations on this are sometimes used, especially where the data have not 

been extensively pre-processed. A way of measuring the distance between a point and 

a group of points is also required, as is a method of measuring the distance between 

two groups of points. These are usually defined in terms of the point-to-point distance 

metric, and can be based upon the nearest neighbour distances (known as ‘single 

linkage’), furthest neighbour distances (known as ‘complete linkage’), or many other 

variations including the use of ‘centres’ of groups to measure from (Beebe et al. 1998). 

 

Given a choice of distance metric and linkage method, there are two extremes from 

which the HCA can start, and work towards the other. In one method the analysis 

begins by clustering the data so that every data point belongs to the same cluster, then 

successively splits the set into more and more groups until eventually each data point 

lies alone in a cluster separate from the other data points. In the other method, the 

analysis starts with p clusters (where p is the number of data points) and gradually 

increases the between-groups distance threshold, collecting point into clusters, until the 

distance threshold is so great that all data points lie in a single cluster. The HCA 

produces a graphical output of the natural clustering of the data, using the selected 

distance metric and linkage method, called a dendrogram. An example of a 

dendrogram is given in Figure 2.6. For examples of the application of HCA to 

electronic nose data, see Gardner 1991 and Aishima 1991a. A more through 

explanation of the technique of HCA is given in Beebe et al. 1998. 
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Figure 2.6 An example of a dendrogram produced by HCA, similar to those produced 

from a successful electronic nose experiment. 

 

 

2.3.2.5 Principal components analysis 

 

Principal components analysis (PCA) is another unsupervised pattern recognition 

technique, which is particularly suitable for data where the measured parameters are 

not independent, exactly as is the case for most arrays of odour sensors. With an array 

of n sensors, each (static) data point is an n-dimensional vector. For n > 3, such data 

are difficult to portray in a graphical manner that is easy for the user to interpret. 

However, since the outputs of the sensors are generally not uncorrelated, and the 

number of odour classes is often relatively small, the differences in the data points can 

often be seen by viewing the data in fewer than n dimensions. Clearly one way of 

doing this would be to simply plot the outputs of two or three sensors against each 

other, but a much more effective method is provided by PCA. 

 

Principal components analysis transforms an n-dimensional data set to a different n-

dimensional data set, in such a way that each data point of the new data set (the 
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principal components) is a linear combination of the old data set (the outputs of the n 

sensors in the array). The coefficients of the transformation (known as the ‘loads’) are 

chosen so that the first coordinate (first principal component) has maximal variance. 

Thus, the first principal component captures the most-varying facets amongst the data 

points. The second principal component is obtained by using loads which again 

maximise the variance in the resulting data, but with the added constraint that the 

second principal component must be uncorrelated with the first. This process is 

continued until the n-th principal component is calculated. If the sensors in the array 

were in fact selective and uncorrelated, then the PCA would be of no benefit, since the 

resulting data set would be equivalent to the original. However, with real electronic 

nose data, it is often found that 90% or more of the variance in the data is captured by 

the first two or three principal components (Gardner and Bartlett 1999). This suggests 

that in some sense the true dimensionality of the data set is very much less than n. In 

this case, if the PCA plot shows separation of the data into the desired class groups 

then all is well, and principal components ‘scores’ (the values of the transformed data 

coordinates) for responses to unknown odours may be used to classify those odours, by 

placing them on the PCA plot of a training set, and seeing which group of known 

odours they lie closest to. In this situation the PCA is being used effectively as a tool to 

produce a supervised rule-based classification technique. If good separation of the 

desired groups is not observed, then perhaps a different choice of sensors is required. 

An example of a PCA plot is given in Figure 2.7. 
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Figure 2.7 A typical PCA plot of the first and second principal components from an 

electronic nose experiment to discriminate between three different analytes. Although 

six MOS sensors were used in the experiment, adequate group separation is observed 

with just two plotted dimensions. 

 

Unlike cluster analysis, PCA can show trends and patterns in the data such as long 

term drift (which might show up as a consistent drifting of the data points on the PCA 

plot with time), or dependence on temperature variations. Examples of the use of PCA 

to visualise and analyse electronic nose data are abundant in the literature (Marco et al. 

1998; Gardner 1991; Llobet et al. 1999b; Shin et al. 2000). For a more thorough 

description of PCA, see Beebe et al. 1998. 

 

 

2.3.2.6 K-nearest neighbours 

 

K-nearest neighbours (KNN) is a supervised technique whereby a classification of an 

unknown  data point is made based on which class the data point is nearest to in 

multidimensional space. Ordinarily the space in which this is carried out would be the 

space of pre-processed output sensor vectors, although it could instead be performed 

on a space of principal components scores, in order to reduce the computational load 
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and facilitate visualisation of the problem. As with HCA, a distance metric for the 

multidimensional space must be selected; the most common again being the Euclidean 

distance, although others (such as the Mahalanobis distance) are sometimes used 

(Beebe et al. 1998). When a data point resulting from sensor exposure to an unknown 

odour is presented, the decision on which class it should belong to is based, as the 

name suggests, on the classes of the data point’s K nearest neighbours. Normally the 

class allocation is made in a democratic fashion – each of the data point’s K nearest 

neighbours ‘vote’ that the data point belongs to their class, and the class with the most 

votes wins. The choice of how many neighbours to consider depends mainly on the 

nature of the training set. If the classes are well separated then a small value of K will 

suffice, however if the classes overlap then more care must be taken. Also, if there are 

not equal numbers of training vectors for each class, then care must be taken that the 

choice of K will not lead to a bias towards the class(es) with large numbers of training 

points (Beebe et al. 1998). An advantage of a well-implemented KNN classification 

system is that the ‘voting’ system can provide a quantitative estimate of the level of 

confidence in a classification (via the proportion of polled votes that were for the 

winning class), although this must be carefully handled to ensure that outliers aren’t 

incorrectly placed in a given class with a high confidence, merely due to the fact that 

they are more like that class than the others, even though in fact they are nothing like 

any of the training classes. A disadvantage of KNN is the care required in its use (in 

terms of selecting K and parameters relevant to the prediction of classification 

confidence) and its susceptibility to sensor drift, making it likely that careful and 

frequent recalibration will be needed. KNN is described in more detail in Beebe et al. 

1998. 

 

 

2.3.2.7 Soft independent modelling of class analogies 

 

Soft independent modelling of class analogies (SIMCA) is another supervised learning 

method, based on principal components analysis. The principal of SIMCA is simple 

and relatively easy to implement. A training set consisting of a number of example 

data points for each of a number of classes is required. For each class, PCA is 

performed on the data points from that class, independently of the data points from the 

other classes. An appropriate number dci of principal components is selected, and a 
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multi-dimensional box is drawn around the selected class in its PCA space. Note that 

the number of principal components used need not be the same for each class (Beebe et 

al. 1998). 

 

Since the transformation from sensor space to principal components space is linear, 

these multidimensional boxes in PCA space correspond to scaled and rotated 

hypercubes in sensor space. Given a data vector from an unknown sample, the class 

membership of the data point is determined by a combination of the distance of the 

data point from the dci-dimensional subspace (of sensor space) defined by the principal 

component loadings, and the distance of the data point from the box boundaries 

defined within that subspace. In practice this is equivalent to projecting the data point 

separately into the PCA space of each of the classes. If the data point is projected to a 

point that is within a distance of some critical value (chosen based on the within-class 

variance of the training data) from the box boundary, then it is considered to be a 

member of that class. 

 

Clearly using this method it is likely that the class boxes will not occupy all of sensor 

space, and it is possible that some class boxes will overlap. Thus an unknown data 

point may be placed in zero, one, or many classes. How these situations are dealt with 

must depend upon the application in question. A more comprehensive discussion of the 

SIMCA technique is presented in Beebe et al. 1998. 

 

 

2.3.2.8 Discriminant function analysis 

 

Discriminant function analysis (DFA) is a supervised pattern recognition technique. 

The aim of DFA is to find ‘discriminant functions’ of the (pre-processed) sensor 

outputs, each of which map the multidimensional sensor space to a single dimension, 

in such a way as to maximise the separation between the classes. 

 

Linear discriminant function analysis has much in common with principal components 

analysis. In linear DFA, each discriminant function is formed simply as a linear 

combination of the sensor outputs. Usually the coefficients of the first discriminant 

function are selected to maximise the ratio of the inter-class variance to intra-class 
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variance. The coefficients of the second discriminant function are then chosen 

similarly, with the added constraint that the second discriminant function is 

uncorrelated with the first, and so on for subsequent discriminant functions (Gardner 

and Bartlett 1999). Thus linear DFA and PCA are essentially the same except that for 

PCA, the functions are chosen to maximise the spread of the whole data set (so no 

information about the known classes is used) whereas in DFA the functions are chosen 

specifically to maximise the spread between the known classes of training vectors. For 

examples of the application of linear DFA to electronic nose data, see Aishima 1991b 

and Romain et al. 2000. 

 

Nonlinear discriminant functions have also been applied to electronic nose data (e.g. 

quadratic functions, (Mason 1996)), however the problem of calculating the 

parameters is potentially much more difficult. For a thorough description of 

discriminant function analysis, see Krzanowski 1988. 

 

 

2.3.2.9 Artificial neural networks 

 

Artificial neural networks (ANN) are structures which are based loosely upon the 

structure of the brain / nervous system. They are an attractive choice for the analysis of 

electronic nose data for a number of reasons. The electronic nose hardware is designed 

to mimic the biological olfactory ‘hardware’ and thus produces broadly similar 

outputs, so it seems appropriate to use a processing system that also mirrors the 

biological system (Gardner et al. 1990). Artificial neural networks can be chosen and 

designed so that they can handle the nonlinear nature of the sensor data, and some can 

adapt themselves to correct for drift in the outputs (Distante et al. 2000; Marco et al. 

1998). 

 

Over the last twenty years or so, neural networks have been researched extensively, 

and a great variety of structures have been developed. Many of these have been applied 

to electronic nose data (Hines et al. 1999). Essentially neural networks are structures 

with a set of inputs, corresponding in this context to the (pre-processed) sensor outputs, 

a set of outputs (normally one per odour class), and a series of connections between 

them, possibly via extra (hidden) layers of ‘neurones’, each of which is weighted. The 
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range of possible structures is great, and there are many methods of training the neural 

network, which in practice means calculating the parameters (weights) for the network. 

The most commonly-used artificial neural networks for electronic nose data include 

Hamming networks, Kohonen networks, learning vector quantisation (LVQ), 

multilayer perceptron (MLP) and back-propagation (BP) networks. Fuzzy methods 

have also been used with significant success, such as the Fuzzy ARTMAP (Shin et al. 

2000). For details of the application of these neural network techniques to electronic 

nose data, see Gardner and Bartlett 1999, and for a more general overview of neural 

networks, see Haykin 1999. Artificial neural networks are currently the most popular 

tool for odour classification, often used in conjunction with PCA as a visualisation 

tool. Their popularity is due to the fact that when used carefully they frequently 

outperform other pattern recognition methods. However, their strengths are derived 

from their complexity (in terms of structure and numbers of parameters which define 

them), which is also their weakness, inasmuch as reliable performance may only be 

attained after a large training set is used. This is an unavoidable aspect of trying to 

describe a complex system using model structures that do not incorporate any 

knowledge of the mechanisms defining the system. 

 

 

2.3.3 Processing of dynamic data 

 

As mentioned in section 2.3.1, generally the pre-processing stage is used to extract 

information relating only to the steady-state responses of the sensor outputs. However, 

it has been shown that the dynamic response of odours can also carry important 

information (Di Natale et al. 1995; Gutierrez-Osuna et al. 1999; Nakamura et al. 

1994). Dynamic information has been used in a number of ways to improve the 

performance of nose systems. 

 

Some studies have reported that the dynamic response of the sensor array contains 

important discriminatory information which can be passed to the pattern recognition 

system in order to improve the classification performance (Gutierrez-Osuna et al. 

1999). For slowly responding sensors, or quickly changing environments, the early 

part of the dynamic sensor response can be used to predict the final (steady-state) 

value, and thus reduce the time required for calibration and subsequent analysis of a 
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sample (Di Natale et al. 1995). A more recent development is the use of thermal 

modulation of a single sensor to produce a dynamic response that is analysed using 

wavelet transforms and neural networks. This technique potentially reduces the 

number of sensors required in an array. 

 

Physical models for the conduction mechanisms of some types of odour sensors have 

been converted into mathematical models, and subsequently analysed, but these are not 

yet generally used to enable odour classification via dynamic responses. An example 

for MOS sensors is the reaction-diffusion partial differential equation model suggested 

in Gardner 1989. For CP sensors, a simple reversible binding model gives rise to a first 

order exponential response model, and a Langmuir isotherm steady-state response, 

though the time constant observed is still infrequently used. 

 

 

2.3.3.1 Exponential response models 

 

The pre-processed steady-state sensor outputs essentially capture the magnitudes of the 

sensor response to an odour stimulus. In order to describe the dynamics of a sensor 

response efficiently, it is natural to seek a parameter or set of parameters which 

capture(s) the key features of the shape or geometry of the sensor response. For many 

classes of odour sensors (e.g. MOS sensors), the response curves observed in 

experiments fit multi-exponential curves very well (Gutierrez-Osuna et al. 1999; 

Samitier et al. 1994). Frequently a first-order model produces acceptable fits, but more 

recently a bi-exponential response model has been shown to give a better 

approximation (Endres et al. 1995). The one or two (or more for higher order multi-

exponential models) time constants are extracted from the dynamic responses of each 

sensor, and then odour classification is performed on these values, possibly in 

conjunction with the steady-state values. This technique is useful in that it can increase 

the separation between odours which produce differing dynamic characteristics, but 

similar steady-state values. Thus, for a given application, it can increase classification 

performance or decrease the number of sensors required. However, due to the lack of a 

firm physical basis for the response model, the effects of interfering influences such as 

temperature and humidity are ignored, or can only be empirically modelled. Thus in 

order to use such a response model effectively over a range of conditions, a highly 
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nontrivial calibration must be performed, possibly quite frequently (to allow for sensor 

poisoning or other long-term affects). 

 

 

2.3.3.2 Thermal modulation 

 

As mentioned in section 2.2.1, MOS sensors are operated at elevated temperatures, 

usually via an internal heating element. The conductance and odour-sensitivity of the 

sensor material depends quite strongly upon the temperature at which it is operated. 

This characteristic is common to most types of odour sensors, in varying degrees. 

However, the combination of a high temperature gradient between the sensor operating 

temperature and its surroundings with the developing technologies for producing very 

small sensors based on micro-machined hotplates mean that very rapid changes in the 

temperature of the sensing material can be achieved quite easily (compared with, say, 

CP sensors which are operated at approximately room temperature). It is possible to 

heat these devices to 500°C and then cool them back to room temperature in a few 

milliseconds (Al-Khalifa et al. 2001). The working temperature of the sensor is cycled 

(with a period typically of between a few seconds and a few minutes, depending 

mainly on the response characteristics of the sensor material / analytes) and the 

resistance of the sensor recorded. The heater driving signal is frequently sinusoidal 

(Llobet et al. 2001a), though slower triangular cycles have been used with more 

traditional Taguchi MOS sensors, with their somewhat slower thermal dynamics 

(Kohler et al. 1999). 

 

The processing of the resulting dynamic data may be approached in a number of ways. 

In Kohler et al. 1999, the sensor outputs at each time point sampled (256 points were 

recorded for a single thermal cycle) were used to produce a 256-dimensional response 

space. The five calibration responses (for five different target analytes) were 

transformed to an orthonormal base, and unknown samples were directly back-

transformed to give a quantitative estimate of the concentration of each of the five 

target analytes. An alternative method was employed by Llobet et al. 2001a and Al-

Khalifa et al. 2001, whereby the sensor response to a sinusoidal thermal input was 

analysed using fast Fourier transforms (FFT) or discrete wavelet transforms (DWT). 

This produced good results, especially when combined with a ‘Fuzzy ARTMAP’ 
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artificial neural network that takes the Fourier or wavelet coefficients as inputs (Llobet 

et al. 2001b). This is still a fairly new method, so it remains to be seen how robust the 

classification performance will be to interfering influences and long-term drift. So far 

the method has been used on single sensors, which will clearly limit the number of 

odours that can be discriminated, but there is no reason why an array of sensors 

shouldn’t be operated in this manner.  

 

 

2.4 Current and future applications for electronic nose systems 

 

The range of potential applications for electronic nose systems is truly vast. Any 

situation where the identification of gases or odours is required constitutes a potential 

application. To date the most common commercial applications have been in the food 

and beverage industries, but it has been suggested that electronic nose systems might 

find uses in many other fields. Examples of other potential areas of application include 

packaging quality control, perfumery, environmental monitoring, biotechnology, 

explosives / illegal drug detection at airports etc., early detection of biological or 

chemical weapon deployment in battlefields, medical diagnosis and quality control in 

the automotive industry. Table 2.1 lists some applications which have been reported in 

the literature, together with the types of nose systems used. 

 

Area of application: Aim of analysis: Sensors used: Reference: 

Alcoholic 

beverages 

Discrimination between 

different beverages 

6 MOS Aishima 1991a 

Coffee Discriminate between 

two varieties of bean 

6 MOS Aishima 1991b 

Tomatoes Assess quality of 

tomatoes, and 

discriminate between 

two cultivation methods 

8 QMB Di Natale et al. 

1998 

Milk Detection of ‘burned’ 

aroma in UHT milk 

samples 

8 QMB Di Natale et al. 

1998 
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Water quality Discrimination of strain 

and growth phase of 

cyanobacteria 

6 MOS Gardner et al. 2000 

Banana testing Non-destructive ripeness 

determination 

4 MOS Llobet et al. 1999b 

Cow’s breath Diagnosis of illness 6 MOS Llobet et al. 1999a 

Bacteria / fungal 

growth 

Detection and 

classification 

15 MOS Schiffman et al. 

2000 

Olive oil Classification of three 

olive oils 

8 CP Bargagna et al. 

2000 

Pollutant gases Identification and 

concentration estimation 

4 MOS Reich et al. 2000 

Eye infections Detection of bacteria 32 CP Boilot et al. 2000 

Beer Detection of taints 12 CP Gardner et al. 1994 

Fish Assessment of freshness 4 MOS Olaffson et al. 1992 

Cheese Maturity assessment 20 CP Persaud and Travers 

1996 

Cow teats Detecting hygiene 

condition prior to 

milking 

20 CP Mottram and 

Persaud 2000 

Industrial 

chemicals 

Detection and 

recognition of industrial 

chemicals 

32 CP Furlong and Stewart 

2000 

Automotive 

industry 

Detect and classify 

sources of ‘new car 

smell’ 

6 QMB Garrigues et al. 

2000 

Explosives 

detection 

Detection of military 

grade TNT 

5 MOS Pardo et al. 2000 

Ham Control of drying 

process 

8 MOS Horrillo et al. 2000 

 

Table 2.1 Some examples of electronic nose applications. 
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As the technology matures, the selection of new applications for electronic nose 

systems is increasingly being driven by commercial interests. As the hardware and data 

processing technologies improve, the range of applications for which nose systems can 

be useful will expand. This will be due to an increase in the effectiveness of the 

systems when analysing complex odours (e.g. biomedical applications), and a decrease 

in the cost of producing commercial devices, for both simple and complex 

applications. 
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Chapter 3  
Cyanobacteria strain identification using 

system identification techniques 
 

In this chapter, black box modelling techniques from the field of system identification 

are employed to analyse data from a biological experiment. The aim of the experiment 

was to assess the ability of an electronic nose system to discriminate between two 

species of cyanobacteria (blue-green algae). Establishing such a capability would not 

only be directly useful (for environmental agencies or water companies) but would 

also help to provide an indication of the potential of electronic nose technology for 

applications in the biomedical arena, such as bioprocess monitoring and medical 

diagnosis. 

 

As mentioned in Chapter 2, most of the well established techniques of analysing data 

gathered from electronic nose experiments involve the use of only the steady state 

(static) responses of the sensors. The data are ‘pre-processed’ to extract the steady state 

information from the dynamic data produced by the system. This steady state 

information is then used by a pattern recognition system to classify the odour. See 

Chapter 2 for more details of current techniques. It has been suggested that there could 

be significant discriminatory information contained within the traditionally discarded 

dynamic data (Hines et al. 1999; Wilson and DeWeerth 1995; Vilanova et al. 1996; 

Nakamura et al. 1994). This suggestion is investigated via a comparison of success 

rates obtained using similar black box model structures for both steady state (static) 
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data and dynamic data from the same experiment. The models used are linear time 

invariant black box models. Such models have been shown to be effective when 

applied to steady state data (Marco et al. 1996), but their application to dynamic data is 

novel. The success rates achieved are also compared with those obtained elsewhere 

(Shin et al. 2000) using neural network techniques applied to the same experimental 

data. 

 

 

3.1 Black box modelling 

 

The models considered here are, in effect, inverse black box models of the electronic 

nose system. A forward model of the system would have inputs corresponding to the 

odour input y(t) to the system, and outputs corresponding to the electrical resistances 

of the sensors responding to those odours u(t). Our models work in the opposite 

direction, taking the sensor resistances as inputs, and producing a classification of the 

odour as an output. See Figure 3.1 for a pictorial representation of this. 

 

 
 

Inverse 
model 

Odour classification 
as model output Sensor outputs 

u(t) y(t) 
 

 

 

 

 

 

Figure 3.1 Diagrammatic representation of the electronic nose modelling problem. 

 

Generally the model output could take many forms. For example, if the target odours 

were mixtures of many chemical components then a multicomponent model could 

have many outputs, each giving an estimated concentration of one of the components. 

However, for the qualitative problems considered here, the output required is a simple 

classification of the input odour. 

 

For the experiment considered here, the bacteria must simply be classified as toxic or 

non-toxic. For an example of a more complex classification problem, see the following 
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chapter. These simple classifications can be obtained from black box model outputs in 

a number of ways, requiring the use of either single or multi-output black box models. 

 

The System Identification Toolbox (Ljung 1995) within Matlab (Version 5) provides 

the user with many functions for creating, evaluating and using black box models. The 

general form for the discrete time multi-input, single-output (MISO) models 

considered is given below (Ljung 1987): 
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        (3.1) 

 

where y is the discretised model output, ui is the i-th input (for i = 1 ... n), e is white 

noise and ki is the delay from input ui to the system. The functions A(q-1), Bi(q
-1), C(q-

1), D(q-1) and Fi(q
-1) are polynomials in the backwards shift operator q-1 that is defined 

by: 

 

( ) ( )q x t x t− = −1 1 .     (3.2) 

 

Not all of the polynomials A, BBi, C, D and Fi are used in a particular model. The 

models considered in this chapter are listed in , together with details of the 

polynomials used. The model structures considered were selected due to their 

simplicity and previously reported success (Marco et al. 1996). Finite impulse 

response (FIR) models only use the present and past values of the inputs (the u

Table 3.1

i's) in 

order to produce an output. Auto-regressive with exogenous inputs (ARX) models also 

use past values of the (simulated) outputs. The addition of a moving average term to 

FIR and ARX models to produce moving average, with exogenous inputs (MAX) and 

ARMAX models, respectively, corresponds to the inclusion of a C polynomial to the 

model structure (see Equation 2.1). This allows more effective modelling of the noise 

characteristics of the system. Note that the polynomials D(q ) and F-1
i(q ) do not 

appear in . They were not used in any of the model structures considered, but 

are included in Equation 3.1 for generality. 

-1

Table 3.1
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Model structure: Polynomials used: 

FIR BBi

ARX A, BBi

MAX BBi, C 

ARMAX A, BBi, C 

 

Table 3.1 The linear black box model structures used to analyse the electronic nose 

data. 

 

 

3.2 Bacterial strain identification experiment 

 

The experiment was designed to evaluate the ability of an electronic nose system to 

discriminate between two strains of cyanobacteria (blue-green algae), one toxic and the 

other non-toxic. The ability of such a system to classify quickly and accurately the 

strain of bacteria present in an algal bloom could clearly be useful to environmental 

agencies, monitoring reservoirs and lakes. 

 

The headspaces of separate cultures of the two strains of cyanobacteria, grown in a 

nutrient medium (BG11), were sampled periodically by an electronic nose system over 

40 days (Shin et al. 2000). The nose system used consisted of six commercial metal 

oxide resistive odour sensors (Alpha MOS, France), and two other sensors to monitor 

ambient temperature (LM35CZ, National Instruments) and humidity (MiniCap 2, 

Panametrics) (Shin et al. 2000). The repeated exposure cycle was as follows: 

 

•  23 min 20 s   - medium only 

•  2 min   - medium with toxic microcystis aeruginosa PCC 7806 strain 

•  23 min 20 s   - medium only 

•  2 min   - medium with non-toxic microcystis aeruginosa PCC 7941 strain. 

 

The outputs from the sensors were sampled every 10 seconds, producing 350,358 data 

vectors corresponding to 1,150 exposure cycles. A plot of a section of the data 
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showing the response of a single odour sensor is given in Figure 3.2. The fluctuations 

in the baseline signals are attributed to variations in the ambient air. 

 

The data obtained from the experiment have previously been pre-processed to extract 

static parameters and subsequently analysed using artificial neural networks with 

considerable success (Shin et al. 2000). Here we use system identification techniques 

to analyse the same data in order to compare the efficacy of linear time-invariant black 

box models, for both static and dynamic data, with the static data based non-linear 

neural network methods. 

 

 
 

Figure 3.2 A 14 hour section of the raw data, showing the response of a single odour 

sensor during part of the experiment. The voltage is directly proportional to sensor 

resistance. 

 

Two distinct classes of models were analysed: in Section 3.3 models for the steady 

state responses of the sensors (static models), and in Section 3.4 models for the full 

temporal data (dynamic models). 
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3.3 Static sensor response models 

 

Previous work on the analysis of data from electronic nose experiments has mostly 

concentrated on using pre-processing algorithms to extract the steady state features 

from the sensor signals. Accurate results have been achieved using only this steady 

state information (Shin et al. 2000). There are also other benefits to using this steady 

state data, some of which are listed below: 

 

• Information compression - the full (dynamic information intact) data-sets can be 

very large, especially when the data sampling rate is high. The pre-processing 

compresses this information to a single value per sensor per odour exposure cycle. 

• Baseline drift removal - the gas sensors employed are susceptible to poisoning 

effects which produce long term systematic drift in the baseline (sensor resistance 

values in air). Some of the pre-processing algorithms help to counteract these 

effects, an example is the ‘difference’ algorithm below. 

• Reduction of temperature dependence - the resistances of the odour sensors are 

highly dependent on the temperatures of the various components of the nose 

system. Some physical models for the effects of temperature variations on the 

sensor responses suggest that an appropriate choice of pre-processing algorithm 

should reduce the effects of the temperature variations on the data being analysed 

(Gardner 1991). 

 

These pre-processed data are traditionally then passed on to pattern recognition 

algorithms or artificial neural networks for classification (Gardner and Bartlett 1994; 

Gardner and Bartlett 1999). 

 

 

 

In this section black box models for these pre-processed (or ‘static’) data are analysed. 

The four pre-processing algorithms tested are: 

 

• Absolute response:   Vb

• Difference:   ( )V Vb m−  
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• Relative difference: V
V

b

m

 

• Fractional difference: ( )V V
V

b m

m

−
 

 

where Vb is the sensor voltage when exposed to the headspace of the bacteria sample 

(final value at end of exposure period) and Vm is the sensor voltage when exposed to 

the headspace of the medium (immediately before the sensor is exposed to bacteria). 

The pre-processed sensor outputs for each of the six gas sensors are considered to be 

the inputs to MISO black box models. 

 

The pre-processed values are heavily influenced by the ‘intensity’ of the odour to 

which the sensors are exposed. For certain quantitative applications this can be useful, 

since one might wish to obtain an estimate of the concentration of a gas in some 

sample. However, for this experiment, the aim is only to discriminate between the two 

classes of odour (the toxic bacteria and the non-toxic bacteria). For this reason, the 

effects of normalising the data vectors in order to try and remove the ‘concentration’ 

information contained within the data are investigated. The normalisation process used 

for this experiment is simply to take each 6-dimensional data vector and to divide it by 

its Euclidean length, so that each data point is projected onto the surface of the 6-

dimensional unit hypersphere. 

 

The evaluation of each model structure and pre-processing algorithm was carried out 

using the following procedure: 

 

• The chosen pre-processing algorithm was applied to the data to produce an array 

(2300 × 6) of input data for the inverse models, normalised if required. 

• An output vector was formed using knowledge of the experimental details. A 

classification output of ‘toxic’ was encoded as +1, and ‘non-toxic’ as −1. 

• The data set was split at the half-way point. The first half to be used for training of 

the models, and the second to be used for testing. 

• A MISO black box model was trained, i.e. Matlab was used to estimate the 

polynomial coefficients in the selected model structure. 
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• The model was used to produce a simulated output vector from the second half of 

the data set. 

• The elements of the simulated output vector were converted to classifications 

simply by taking their sign. Finally this classification vector was compared with the 

known classification vector in order to evaluate the success of the model. Note that 

this method forces the classification system to always produce a classification and 

does not allow for a 'not known' result. 

 

 

3.3.1 FIR models 

 

Finite impulse response (FIR) models are the simplest of the black box model 

structures considered here. A zero-delay FIR model forms a prediction of the system 

output at time t by simply taking a linear combination of the system inputs at time t 

and at times t − 1, t − 2, ... t − bi, where bi is the order of the polynomial Bi in the 

model (see Section 2). Depending on the nature of the system being modelled, it may 

be appropriate to include delay terms (the ki parameters in equation 3.1). These could 

be different for each of the model inputs, thus for a 6-input 1-output FIR model, the 

structure of the model is determined by the orders of the six B polynomials, and the six 

delays ki. However, due to the fundamental similarity between our six inputs (i.e. same 

type of semiconducting oxide gas sensor), our investigation was restricted to models 

using the same order for all six B polynomials, and the same delay for all six inputs. 

 

Early investigations showed that the most appropriate delay was zero. This was 

expected with this static data since a single data point corresponds to a whole exposure 

cycle. Hence to introduce a non-zero delay would be to expect the model to classify an 

odour using none of the data recorded during the sampling of that odour. 

 

The most effective orders for the B polynomials were either two or three for each of 

the eight pre-processed data sets (for all four different algorithms and normalised/raw 

data). The results obtained using models with these optimal structures are given in 

Table 3.2. 
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The normalisation process carried out on the pre-processed data had the effect of  

reducing the success rates slightly. As mentioned before, the aim of the normalisation 

procedure is to remove some of the ‘intensity’ of odour information to leave mainly 

‘type’ of odour information. The fact that this process reduced the ability of the models 

to classify correctly the odours in the test data set would seem to indicate that the 

models for pre-processed data (raw) were using a small amount of this ‘intensity’ 

information to produce the classifications. In a field-based application, it would be 

impossible to control the intensities of the signals, so for such purposes one might 

expect normalised data processes to yield greater success rates. 

 

The fact that the absolute response algorithm produced a noticeably poorer success rate 

than the other three algorithms could be attributed to the fact that this algorithm is the 

most affected by the long term baseline drift evident in the data. The normalisation 

process reduces these effects somewhat, enabling the normalised absolute response 

models to perform comparably with the other models using normalised data. 

 

 

 Percentage success rate using 

Pre-processing (static) 

algorithm used: 

Pre-processed data: Normalised pre-processed 

data: 

Absolute response 98.8 97.6 

Difference 99.7 97.4 

Fractional difference 99.5 97.0 

Relative difference 99.5 98.4 

 

Table 3.2 Classification success rates obtained using zero-delay FIR models of orders 

two or three for static (pre-processed) data. 

 
 
3.3.2 More complex model forms 

 

The FIR models in the previous section produced very high classification success rates, 

however the inclusion of either A or C polynomials to the model structure to form 

auto-regressive with extra inputs (ARX) or moving average with extra inputs (MAX) 
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models increased the success rates obtained, perhaps because the more complex model 

structures are better able to handle the drift evident in the data. 

 

By selecting appropriate orders for the B and A polynomials in an ARX model, a 

successful classification rate of 100% was obtained using each of the eight pre-

processed data-sets. The orders required were mostly one for the B polynomial and 

between one and three for the A polynomial. 

 

The extension of the FIR model structure to a MAX model structure produced similar 

success rate increases. Success rates of 100% were achieved for 7 of the 8 data sets, 

with 99.9% achieved on the remaining data set. The orders required for these models 

were mostly 2 for the B polynomials and between 0 and 3 for the C polynomial. The 

MAX models generally required more parameters (polynomial coefficients) than the 

ARX models, making the ARX models preferable in terms of simplicity and 

computational efficiency. Further extension of the model structures to form ARMAX 

models was not found to produce any significant improvement over the ARX and 

MAX models. 

 

It should be noted that for the training and testing of these static models the temporal 

order of the data was maintained. It might be considered more realistic to randomly 

reorder the data vectors to avoid the possibility of the models ‘learning’ the 

characteristics of the particular experiment rather than the characteristics of the 

different odours. In order to enable fair comparison with the dynamic models in the 

next section (for which random reordering would not be as straightforward) the data 

sets used in this section were not reordered. However, it was noted that, when the static 

data sets were randomly reordered (100 times, average results taken), the success rates 

were only reduced by a few percent (typically around 4%). 

 

 

3.4 Dynamic sensor response models 

 

The models for the static data used in the previous section achieved considerable 

success, but it has been suggested (Hines et al. 1999; Wilson and DeWeerth 1995; 

Vilanova et al. 1996) that there is also useful information contained within the 
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dynamic sensor response which the pre-processing algorithms discard. In this section 

we form linear time-invariant black box models for the full dynamic data in order to 

investigate this possibility. We also investigate the effects of normalising the sample 

vectors (as in Section 3.3). 

 

The model structures tested are the same as those in the previous section. The crucial 

difference is that, for the models for static data, a model of order d, say, takes into 

account the last d exposure cycles, whilst for the models for dynamic data, a model of 

order d takes into account the last d sampled data points, i.e. the last 10 × d seconds. 

 

The evaluation of each model structure was carried out using the following procedure: 

 

• If required, the data-set was normalised to form an array (350,358 × 6) of input 

data. 

• As before, an output of ‘toxic’ was encoded as +1, and ‘non-toxic’ as −1. Here, 

however, an output of ‘medium’ was required for the periods where no bacteria 

were sampled. This was encoded as 0. An output vector was accordingly formed. 

• The data-set was split into halves. Data from the first 20 days of the experiment 

were used for training the models, and data from the remaining 20 days were used 

for testing. 

• A MISO black box model of the chosen structure was trained on the first half of the 

data using Matlab. 

• The model obtained was used to produce a simulated output vector from the second 

half of the data. 

• The simulated output was sampled at the time point just before the system switched 

from bacterial odour input to medium input, for each exposure cycle. Thus 

producing a single numerical output for each exposure cycle. 

• The vector of numerical outputs was converted to a vector of encoded 

classifications by taking the sign of each element. This vector was then compared 

with the known sequence of classifications in order to evaluate the success of the 

model. 
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3.4.1 FIR models 

 

The first model structures considered were FIR models. As with the models for static 

data, the set of structures considered was restricted to those having the same order 

polynomials for each of the inputs, and similarly the same delay on each input. FIR 

models for both the raw and normalised data-sets with B polynomials of orders from 1 

to 25 and having delays from 0 to 5 data points (corresponding to 0 to 50 seconds) 

were formed and evaluated. Note that the orders of each of the six B polynomials were 

the same for any given model. The optimal structures for each data-set were chosen as 

a compromise between a high successful classification rate, and a ‘simple’ model 

structure, i.e. one having few parameters requiring estimation. 

 

With the models for static data in the previous section, the optimum delay was found 

to be zero, as expected. However, for the models for dynamic data in this section, a 

non-zero optimum delay would not be unexpected. The delay required in the model 

reflects the physical characteristics of the system in question. The sample vessels were 

connected to the sensor chamber via a system of pipes and valves, thus one might 

expect there to be a noticeable time lapse between the switching of the valves and the 

arrival of the new odour at the sensor array. However, for our data-set, no delay was 

observed. This could be explained by the relatively low dead volume in the pipework 

( V ) compared with the volumetric flow-rate of the pump ( ) producing a physical 

delay that was short enough to be undetectable at the 0.1 Hz sampling frequency used 

(i.e. 

d
&Qp

V
Q

d

p
&

much less than 10 seconds). 

 

Using the raw data-set, the optimum model order was found to be 12. This corresponds 

to an input information ‘window’ of 120 seconds being used by the model in order to 

calculate an estimated output at a given time. The successful classification rate 

achieved by this model on the test data was 91.3%. A slightly higher success rate 

(91.8%) could be achieved using a model of order 22, but the lower order model was 

deemed more suitable due to the insignificant (and unlikely to be reproducible) 

difference and the greatly reduced computing costs associated with using a model with 

72 polynomial coefficients rather than 132. 
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The models for the normalised data-set achieved greater success than those for the raw 

data. The optimum model order was found to be 11, producing a success rate of 99.3%. 

The fact that the normalisation process improved the success rates for the dynamic 

models contrasts with the situation for the static models, where the normalisation 

process reduced slightly the classification success. 

 

As discussed in Sections 3.3 and 3.3.1, the normalisation process reduces the 'intensity' 

information within the data and increases the significance of the 'odour type' 

information. For this dynamic data-set, it would appear that the models for raw data 

were partially classifying the odours based on correlations in the training set between 

the intensity of the signal and the correct classification. Thus when the models were 

applied to the testing set, where these correlations were no longer valid due to long 

term drifts in sensor responses, incorrect classifications were made. With the intensity 

information removed by the normalisation process, the models were able to make their 

classifications based on the type of odour and thus generalise more successfully from 

the training to testing sets. 

 

 

3.4.2 ARX models 

 

The inclusion of an A polynomial to the black box structure to form ARX models 

allows the model to consider past values of the model output as well as past and 

present values of the inputs. The delays on the inputs were set to zero, since (as 

discussed in the previous section) the delay required is a reflection of the physical 

characteristics of the system and so should be model-independent. Models with orders 

from 0 to 15 for the A polynomial and from 1 to 15 for the B polynomials were formed 

and evaluated for both the raw and normalised data sets. The percentage successful 

classification rates obtained on the test data set by each of the 240 models for the raw 

data are plotted in Figure 3.3. 

 

It is evident from Figure 3.3 that the order of the B polynomials is a more significant 

factor in the success of the model than the order of the A polynomial. For low order B 

polynomials (around 3-7), the inclusion of a low order A polynomial increased the 
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success rate slightly. However the greatest success rate overall for this raw data set was 

obtained using the order 12 FIR model of the previous section (91.3%). 

 

The results for the normalised data set are similar in that the greatest success was 

observed when no A polynomial was included in the model structure, so that the 

maximum success rate (99.3%) was obtained with an 11th order FIR model. 

 

 
 

Figure 3.3 Plot of successful classification rates against orders of A and B polynomials 

when ARX model structures (with zero input delays) were tested on the raw data set. 

 

 

3.4.3 MAX and ARMAX models 

 

In an attempt to further improve the success rates obtained, the addition of a C 

polynomial (a moving average term) to the FIR and ARX model structures to form 

MAX and ARMAX model structures was investigated. For MAX models, the order of 

the A polynomial is zero, so the investigation was restricted to zero delay models with 
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orders from 1 to 15 for the B polynomials and from 0 to 15 for the C polynomial. The 

percentage successful classification rates obtained on the test data set by each of the 

240 models for the raw data are plotted in Figure 3.4. 

 

 
 

Figure 3.4 Plot of successful classification rates against orders of B and C polynomials 

when MAX model structures (with zero input delays) were tested on the raw data set. 

 

Once again the optimum models only involve the B polynomials, indicating that the 

extension from an FIR model to an MAX model is not beneficial. Similar results were 

obtained using models for the normalised data set. 

 

The addition of an A polynomial (an auto-regressive term) to the MAX models to form 

ARMAX models did not increase the success of the models, This suggests that (recent 

- 10 to 150 seconds previous) past output values do not provide any useful information 

that can be used to produce a more accurate value for the current output. This makes 

sense when the drift seems to vary diurnally rather than by the minute - probably 

associated with changes in the temperature of the bacterial samples.  
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3.4.4 Models for dynamic data with extra inputs 

 

As mentioned in Section 3.2, the sensor chamber contained temperature and humidity 

sensors in addition to the six gas sensors. In the previous sections, only the outputs 

from the gas sensors were used as inputs to the black box models. In this section, the 

outputs from the temperature and/or humidity sensors are included as inputs to our 

models. The outputs of the gas sensors used are known to be affected by variations in 

their operating temperature and ambient humidity. The biological activity and hence 

odour production level of the sample could also be expected to vary with the ambient 

temperature. The outputs from the temperature sensor indicated significant diurnal 

variations (up to ten Kelvin) in the ambient temperature throughout the experiment. 

Thus it would not be unreasonable to expect the inclusion of temperature and/or 

humidity information to produce some improvement in the classification performance 

of these models. 

 

FIR models of order 12 for the raw data set and 11 for the normalised data set (the 

extra inputs were not included in the normalisation process) were produced and 

evaluated. The results obtained are shown in Table 3.3. The results for the normalised 

data show too little variation to draw any firm conclusions. The results for the raw data 

do show slight variation, and suggest that the temperature and humidity signals have 

negligible effect here. If anything, the inclusion of the humidity signal degraded the 

raw data somewhat. 

 

 

 Percentage successful classification: 

Extra inputs: Raw data Normalised data 

None 91.3 99.3 

Temperature and humidity 92.6 99.4 

Temperature 91.1 99.3 

Humidity 86.3 99.4 

 

Table 3.3 Successful classification rates for MISO FIR models having six, seven or 

eight inputs. 
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3.5 An alternative train-test strategy 

 

So far all of the models considered have been trained and tested on very large data sets. 

In practice it would be more likely that the system would be trained using a relatively 

short calibration experiment, and then subsequently used for a substantial length of 

time before requiring recalibration. Clearly it is best, from an operator’s point of view, 

that calibration experiments are short and infrequent. 

 

With this in mind the performances of the previously considered model structures have 

been evaluated using a rather different train-test strategy. Each model was trained on 

day i (for  i = 1 to 39) and then tested on each subsequent day j (i < j ≤ 40). 

 

 

3.5.1 Static sensor response models 

 

First the models for static (pre-processed) data are considered. Here an FIR model 

structure of order three was selected (found to be optimal in Section 3.3.1), and models 

trained using each day in turn. Both raw and normalised data were used. All four 

previously considered forms of pre-processing algorithm were employed, thus 320 

models were formulated. Each model was then tested on data for each of the days 

subsequent  to its training day, and the percentage correct classification on the test data 

calculated. Encouragingly, it was found that the success of the models did not diminish 

significantly as the testing day became distant from the training day. As a fairly typical 

example of what was found, a plot of percentage success rate versus training day and 

testing day for fractional difference (not normalised) pre-processed data is given in 

Figure 3.5.  
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Figure 3.5 A plot of percentage success versus training and testing day for an FIR 

model of order 3, using ‘fractional difference’ (not normalised) pre-processed data. 

 

Note that the data points corresponding to models tested on days prior to the day of the 

training represent a somewhat unrealistic scenario and are thus omitted from Figure 

3.5.  

 

The performance of the models can be seen to be very impressive, even many days 

after the calibration experiment. A model trained on day two maintains a 100% success 

rate for many (36) of the following 38 days. This might indicate that a well-performed, 

day-long calibration experiment could be expected to be sufficient training for a model 

to perform well over a period in excess of 40 days. 

 

For the pre-processed data which were not normalised, the choice of pre-processing 

algorithm made little difference (although the ‘difference’ algorithm was slightly less 

successful than the others). However, for the normalised pre-processed data, there was 

a clear difference. The ‘absolute response’ and ‘relative difference’ algorithms 
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performed similarly to their not normalised counterparts, but the ‘difference’ and 

‘fractional difference’ algorithms performed significantly worse. 

 

 

3.5.2 Dynamic sensor response models 

 

For the models for dynamic data an FIR model structure of order 12 was selected for 

the raw data, and order 11 for the normalised data, producing two sets of 40 models. 

These orders were chosen as a result of the findings in Section 3.4.1. Models were 

trained using each day in turn, and again tested on the data from each subsequent day 

of the experiment. A plot of the percentage success versus the training and testing days 

is given in Figure 3.6. 

 
 

Figure 3.6 A plot of percentage success versus training and testing day for an FIR 

model of order 12, using the raw dynamical data. 

 

It might be expected that, given a model trained on day i, the performance of the model 

when tested on day j would steadily decrease as the difference between j and i becomes 
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large. However, whilst such a trend is clearly visible for models trained on certain days 

(e.g. day 10), this is not always found to be the case. In fact, plotting percentage 

success against time between training and testing phases shows no significant 

correlation. Again this might suggest that infrequent calibration could be employed 

with some success. 

 

It is evident from Figure 3.6 that models trained on days prior to day 8 were not very 

successful when tested on later days. This could be attributed to an unknown 

experimental discontinuity occurring approximately one week into the experiment.  

 

It is interesting to note that some of the models produced success rates of up to 100% 

even many days after the training day. An example of the performance of one of the 

more successful training days is given in Figure 3.7, for which the success rate stays 

above 89% right up to day 39. This compares well with equivalent models trained on 

the whole data set. 

 
 

Figure 3.7 Plot of percentage successful classification versus testing day for an FIR 

model of order 12 for dynamic data. The model was trained on data from day 12 of the 

experiment and tested on subsequent days. 
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Similar results were obtained using models trained and tested on normalised data. So 

for all of the data sets considered, the model structures used were capable of producing 

acceptable classification success rates many days after the model training was carried 

out. 

 

 

3.6 Conclusions 

 

The models for the static strain identification data were able to produce very high 

success rates: 98.4% for normalised, 99.7% for non-normalised data, using 50% cross 

validation (using MISO FIR models of order two or three). These success rates 

increased to 100% on the extension of the FIR models to ARX or MAX model 

structures. 

 

The models for static data work best with a ‘memory’ of the last three or so response 

cycles in order to make a classification. In practical applications it may not be 

acceptable to wait for three complete exposure cycles to obtain a classification. In 

contrast, the models for dynamic data, even though they use higher order polynomials, 

require only a single exposure cycle to produce a classification (since for the dynamic 

data, 10 data points corresponds to 100 seconds, rather than 10 exposure cycles). 

 

The models for the dynamic data produced maximum success rates of 91.3% for the 

raw data (using an FIR model of order 12) and 99.3% for the normalised data. This 

showed that the normalisation process can be an effective tool for improving the 

classification success rates when long term drift might otherwise adversely affect the 

system performance. This might be attributable to the fact that the normalisation 

process reduces the ‘strength’ of smell information in the data, and thus forces the 

model to learn (and subsequently make classifications based on) the ‘type’ of smell 

encountered. 

 

The success rates of the models for static data, and those for normalised dynamic data, 

compare well with the success rates achieved using the best artificial neural networks 

(Shin et al. 2000) where a successful classification rate of 100% was obtained using a 

Fuzzy ARTMAP applied to static data from the same experiment. 
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The success of the black box models might be improved by the use of non-linear 

system identification techniques. It should also be noted that the criteria used for 

parameter estimation were not precisely the same as that used for the evaluation of the 

resulting models. Thus further work to produce a more appropriate parameter 

estimation algorithm may improve the success rates obtained. 

 

It has been shown that simple linear black box (inverse) models for an electronic nose 

system can be successfully employed for strain classification of cyanobacteria. The 

models performed as well as the previously employed artificial neural network 

techniques, with the advantage that they require less computing power to implement. 

Thus such modelling techniques could be more appropriate for use in applications 

where computing power is limited, such as in a handheld instrument. 
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Chapter 4  
Cyanobacteria growth phase 

identification using system identification 

techniques 
 

In this chapter, the techniques discussed in the previous chapter are applied and 

extended to the problem of classifying the growth phase of cyanobacteria. The 

experiment considered here was designed to test the ability of the electronic nose 

system to discriminate between the different growth phases of a single strain of 

bacteria. The levels of biological activity of the bacteria vary as the culture progresses 

through its life cycle, which consists of four distinct growth phases, known as the ‘lag’, 

‘log’, ‘stationary’ and ‘late stationary’ (or ‘death’) phases (Shin et al. 2000). This 

presents a more challenging problem for the system since the odours given off by the 

bacteria may change only slightly over the course of their life cycle. Thus the classes 

to be resolved are expected to be closer together (and less sharply defined) than those 

for the simpler strain identification experiment of the previous chapter. 

 

The knowledge of which growth phase a sample of bacteria is currently in provides a 

useful indication of the likely future progress (viability) of the bacteria. The phase also 

defines the rates at which the cells take in substances from around them. Thus 

information about the current growth phase could be used to predict accurately the 
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dosage levels of antibiotic required to challenge the bacteria. If utilised in medical 

applications, such predictions would yield substantial benefits to the healthcare 

industries. 

 

 

4.1 Black box modelling 

 

The purpose of the electronic nose system is to produce a classification or 

identification of unknown gases or odours to which it is exposed. Thus the processing 

of the sensor outputs to produce a classification of the odour input can be thought of as 

an inverse black box model for the nose system. This is illustrated in Figure 4.1. 

 

 
 

Inverse 
model 

Odour classes as 
model output Sensor outputs 

u(t) y(t) 
 

 

 

 

 

 

Figure 4.1 Diagrammatic representation of the electronic nose modelling problem. 

 

For this experiment the bacteria must be classified according to which of four possible 

growth phases the bacteria are currently in. Quantitative information about the strength 

or concentration of the odour inputs is unnecessary. These simple classifications can be 

obtained from black box models outputs in a number of ways, requiring the use of 

either single or multi-output black box models. 

 

The System Identification Toolbox (Ljung 1995) within Matlab (Version 5) provides 

the user with many functions for creating, evaluating and using black box models. In 

this chapter, the model structures used were almost without exception multi-input, 

multi-output (MIMO)  finite impulse response (FIR) models. This is in contrast with 

the simpler strain identification experiment considered in the previous chapter, where 

FIR, ARX, MAX and ARMAX models were considered. The model structure 

considered was selected due to its simplicity (and thus computational efficiency) and 
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previously reported success (Marco et al. 1996). FIR models effectively  just take a 

linear combination of the present and past values of the inputs (the ui's) in order to 

produce an output. 

 

For example, MIMO FIR models with n inputs and m outputs have the general form 

(Ljung 1987): 

 

( ) ( ) ( ) ( )y B u et q t= +−1 t ,    (4.1) 

 

where y and e are m-dimensional vectors, u is an n-dimensional vector and B is an m × 

n matrix. The elements of B are polynomials in the backwards shift operator q-1, which 

is defined by: 

 

( ) ( )q x t x t− = −1 1 .     (4.2) 

 

Thus B can be written: 
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where for i = 1...m and for j = 1...n: 

 

( ) ( )b q b q b qij ij
k

ij
d d kij ij ij ij− − − += + +1 1 K ,       (4.4) 

 

where dij is the order of the polynomial bij, and kij is the delay from input j to output i. 

 

 

4.2 Growth phase identification experiment 

 

The experiment considered here involved a single (toxic) strain of cyanobacteria, 

monitored over a 40 day period. As well as electronic nose data, information 
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concerning the mean size of the bacterial cells and the biomass present in the cultures 

was recorded using a CellFacts instrument (Microbial Systems Ltd.). This enabled the 

identification of the four distinct growth phases through which the bacteria pass during 

their life cycle. Neural networks have been successfully used (by Shin et al. 2000) with 

the electronic nose data to classify the bacteria into each of the four growth phases, 

obtaining  classification success rates of up to 95.1%. In this section we apply MIMO 

linear black box models to the same data in order to investigate the ability of such 

techniques to tackle this challenging problem. 

 

The experiment in question was intended not only to test the ability of an electronic 

nose to discriminate between the different growth phases of a cyanobacteria strain, but 

also to investigate the reproducibility of the measurements and success rates. For this 

reason the experimental system consisted of three vessels, two containing nominally 

identical cultures of toxic microcystis aeruginosa PCC 7806 in nutrient medium 

(BG11), and one reference vessel containing only the nutrient medium. The 

headspaces of these vessels were connected via a system of pipes and computer-

operated valves to an electronic nose system. The nose system used consisted of six 

commercial metal oxide resistive odour sensors (Alpha MOS, France), and two other 

sensors to monitor ambient temperature (LM35CZ, National Instruments) and 

humidity (MiniCap 2, Panametrics) (Shin et al. 2000). The repeated exposure cycle 

was: 

 

• 50 min - medium only 

• 5 min - medium and toxic microcystis aeruginosa PCC 7806 strain sample 1 

• 50 min - medium only 

• 5 min - medium and toxic microcystis aeruginosa PCC 7806 strain sample 2. 

 

The sensor outputs were again sampled every 10 seconds, producing 361,698 data 

vectors corresponding to 548 full exposure cycles. 

 

The information collected using the CellFacts instrument was used to produce a 

‘correct’ classification vector for the data, identifying the four growth phases of the 

bacteria using understanding of the biological processes involved. It should be noted 

that the boundaries between the growth phases were by no means sharp, making the 
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manual identification of the phases subjective, and thus the nose data classification 

problem highly non-trivial. Some of the data from the CellFacts instrument are plotted 

in Figure 4.2. 

 

 
 

Figure 4.2 Plot of the data from the CellFacts instrument for the growth phase 

identification experiment. The upper plot shows the general increase in biomass (cell 

counts) with time. The lower plot shows the variation in mean size of the bacteria cells 

with time. The four growth phases (lag, log, stationary and late stationary), are labelled 

I to IV in each plot. 

 

 

4.3 Static sensor response models 

 

In this chapter, as in the last, linear black box models for both static and dynamic data 

are considered. This section deals with models for the static data. The pre-processing 

algorithms used were the same as those in the previous chapter, namely: 
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• Absolute response:   Vb

• Difference :   ( )V Vb m−  

• Relative difference: V
V

b

m

 

• Fractional difference: ( )V V
V

b m

m

−
. 

 

However, the details of how the black box techniques should be applied to the data 

was less clear-cut. In the previous chapter, the basic aim of the modelling was to 

produce an algorithm for classifying an odour into one of two classes (toxic or non-

toxic), so the classification output was encoded simply as +1 for a classification of 

‘toxic’, and −1 for ‘non-toxic’. In this experiment, the odour must be classified into 

one of four classes corresponding to the current growth phase of the bacteria. Hence 

the simple numerical encoding of the output used in the previous chapter is no longer 

appropriate. 

 

Two methods of encoding the classification output of the model into a numerical 

output were considered. The first was an analogue of the method used in the previous 

chapter, whereby the four growth phases were each allocated a numerical label (a 

(possibly zero) integer) between −2 and +2 and a multi-input, single-output model was 

formulated using the given phase labelling system. All of the different labelling 

combinations possible were tested to find the optimum labelling system for each model 

structure. This method was time consuming, though moderately successful, producing 

a maximum success rate of approximately 66% when trained on half of the static data, 

and tested on the second half. However, the success of this method relies on the 

labelling combination chosen – if the classes (and the corresponding data vectors) were 

such that in some sense they could be sorted into an order, then this method could 

work well. However, if the differences in the classes do not lend themselves well to 

such a one-dimensional ordering, then other methods could be expected to produce 

better results. 

 

The second method considered was the use of multi-output models to encode the 

different classification. An inverse model with four outputs (and six inputs, as before) 

was chosen, corresponding to the four different possible classifications of the odour. 
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Thus a ‘perfect’ classification of ‘growth phase 1’ would be a 4-dimensional vector 

with a +1 in the first co-ordinate and zeros elsewhere. This method was found to be 

more successful than the single-output model method. Though it should be mentioned 

that analogous 2-output models were tested for the data in the previous chapter but 

were out-performed by the single-output models previously used. This is unsurprising 

since there were only two classes in that case which were fairly well separated. 

 

The effects of normalising the sample data vectors were also investigated. The 

evaluation of each model structure and pre-processing algorithm was carried out as 

follows: 

 

• The chosen pre-processing algorithm was applied to the data to produce an array 

(1096 × 6) of input data for the inverse models, normalised if required. 

• An output array (1096 × 4) was formed using the data from the CellFacts 

instrument. A classification output of ‘growth phase i’ was encoded as a 4-

dimensional vector with +1 in the i-th position and zeros elsewhere. 

• The data vectors corresponding to the ‘Toxic 1’ bacteria culture were separated 

from those corresponding to the ‘Toxic 2’ culture, thus forming two separate data-

sets (each with 548 input and output vectors). 

• Each data-set was randomly reordered and then split into two halves. The first to be 

used for training and the second for testing of the models. 

• A MIMO black box model was trained (see Section 4.1 for details of the MIMO 

model structure used). 

• The model was used to produce a simulated output array from the second half of the 

data-set. 

• Each output vector (row in the output array) was converted to a growth phase 

classification by choosing the output with the largest (positive) value. 

• The resulting classification vector was compared with the actual growth phase data 

to evaluate the success of the model. 

 

Note that, for this growth phase data set, the data were randomly reordered (unlike 

those in the previous chapter). This was done for two main reasons:  

 



Chapter 4: System identification of growth phase data   
 

 67

a) To give a more realistic indication of how well the models could perform on real 

world data. 

b) To enable cross validation testing. Unlike the experiment in the previous chapter, 

the different classes are not distributed evenly (with time) through the data-set. 

Thus training the model on the first half of the data and testing on the second half 

would be nonsensical, since only growth phases 1 and 2 would be ‘seen’ by the 

model training algorithm, so it would be impossible to get useful results when 

testing the model on data corresponding to phases 3 and 4. 

 

 

4.3.1 MIMO models for static sensor responses 

 

As with the strain identification experiment of the previous chapter, fairly low order 

models were found to produce the best compromise between model simplicity and 

success rate. The exact order used varied across the 16 pre-processed data sets (choice 

of two bacteria cultures, four algorithms, each one subsequently normalised or left 

unchanged) varied between one and four. 

 

For the Toxic 1 bacteria the most successful of the pre-processing algorithms was the 

relative difference algorithm, not normalised, producing a success rate of 78.6% using 

a model of order four. For the Toxic 2 bacteria, the success rate was highest (82.3%) 

using the static difference algorithm, again not normalised, this time using a model of 

order three. For the results using other pre-processing algorithms see Table 4.1. 
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 Percentage successful classification using pre-processing algorithm: 

Data set: Absolute 

response 

Difference Fractional 

difference 

Relative 

difference 

Toxic 1 66.1 75.7 78.1 78.6 

Toxic 1 

(normalised) 

70.2 68.5 73.9 77.5 

Toxic 2 67.3 82.3 81.4 78.9 

Toxic 2 

(normalised) 

67.5 80.3 75.2 77.7 

 

Table 4.1 The success rates for FIR MIMO models of orders between one and four for 

static (pre-processed) data from the growth phase experiment. The percentages are 

averages over 10 different random reorderings using two-fold (50%) cross-validation. 

 

Notice that, as with the strain identification experiment discussed in the previous 

chapter, the normalisation process reduced the success rate slightly in most cases. This 

can be attributed again to the odour intensity being related to the cell count and hence 

growth phase. Also note that the absolute response pre-processing algorithm was 

markedly less successful than the other three algorithms. 

 

 

4.4 Dynamic sensor response models 

 

The MISO models for dynamic data from the bacterial strain identification experiment 

considered in  the previous chapter achieved considerable success. In this section we 

consider similar MIMO models applied to the bacterial growth phase data. 
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Figure 4.3 Plot showing the considerable long term variations in the output voltage 

from a single sensor over the whole (40 day) period of the growth phase experiment. 

There is clear evidence of diurnal peaks probably associated with the temperature of 

the biomass. The temperature of the room fluctuated daily. 

 

As with the models for static data in Section 4.3, the survey of MIMO model structures 

is restricted by the available computing algorithms and time constraints to FIR MIMO 

models of various orders. However, unlike the case for the strain identification 

experiment in the previous chapter, the appropriate method for preparing the data for 

the models is not obvious. As mentioned in Sections 4.2 and 4.3, the experimental 

procedure was such that the data-set obtained was effectively two data-sets interleaved. 

For the pre-processed (static) data this posed no real problem, however for the 

dynamic data, things are less straightforward. As with the static data, it was desirable 

to treat the data from the two cultures separately, but this necessitated splitting and 

reforming the data-set into two halves. The sensor values drifted significantly over the 

course of the experiment (see Figure 4.3) so, whilst splitting up the data-set into two, it 

was decided to shift each response segment to remove baseline drift in an analogous 
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manner to the ‘difference’ pre-processing algorithm for the static data. The effects of 

this ‘dynamic pre-processing’ can be seen in Figure 4.4. 

 

 
 

Figure 4.4 The upper plot shows a section of the output data from a single sensor for 

the growth phase experiment. The lower plot shows the same section after dynamic 

pre-processing to shift each response cycle and thus remove some of the effects of the 

baseline drift evident in the upper plot. 

 

Since the data were already being split up into individual response cycles, it was 

decided to also randomly reorder these response cycles to better simulate real-world 

application and facilitate fair comparison between the performances of the static and 

dynamic models. 

 

MIMO FIR models of various orders for these dynamically pre-processed data-sets 

were formulated, and the effects of  two different normalisation methods were 

investigated. The evaluation of each model was carried out as follows: 
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• The dynamic pre-processing method was applied to the original growth phase data-

set to produce two separate dynamic input data-sets (each being 180840 × 6) 

corresponding to the Toxic 1 and Toxic 2 cultures. 

• An output array (180840 × 4) was formed for each of the two cultures using the 

classifications gained from the CellFacts information. 

• The response  cycles of each data-set were randomly reordered. 

• If required, a normalisation process was applied to the input data. 

• A MIMO FIR model was trained on the first half of the set in question using 

Matlab. 

• The model obtained was used to produce a simulated output from the second half of 

the data-set. 

• The simulated output was sampled at the appropriate points, and the output vectors 

obtained were converted to a sequence of (274) classifications. 

• The sequence of classifications obtained was compared with the correct 

classifications to evaluate the success of the model. 

 

The above process was repeated ten times with different random reorderings, and the 

results averaged. 

 

One of the two normalisation processes investigated was the same as used in the 

previous chapter, where each data vector was scaled so as to have unit length. This 

constrains the position of the input vector in sensor space to move about on the surface 

of the six dimensional hypersphere (there were six sensors used), removing to some 

extent information regarding the intensity (or strength) of the odour and forcing the 

system to utilise instead information regarding the type (or note) of odour. The other 

normalisation process considered was to normalise (i.e. scale to unit length) only the 

input data vectors corresponding to the times when the bacterial headspace was 

sampled, leaving the data vectors corresponding to the headspace samples from the 

(non-bacterial) control vessel (containing only the nutrient medium) in their original 

form. The latter normalisation process consistently produced superior success rates to 

those obtained using the former method. 

 



Chapter 4: System identification of growth phase data   
 

 72

FIR model orders between 1 and 20 were investigated and generally a model of order 

around 10 was deemed an appropriate compromise between model complexity and 

success rate. The success rates obtained with order 10 models are given in Table 4.2. 

 

 Percentage success rate for dynamically pre-processed data-set with 

 

Bacteria culture: 

no normalisation: normalisation of 

whole input data-set:

normalisation only 

during bacterial 

sampling: 

Toxic 1 40.4 45.3 61.5 

Toxic 2 52.2 61.9 76.6 

 

Table 4.2 The success rates obtained for 10th order FIR MIMO models for 

dynamically pre-processed and randomly reordered growth phase data. The models 

were trained on half of the data and tested on the remaining half, i.e. two-fold (or 50%) 

cross-validation was employed. 

 

 

4.5 Models for filtered dynamic data 

 

The dynamic pre-processing in the previous section achieved some success, but still 

considerably less than the equivalent static models or the neural networks used by 

(Shin et al. 2000). In this section the effects of filtering the dynamic data to remove the 

effects of both high frequency noise and low frequency drift / temperature are 

investigated. 

 

The Signal Processing Toolbox within Matlab contains functions facilitating the use of 

Butterworth filters to achieve the desired results. Initial estimates and investigations 

showed that low cut-off frequencies in the range 20 μHz to 0.2 mHz and high cut-off 

frequencies in the range 1 mHz to 50 mHz were appropriate. Low and high pass filters 

with cut-off frequencies in the ranges described above were tested using FIR MIMO 

models (order 10), with the intention of subsequently using a bandpass filter with the 

optimum low and high cut-off frequencies. The procedure for evaluating the efficacy 

of the different filtering strategies was similar to that used in the previous section. The 



Chapter 4: System identification of growth phase data   
 

 73

differences were that, prior to the random reordering process, the data were passed 

through a Butterworth filter (order 3), and subsequent to the reordering, only one tenth 

of the data was used for training (instead of one half), and one tenth for testing. This 

was to reduce processing time and enable a thorough search of the cut-off frequencies 

to be used. 

 

The results obtained using the models for filtered dynamic data were not as clear as 

might have been expected. The high pass filter was intended to remove the low 

frequency drift, associated mainly with diurnal temperature fluctuations. It was 

successful in doing this (see Figure 4.5). However, since the data were subsequently 

dynamically pre-processed in such a way as to correct for simple baseline drift, the 

high pass filtering appeared to have little overall effect on the successful classification 

rates of the systems. This should not be assumed to be a typical case. If the baseline 

drift were not removed by the particular form of dynamic pre-processing chosen, then 

the high pass filter could be expected to improve the success rates of the models. 
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Figure 4.5 The upper plot shows the output of sensor 1 over the whole period of the 

experiment. Significant low frequency drift is observable (mostly due to daily 

temperature fluctuations). The lower plot shows the sensor 1 data after being passed 

through a high pass filter with cut-off frequency 60 μHz. 

 

The low pass filter was intended to remove high frequency noise from the data. 

Examining the data before and after the filtering process showed that it did this 

effectively (see Figure 4.6). However, the results obtained did not show a significant 

increase in successful classification rate with filtered data compared with those 

obtained using non-filtered data. From this it could be concluded that the signal to 

noise ratio in the data analysed was sufficiently large that the high frequency noise was 

not a limiting factor for the success rates of the models. Again, this may not always be 

the case. With a different experimental set up operating under different conditions 

(especially in a field-based rather than laboratory-based application), there might be 

more significant high frequency noise present in the data. In such a situation it would 

not be unreasonable to expect the filtering to have a pronounced positive effect on the 

success of the models. 
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Figure 4.6 The upper plot shows the output of sensor 1 over a short period of the 

experiment. Some high frequency noise is observable. The lower plot shows the sensor 

1 data after being passed through a low pass filter with cut-off frequency 7 mHz. 

 

 

4.6 Conclusions 

 

The models for the growth phase identification experiment data were significantly less 

successful than those for the simpler strain experiment detailed in the previous chapter. 

The static data from the experiment were randomly reordered to simulate real-world 

applications (and also to avoid the fact that if the data had not been reordered then the 

model would have encountered a training set consisting of all the phase 1 data points, 

followed by all the phase 2 data points etc.). Successful classification rates of up to 

82.3% were obtained with the static data. This compares with 95.1% obtained 

elsewhere (Shin et al. 2000) using an LVQ artificial neural network. 
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The models for dynamic data were considerably less successful than those for static 

data. Although a maximum success rate of 76.6% was achieved using one particular 

data-set with one of the normalisation techniques considered, this success was not 

repeated using the alternative data-set (where a maximum of 61.5% success was 

achieved). The use of high and low pass filters to remove low frequency drift and high 

frequency noise present in the dynamic data was considered but not found here to 

produce significant improvements in classification performance. It is noted however, 

that for other experimental systems operating under different conditions, the filtering 

process may prove useful. 

 

The lack of success of linear black box techniques (for both static and dynamic data) to 

identify growth phase in comparison to non-linear neural network techniques (Shin et 

al. 2000) may be attributed to the fact that the models used here are linear in nature, 

whilst the processes being modelled are clearly not. Only FIR models were 

investigated for the growth phase data due to the computational demands of more 

complex model structures when dealing with very large data-sets. It is possible that 

more complex model structures (such as ARX, MAX, ARMAX etc.) may be capable 

of producing better results, although these are still linear model structures so will still 

have some of the same limitations. 

 

Possible future work includes the application of non-linear system identification 

techniques to similar data, and work to produce a parameter estimation algorithm that 

uses the same criterion as that used for evaluation of the models. 

 

In conclusion, it has been shown that simple linear black box (inverse) models for an 

electronic nose system can be employed for growth phase classification of 

cyanobacteria, with moderate success. However, for the complex problem considered 

in this chapter, the simple models could not produce results that were able to compete 

with those achieved with artificial neural techniques. This contrasts with the results of 

the previous chapter where it was shown that for simpler classification problems the 

black box models could match the non-linear neural network techniques. The black 

box models still hold the advantage that they require less computing power to 

implement, and thus could be attractive for use in applications where processor power 

is at a premium (e.g. a handheld instrument with a 8-bit PIC microcontroller). Future 
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refinements of the techniques could make them suitable even for challenging 

classification problems such as the one considered here. 
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Chapter 5  
The experimental electronic nose system 
 

The data for the previous chapters came from experiments involving very complex 

odours (i.e. odours containing many different chemical components). For the empirical 

black-box modelling techniques considered thus far, this complexity presents no 

difficulty. However, for the physical models of the following chapters, which seek to 

describe the ways in which the analytes interact with the sensor materials, it is 

preferable to work (at least initially) with simpler analytes. For this reason an 

experimental electronic nose system was constructed, enabling experiments to be 

carried out on demand with a range of analytes, and under a range of operating 

conditions. This facilitated the collection of a range of high quality data sets for 

validation of mathematical models for single analyte or simple mixture sensor 

responses. This chapter details the nose system used. 

 

 

5.1 Overview of the system 

 

A simple schematic of the electronic nose system is given in Figure 5.1. The system 

was essentially composed of the following components: 

 

• sample containers 
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• computer-controlled gas delivery system 

• sensor chamber containing four metal oxide gas sensors, plus a temperature 

sensor and a humidity sensor 

• an external unit containing a gas flow sensor and a sensor to monitor ambient 

temperature 

• interface electronics, and 

• a personal computer (PC) to run software which controlled the operation of the 

gas delivery system and recorded the outputs of the interface electronics. 

 

Each component is discussed in more detail in the following sections. The hardware 

system was designed and assembled in-house, by Professor Julian Gardner, Doctor 

James Covington, Ian Griffiths, and with small modifications by myself. For a 

photograph of the whole system in operation, see Figure 5.2. 

 

 

 

 

 

 

 

 

 

Sample 
containers 

Chamber 
unit 

Monitor 

Personal computer 
Interface 

unit 

Figure 5.1 A schematic of the main components of the electronic nose system. 
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Figure 5.2 A photograph of the nose system in operation. 

 

 

5.2 The sample containers and gas delivery system 

 

The samples were held in up to four glass containers, held in a dry-block heater. Note 

that the analytes used were invariably sufficiently volatile at room temperature, that 

heating of the samples was not required. The lids of the sample containers were each 

drilled with two holes. To each sample pot lid, a check (i.e. one-way) valve was fitted 

to the inlet hole (to prevent headspace degradation and exposure of operators to 

potentially hazardous fumes). PTFE tubing (approximately 1 mm internal diameter) 

connected the outlet hole to a four-way valve block situated on top of the interface 

unit. The valve block consisted of a block of PTFE, drilled out to accept four solenoid 

valves (connected to, and controlled by, the computer via the interface unit). The block 

had four inlet holes – one each for the four outlet tubes from the sample containers, 

and a single outlet hole. Further tubing connected the outlet hole (through a throttle 

valve and a gas flow sensor) to a Y connector above the sensor chamber. The other 

branch of the Y connector was left open to allow mixing of the analyte gas and air. At 

the base of the sensor chamber was a pump sucking the gases through the system. The 
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exhaust of the pump was vented via pipes to the atmosphere. A schematic of the gas 

delivery system is given in Figure 5.3 and a photograph is given in Figure 5.4. 
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Figure 5.3 A schematic of the gas delivery system. 

 

 

Figure 5.4 A photograph of the gas delivery system. 
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5.3 The chamber unit 

 

The chamber unit contained a brass chamber (approximately 6 cm in diameter, 9 cm 

high) mounted on a PTFE base. Mounted on the PTFE base were four tin oxide gas 

sensors, a temperature sensor and a humidity sensor. The sensors used were: 

 

• Alpha MOS P.40.1 

• Alpha MOS P.A.2 

• Alpha MOS T.70.2 

• Alpha MOS T.30.1 

• Temperature: LM35CZ 

• Humidity: Panametrics MiniCap 2 

 

It should also be noted that the chamber was also capable of holding two conducting 

polymer gas sensors, though these were not present for the experiments conducted 

here. An air pump was mounted below the chamber, drawing gases through it, and 

exhausting through tubing leaving the unit. 

 

The chamber unit also contained interface electronics for the sensors in the chamber – 

including filters to suppress noise on the sensor outputs, and power supplies for the 

sensor systems and the pump. 

 

 

5.4 The interface unit 

 

The interface unit was manufactured in-house at the University of Warwick to a design 

by Professor Julian Gardner, James Covington and Ian Griffiths. The unit contained 

the following: 

 

• two power supplies, one for digital electronics and one for analogue 

electronics, 

• a valve interface card, which connected directly to the valve block described in 



Chapter 5: The experimental electronic nose system   
 

83 

 
 
 
 
 
 

section 5.2, 

• a sensor interface card, which contained interface electronics for up to six 

conducting polymer gas sensors (not used for the experiments considered in 

this thesis), and 

• further inputs and outputs to carry signals and power to / from the PC, the 

chamber unit, and the flow sensor / ambient temperature sensor unit. 

 

Mounted above the interface unit was a gas flow sensor (Honeywell AWM3100V) and 

a temperature sensor to monitor the ambient temperature (LM35CZ). 

 

 

5.5 The computer and controlling software 

 

The personal computer (PC) contained an Intel Pentium 133MHz processor, 96Mb 

RAM, and communicated with the interface unit via a National Instruments LPM-16 

interface card. The PC used the Microsoft Windows 98 operating system. 

 

The software to automatically control the operation of the valves, and record the 

outputs of the sensors was written by myself (with a portion of the program adapted 

from software previously written by James Covington) using Labview 5. A photograph 

of the output display of the software is given in Figure 5.5. 
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Figure 5.5 The system control software in operation. 
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5.6 System operation 

 

The software was designed to enable the continuous operation of the nose system for 

repeated sampling of the headspaces of a maximum of four samples in rotation, with 

one of the four samples usually being left empty to provide the baseline. The standard 

mode of operation then consisted of the following automatically repeated cycle: 

 

• Baseline sampling of ambient air via sample container number one, typically 

for several minutes (up to an hour) to ensure a stable baseline reading 

• Sampling of sample container number two for a short period of time (typically 

around 30 seconds to one minute). 

• Long baseline sample. 

• Sampling of sample container number three. 

• Long baseline sample. 

• Sampling of sample container number four. 

 

5.7 Example outputs 

In Figure 5.6, the response of sensor 1 to repeated inputs of acetone and isopropyl 

alcohol is plotted over a 13 day experiment. This shows the long term variations 

observed. In Figure 5.7, data from a shorter time period are plotted, showing the 

different responses to the two analytes. 
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Figure 5.6 Plot showing the response of sensor 1 to repeated inputs of acetone and 

isopropyl alcohol over a 13 day period. 
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Figure 5.7 Plot showing the response of sensor 1 to exposure to first acetone, then 

isopropyl alcohol. 
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Chapter 6  
Differential equation models for 

electronic noses 
 

The work detailed in the previous chapters involved data-based models, the structures 

of which were selected on a purely empirical basis. There was no physical justification 

or motivation for the models used – they were chosen purely for their simplicity of 

implementation and observed efficacy when tested on experimental data. In this and 

the following chapters, a contrasting approach to tackling the modelling problem is 

employed. Physical models for electronic nose systems are proposed, then translated 

into mathematical models (systems of nonlinear ordinary differential equations). These 

models are then analysed and utilised in a classification system.  

 

In this chapter, a general framework for (mechanistic) mathematical models of the 

whole electronic nose system is proposed. The practical usefulness of such models is 

discussed, and the concept of identifiability of such models is introduced. 

 

 

6.1 Physical models versus empirical models 

 

The potential advantages of physically-motivated mathematical models over data-

based empirical models are numerous. Experimenting exhaustively with different 
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model structures can only provide limited information concerning the reasons why 

some structures perform better in certain circumstances than others. Thus when 

considering a new experimental situation, the modeller might not be able to predict 

which models will be most suitable without performing extensive computational 

experiments. If the models being used are based on a physical model for the system, 

then subsequent changes to the system or the experiment can be incorporated as simple 

modifications to the existing models. So physical models can be more versatile in their 

application. 

 

There is also a limit as to how well the types of data-based models that have been 

hitherto employed can describe a complex system such as those encountered here. The 

investigations in the previous chapters have utilised only linear time-invariant black-

box models for the electronic nose data. The systems in question are essentially 

nonlinear in their behaviour. Thus it would be naïve to expect a linear model to 

perform well over a range of situations. Nonlinear black-box modelling techniques 

could be applied with potentially more success than their linear counterparts, but there 

would still be the issue of deciding upon the functional forms to employ, which would 

have to be done exhaustively without any physical knowledge to provide guidance. 

 

The use of an accurate physical model to produce a mathematical model for the system 

could be considered a short-cut to the best (or at least a much better) modelling 

outcome. The systems to be modelled are of course not actually black-boxes, where the 

processes occurring are hidden and unknown to the modellers, rather they are physical 

and chemical processes which are (to some extent) understood and so can be described 

by differential or algebraic equations. This knowledge can be employed to produce 

models which are not only superior in terms of their performance in use but also in 

their extensibility and versatility, and which contain parameters of physical 

significance. 

 

 

6.2 Nose system models 

 

With the black-box models of the previous chapters it was possible to deal exclusively 

in what were referred to as inverse models for the system (see Section 3.1), which are 
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then immediately usable as an  odour classification system. However, with physical 

models it is not (normally) possible to jump straight to an inverse model – instead 

forward models for the system are proposed and validated. These forward models can 

then be utilised within an odour classification system in a number of ways which are 

discussed later in this chapter. 

 

An electronic nose system, although essentially a simple device, consists of a number 

of different components which determine the relationship between the odour input at 

one end of the system, and the data output (either raw data or an odour class in the case 

of a complete classifying nose system) at the other end. A forward dynamic model for 

an electronic nose system must include models of the four major components of the 

nose system detailed in Figure 6.1. These submodels must then be combined into a full 

system model that describes the behaviour of the nose system. 

 

 

 Odour 
generation 

Odour 
transport 

Sensor 
response 

Interface 
electronics 

1 2 3 4 

 

 

 

Figure 6.1 Diagram showing the four main components of a (physical) forward model 

of an electronic nose system. 

 

The roles of these four main components in both the physical nose system and models 

for it are discussed below. 

 

 

6.2.1 Odour generation 

 

The first component in a model for an electronic nose system must deal with how the 

odour to be examined is produced. The particular application or laboratory operating 

conditions will determine the way in which the odour to be sampled is generated and 

maintained. 
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The simplest model for the odour generation stage of the process would be one in 

which the odour sample is drawn from an effectively limitless supply of a sample that 

produces a constant odour concentration. Thus the strength and composition of the 

odour is constant with respect to both time and other variables such as the ambient 

temperature or temperature of the sample (which may or may not be the same). 

 

The above physical model may be sufficiently realistic for some applications, but for 

many it would not. In environmental monitoring, the sample is often drawn from an 

effectively very large, well-mixed headspace (e.g. the air outside). Thus the removal of 

the (small) sample will have little or no effect on the concentration of the remaining 

odour gases in the headspace. However, in laboratory tests, samples are often held 

within fairly small sealed containers, so the removal of the sample can significantly 

affect the concentration of the odour remaining in the sample container (see Figure 6.2 

for plots illustrating this issue). If the flow rate of the sample delivery system is small 

relative to the volume of the headspace above the sample, and the sample itself is fairly 

volatile at the operating temperature used, then this may not be a problem, since the 

headspace may remain almost entirely saturated (known as a static headspace). 

However, this will not always be the case, and if it is not, then the resulting dynamic 

variations in the concentration of the gases in the headspace must be modelled. In the 

extreme, the concentration falls to a lower limit known called the dynamic headspace 

(see Figure 6.2d). 
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Figure 6.2 Illustrative plots of artificial data to show the vital differences between 

sampling from an (ideal) static headspace (plots (a), (c) and (e)) and sampling from a 

headspace which is significantly altered by the outflow of gases initiated by the 

sampling process itself (plots (b), (d) and (f)). 

 

In most applications, over short timescales, the ambient temperature and temperature 

of the sample (often more or less the same, certainly related to some extent) would not 

be expected to vary significantly. However, for longer term experiments, variations in 

the temperature might be significant, and may strongly affect the rate of evaporation 

and saturation concentration of the odour gases. In this case, a model for the odour 

generation which includes these variations must be used. 

 

In order to show the range of parameters or variables upon which the odour headspace 

concentrations depends we state that a general form for a model for the odour 

generation stage of the process might be as follows: 
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( )C f t T T Q p ph s a h a s
= 1 ; , , & , , ,           (6.1) 

 

where Ch is the concentration of analyte in the headspace of the sample vessel (more 

specifically: at the gas sample extraction point in the sample vessel), f1 is some 

function, Ts is the temperature of the sample, Ta is the ambient temperature,  is the 

gas flow rate through the headspace of the sample, 

&Qh

p
a
 is a vector of parameters 

relating to the physical properties of the analyte and p
s
 is a vector of parameters 

relating to the physical dimensions of the sample vessel. The parameters Ts, Ta and  

may be time varying, whilst the parameter vectors 

&Qh

p
a
 and p

s
 will be constant for a 

given analyte and physical system. 

 

So, for example, the simplest usable special case of equation 6.1 would be the case 

where the headspace is static: 

 

C kh = 1 ,     (6.2) 

 

where k1 is a constant. For this model, the parameters Ts, Ta and  are assumed to be 

either constant for the duration of the experiment, or at least to have no discernible 

effect on the value of C

&Qh

h. As mentioned above, these assumptions may be valid given 

certain operating conditions. This simple model corresponds to the ideal (static) 

headspace scenario depicted in Figure 6.2(a). 

 

If the analyte is not very volatile at the operating temperature, or the flow rate is high 

relative to the volume of the sample vessel then the headspace of the sample will not 

remain saturated once the gas system valves are operated and the odour gas(es) are 

drawn from the headspace. In this case, a simple dynamic model for the odour 

generation may be employed to describe how the headspace concentration might vary 

with time as the odour is sampled: 

 

Assume that the headspace is initially saturated (concentration Chs), and the flow rate 

through the headspace is zero. Assume that at t = 0, the system valves are switched 

over and the flow rate jumps instantly to a new constant rate . The volume of the &Qh
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headspace is assumed to remain fixed throughout (so the volume of liquid sample is 

not substantially changed by the evaporation from it). The temperature of the sample 

(including headspace) is also assumed to be constant for the duration of the 

experiment. The rate of evaporation is assumed to be proportional to the difference 

between the concentration of odour gas in the headspace and the reference saturation 

concentration Chs (with constant of proportionality ke). The gases in the headspace are 

assumed to be well mixed at all times. Then, the concentration of the odour gases Ch in 

the headspace could be modelled by the expression: 

 

( ) { }( )C t C k
Q k

k
Q k

Q k th hs
e

h e

e

h e
h e=

+
+ −

+
⎛
⎝
⎜

⎞
⎠
⎟ − +

⎧
⎨
⎩

⎫
⎬
⎭

& & exp &1 .  (6.3) 

 

See Appendix 1 for the derivation of this expression as the solution of a first order 

ODE. The form of this expression matches the shape of the curve given in Figure 

6.2(b). 

 

Note that the assumptions above are highly valid for the experimental test system used 

to collect data for the model validation in the subsequent chapters. The choice between 

the models of equation (6.2) and (6.3) must be made based mainly on considerations of 

desired model simplicity, and volatility of analyte at the operating temperature. 

 

However, it should also be noted that without some external means of identifying the 

parameters Chs and ke (e.g. from the chemistry literature, or via mass spectrometry 

experiments) the above model may be of limited practical use since the nose system 

cannot be used to measure Ch directly. Hence the parameters would need to be 

estimated concurrently with those in the other submodels of the full system model 

being considered. 

 

For further extension of the model to allow greater versatility of application, it would 

be necessary to incorporate the effects of temperature variations on the parameters. 

Clearly the saturated headspace concentration value Chs and the evaporation coefficient 

ke could be expected to depend quite significantly on the temperature of the sample, 

and also perhaps the ambient temperature (since this would dictate the temperature of 
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the carrier gas). For example, it could be assumed that the saturated headspace 

concentration Chs is approximately given by 

 

C A
H
RThs

m e

s

= −
⎛
⎝
⎜

⎞
⎠
⎟exp , ,     (6.4) 

 

where A is a constant, Hm,e is the molar enthalpy of evaporation of the analyte, R is the 

gas constant, and Ts is again the (absolute) sample temperature. 

 

 

6.2.2 Odour transport 

 

The second component in a model of an electronic nose system must deal with how the 

odour is transported from the sample to the odour sensors. In some systems this might 

be simple to deal with, since the sensors might be physically very near to the sample, 

and the transfer of the odour from the sample to the sensors may be almost 

instantaneous. In other systems (such as the system described in Chapter 5), the odour 

gases are transported to the sensors via a system of pipes and computer-controlled 

valves, culminating in a sensor chamber having a significant volume. A system such as 

this will certainly introduce a time delay into the system, which must be modelled, and 

will be dependent on the gas flow rate through the system. A more accurate model for 

the odour transport system would include mixing and diffusion effects in the pipe (at 

the odour ‘front’) and in the sensor chamber. 

 

Thus a general expression for the odour transport stage might be: 

 

( )( )C f t C t Q Q T T T p pa h h c a s c a g
= 2 , ; & , & , , , , , ,   (6.5) 

 

where Ca is the concentration of analyte in the air immediately above the sensor 

surface, Ch(t) is the concentration of analyte drawn from the sample vessel (see 

previous section),  is the gas flow rate through the headspace of the sample vessel, 

 is the gas flow rate through the sensor chamber, T

&Qh

&Qc a is the ambient temperature, Ts is 

the sample temperature, Tc is the chamber temperature, 
a

p  is a vector of parameters 
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relating to the physical properties of the analyte and 

g
p  is a vector of parameters 

relating to the physical dimensions of the various components of the gas delivery 

system. The parameters , , T&Qh
&Qc a, Ts and Tc may be time varying, whilst the 

parameter vectors p
a
 and p

g
 will be constant for a given analyte and physical system. 

 

The simplest special case of equation (6.5) would be that where Ca is equal to Ch, i.e. 

 

( ) ( )tCtC ha = .         (6.6) 

 

This would be unrealistic except under very specific conditions (for example when the 

temperatures are constant and the flow rates are constant and high (so that there is no 

detectable delay induced by the time taken for the odour front to travel along the gas 

system), and the physical characteristics of the system were such that no significant 

diffusion effects could be observed as the odour front arrives at the sensor array). A 

more realistic (and still simple) model would be to incorporate a time delay to reflect 

the physical characteristics of the system thus: 

 

( ) ( )τ−= tCtC ha .          (6.7) 

 

Now, equation (6.7) more accurately describes the characteristics of the odour 

transport system but the value of the delay τ must depend not only on fixed (for a 

given experiment) aspects of the system such as the lengths of pipework and analyte 

being sampled, but also on variables (or at least time-varying parameters) such as the 

flow rates and temperatures in the system. If diffusion at the odour front in the 

pipework was neglected, then the time delay τ might be expected to be inversely 

proportional to the gas flow rate through the system. However, due to the specific 

physical characteristics of the system in question, the situation is not quite so 

straightforward, as explained below. See Figure 6.3 for a diagram of the gas system 

used in the electronic nose system (described in greater detail in Chapter 5). 
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Figure 6.3 Schematic of the gas system of the electronic nose. 

 

There are three different sections of the gas system, which have different gas flow 

rates. Firstly there is the main air intake (upper left in Figure 6.3), the flow rate through 

which is denoted by . Next there is the gas flow through the sensor chamber itself, 

denoted by , and lastly the flow rate through the sample delivery system (and hence 

headspace of sample), .  

&Qi

&Qc

&Qh

 

Thus the time delay τ must be split into two components, the time taken for the odour 

front to travel through the headspace section (from the sample vessel to the ‘Y’ piece 

above the sensor chamber), τh, and the time taken for the odour front to pass through 

the chamber section (from the ‘Y’ piece to the sensors themselves), τc. Then the total 

time delay is given by 

 

τ τ τ= +h c .     (6.8) 

 

Now, if the volume of the headspace section (Vh) and the (effective) volume of the 

chamber section (Vc) are known, then the time delay τ can be written in terms of these 

and the relevant flow rates: 

 

τ = +
V
Q

V
Q

h

h

c

c
& & .     (6.9) 
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To (at least partially) confirm this relationship, an experiment was performed using the 

experimental test rig detailed in Chapter 5. The headspace flow rate  was varied 

from 10 to 95 ml/min and the corresponding delays (values of τ) were recorded. Note 

that the headspace flow rate ( ) was varied by the adjustment of the throttle valve 

shown in 

&Qh

&Qh

Figure 6.3. The chamber flow rate ( ) was assumed constant. This 

assumption is valid since estimates for τ

cQ&

c vary only between about 0.86s and 0.94s as 

 varies between zero and 100 ml/min, due to the nature of the gas system (i.e. when 

the throttle valve is closed, more gas is simply sucked in through the air intake instead 

of through the odour delivery system). Thus the assumed relationship between the time 

delay τ and the headspace flow rate  reduces to 

&Qh

&Qh

 

c
h

h

Q
V

ττ +=
&

.             (6.10) 

  

The data recorded are plotted in Figure 6.4, along with a curve fit of the form in 

equation (6.10), produced using Matlab. The estimated value for Vh is 69.41ml, and the 

value for τc is 0.8709s. The curve fits the experimental data reasonably well, indicating 

that for the particular set-up (in terms of equipment used and flow rates selected), a 

very simple model for the relationship between the flow rate and time delay is 

acceptable. 
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Figure 6.4 Plot showing the relationship between the headspace flow rate  and the 

observed time delay in the odour transport system. 

&Qh

 

Equations (6.6) and (6.7) above are based on the assumption that the odour gas travels 

through the system via ‘plug flow’, i.e. a sharply defined odour ‘front’ travels through 

the pipework, valves and  sensor chamber at a rate determined by the flow rate of the 

carrier gas. Thus it is assumed that any diffusion of this odour front within the odour 

transport system is negligible. At high flow rates this may seem sensible, since the 

transport of the odour front due to the pumping of the carrier gas will be occurring 

much faster than any diffusion effects. However, at low flow rates, this may not be the 

case. 

 

The diffusion in the pipework at the (travelling) odour front can be modelled using the 

one-dimensional diffusion (partial differential) equation: 

 

∂
∂

∂
∂

u
t

c u
x

= 2
2

2 ,     (6.11) 
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where u is the odour concentration, t is time, x is position along the pipework 

(measured from an origin which is in fact moving along the pipe at constant speed, 

corresponding to the position of the odour front if it were travelling via plug flow) and 

c is a diffusion coefficient, which will depend upon the analyte, the carrier gas and the 

temperatures of the various components of the system. Note that any friction with the 

walls of the pipework is neglected, as is any mixing through eddy currents / mixing 

etc., and the pipe is assumed to be of infinite length in both directions. 

 

Then, with the initial condition 

 

( )u x
x
x

,0
1 0
0 0

=
≤
>

⎧
⎨
⎩

         (6.12) 

 

the solution of equation (6.11) (for t > 0) is given by  [Kreyszig, 1988, p. 673] 

 

( ) ( )u x t z dz

x
c t

, exp= −
−∞

−

∫
1 2

2

π
.     (6.13) 

 

Or, equivalently 

 

( )u x t x
c t

, = −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1
2 2

1+ erf ,       (6.14) 

 

where erf is the error function (and x, t > 0). 

 

Some plots of equation (6.14) are shown in Figure 6.5, for various times, starting at t = 

0, where the odour profile (plot of odour intensity (or concentration) against distance 

along the pipe) is sharply defined, and evolving to more rounded profiles as time goes 

on. 
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Increasing time 

Figure 6.5 Plot showing numerical solutions of the diffusion equation at various times. 

The plots correspond to odour concentration profiles at the odour ‘front’ in the 

pipework, evolving from a sharp ‘plug flow’ situation at t = 0 to a shallower odour 

gradient at the front at later times. 

 

The model for diffusion in the pipework could be used to more accurately model a 

simple delay in the system (in situations where a simple (i.e. not involving diffusion) 

model does not suffice), or alternatively to provide a dynamic model for the odour 

concentration arriving at the sensor materials, which could be considered as an input to 

the models described in Section 6.2.3 below for the sensor responses. 

 

Note that for complex odours (i.e. those containing more than one chemical species), 

each component may have a slightly different diffusivity. So each component could 

have a slightly different odour profile at the odour ‘front’. However, for the purposes 

of the modelling here, each species will be assumed to have the same diffusion 

constant. This is for simplicity and due to the difficulty of accurately estimating the 

diffusion constants. 
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6.2.3 Sensor response 

 

The third component of a full system model would be a model for the response of the 

sensor array when exposed to the odour gases. This must consist in some way of a 

model for each of the sensors in the array, although each model may have an identical 

structure. The models for the responses of each sensor could, in their simplest form, 

depend only upon the concentration and composition of the odour being presented to 

the sensor. However, such a simple model could not be expected to function 

effectively in situations where other important variables are not held constant. So a 

comprehensive (and thus versatile) model for the sensor response must include such 

variables as the sensor operating temperature, the temperature of the sample gas, the 

humidity and flow rate of the sample carrier gas, and perhaps even the history of the 

sensor (i.e. the odours which it had previously been exposed to, some of which may 

have caused irreversible or slowly reversible changes in the sensor properties). 

 

A general expression for the sensor response (variation in conductance) might thus be 

given by: 

 

( )( )G f t C t Q T T T p p pa c a s c a g s
=

3
, ; & , , , , , , ,   (6.15) 

 

where G  is the vector of sensor conductances, Ca(t) is the concentration of analyte in 

the air immediately above the sensor surface,  is the gas flow rate through the 

sensor chamber, T

&Qc

a is the ambient temperature, Ts is the sample temperature, Tc is the 

chamber temperature, p
a
 is a vector of parameters relating to the physical properties 

of the analyte, p
g
 is a vector of parameters relating to the physical dimensions of the 

various components of the gas delivery system, p
s
 is an array of parameters relating to 

the physical characteristics and past history of the sensor array. The parameters , T&Qc a, 

Ts and Tc may be time varying, as may the parameter array p
s
, whilst the parameter 

vectors p
a
 and p

g
 will be constant for a given analyte and physical system. 
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Possible forms for the function f

3
 are many, and are the subject of subsequent 

chapters. 

 

 

6.2.4 Interface electronics 

 

The final component of the full system model for an electronic nose system is the 

model for the interface electronics. This section provides the link between the 

electrochemical changes occurring at the odour sensors and the data produced and 

recorded by the computer controlling the system. 

 

Typically (and in the case of the particular system considered here) the interface 

electronics are essentially very simple. They are designed to produce voltage outputs 

(which are sent to a data acquisition card in a PC) which are proportional to the 

resistances or conductances of the sensors. Electronic filters are used to reduce noise in 

the circuits. 

 

A general model for this final stage of the system could be given by the expression 

 

( )V f t G p
e

=
4

, ; ,     (6.16) 

 

where V  is the vector of voltage outputs from the system, G  is the vector of sensor 

conductances and p
e
 is a vector of parameters relating to the design and set-up of the 

interface electronics. 

 

The simplest (and perhaps only useful) model for the interface electronics would 

assume that the signal outputs of the (whole) system are directly proportional to the 

resistances of the sensors (and thus to the reciprocal of the conductances of the 

sensors), so that 

 

( )
( )

V t
k G ti

i i

=
1 ,          (6.17) 

 

 103



Chapter 6: Differential equation models for electronic noses   
 

 104

for i = 1 to n, where n is the number of sensors in the array, and the ki’s are constants. 

 

This may not be exactly true (since there are filters present in the electronic interface, 

as well as sources of noise), but there may not be much (if anything) to be gained from 

attempting to model the characteristics of the interface system. It is reasonable to 

assume that the delays and phase shifts of the electronics are negligible compared with 

the effects of the gas transport and sensor responses. 

 

 

6.3 Using (forward) models in an odour classification system 

 

The modelling process is not performed out of interest alone. The aim of this project is 

to produce algorithms or methods that can be utilised within an odour classification 

system. So whilst it is tempting to write down complex models incorporating terms 

and parameters to incorporate every conceivable mechanism affecting the system 

outputs, this is of little or no practical use. The models that are produced must in some 

way be usable in practice. 

 

There are a number of ways in which (forward) parametric models might be made 

useful for classification. The obvious way would be to invert the forward models to 

produce inverse models like those utilised in Chapters 3 and 4. These inverse models 

could then be used directly to produce odour classifications from nose system outputs. 

This is a fine idea in theory, though in practice only the very simplest of models tend 

to be invertible. There are two main approaches that could be taken to tackling the 

problem of producing a physically-motivated inverse model. 

 

The first approach would be to produce a system of differential equations describing 

the forward dynamics of the system, to solve the equations, then invert the solution to 

produce an analytical solution to the inverse modelling problem. This approach is 

unlikely to yield success here, since the models that will be produced will necessarily 

be systems of nonlinear ordinary differential equations. It is rare for such systems to be 

analytically solvable, and even rarer that solutions can be inverted. 
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The second approach would be to construct the model in an inverse orientation from 

the start, attempting to treat each of the components of a system model in turn, and 

model each backwards. This would be perfectly possible for some of the individual 

components of the full system (e.g. the interface electronics), but would be very 

difficult indeed for anything but the very simplest sensor response models. 

 

Inverting a forward model to produce an inverse model is not the only way of using it 

in a classification system. A more promising method is via parameter estimation 

techniques. Some of the parameters in a physical model will relate to the nose system 

itself (and thus be the same regardless of the analyte tested), and others will depend 

also on the interactions between the analyte and the sensors. Those in the latter 

category might be used to distinguish between different odours, provided that they can 

be extracted from system output data. 

 

Finally, even if it proves difficult or impossible to use forward models directly in the 

ways discussed above, the modelling process itself may provide insights into the ways 

in which the known physical mechanisms affect the outputs from nose systems. These 

insights may be useful for modification of the existing data / signal processing 

techniques in use. 

 

 

6.4 Identifiability and estimation of the parameters in ODE models 

 

As discussed in the previous section, the reliable estimation of the parameters in an 

ODE model is vital to the model’s usefulness in a classification system. The question 

of whether the parameters in a model can be estimated from experimental data 

(assuming that perfect noise free data are available) is addressed by the field of 

structural identifiability analysis. Once the parameters in a model are shown to be 

identifiable (i.e. they can in theory be estimated from the experiment performed), the 

problem of numerically estimating them in practice arises. 

 

Once a mathematical model for the electronic nose system is postulated, it is possible 

to use various different computer software packages, such as Facsimile (for details see 

http://www.mcpa-software.com), Berkeley Madonna (for details see 
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http://www.berkeleymadonna.com) or Matlab (for details see 

http://www.mathworks.com) to produce estimates for the parameters which best fit a 

sample of experimental data. However, these packages use optimisation / search 

algorithms to find a set of parameters that at least locally produces the best fit to the 

data. Thus they will invariably produce an answer, however there is no way of 

knowing whether or not this is the (globally) best parameter set to fit the data, or 

indeed if a single best parameter set exists. This is where identifiability analysis comes 

in. 

 

The concept of identifiability was first formalised in 1970 (Bellman and Åström 1970). 

Since then it has been formalised and studied by many. Broadly speaking, an 

identifiability analysis is some form of analysis which seeks to determine whether the 

parameters in a model could be estimated from particular experiments (assuming that 

perfect noise-free data were available from such experiments). There are a variety of 

methods employed to determine the identifiability of a model. Examples include the 

Laplace transform method (Godfrey and Chapman 1990) (for linear systems only), the 

Taylor series approach (Godfrey et al. 1982) (for linear and nonlinear systems) and the 

similarity transform approach (Vajda et al. 1989) (for linear and nonlinear systems). 

 

Regardless of the method used, the aim is to classify the model into one of three 

possible cases (Godfrey 1983): 

 

1. For any (with the exception of at most countably many) possible parameter set, 

the input-output behaviour produced by the model is unique to that parameter 

set. Thus there exists a single set of parameters which produce the input-output 

behaviour that can be observed from the experiment. Thus the parameters of 

the model can all be estimated uniquely from (perfect) experimental data. The 

model is then said to be globally identifiable. 

2. There exists a countable set of parameter sets which would produce the input-

output behaviour which could be observed from the experiment. In this case the 

model is said to be locally identifiable. 

3. There exist uncountably many parameter sets which would produce the input-

output behaviour which could observed from the experiment. The model is then 

said to be unidentifiable. 
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Clearly, if a model is unidentifiable, then it is of no practical use. Similarly if it is only 

locally identifiable then it may be of little use, although sometimes slight modifications 

to the model (Chappell and Gunn 1998) or the experiment (or indeed the consideration 

of extra information) may rectify the situation. Thus an identifiability analysis of a 

model really should be considered an essential prerequisite to experiment design and 

parameter estimation. To proceed with a model when it is not known whether or not it 

is identifiable is largely pointless, since no real confidence can be placed in any 

parameter estimations produced. 

 

Note that many forms of identifiability analysis do not take into account any 

limitations which may exist on the specific experiments which may be performed (in 

terms of the available inputs to the model). Rather they frequently assume the 

availability of all bounded measurable input functions. In the system considered here, 

this is definitely not the case. However, it is often possible to modify the analysis or 

make use of corollaries to the main theorems on structural identifiability to take this 

into account. 
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Chapter 7  
A reaction-based model for MOS 

sensors 
 

In this chapter, a realistic mathematical model is derived from an electrochemical 

reaction scheme. The reaction scheme used is known to be an accurate description of 

the mechanism for a simple analyte (in fact, this mechanism is for carbon monoxide 

(Windischmann et al. 1979)). Thus it is still a simplification of more complex reactions 

that occur with different analytes or combinations of analytes, especially so in the case 

of complex odours (which may contain a great number of different chemical species). 

 

 

7.1 Chemical reaction equations 

 

The electrochemical processes occurring within the bulk of a metal oxide film are 

described by the following reaction equations (Windischmann et al. 1979; Gardner and 

Bartlett 1999): 

 

[ ]1
2 2O e+ + ⋅−          [ ]O−              (7.1) 

k1f

k1b

 

[ ] [ ]O A AO e− −+ → + + ⋅              (7.2) 
k2
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where O is oxygen, e  is an electron, − [ ]⋅  is a vacant oxygen ion binding site 

(chemisorption) in the sensor material, [ ]O−  is an occupied oxygen ion binding site, A 

is the analyte (target molecule) and AO is the product of a reaction between A and O 

(e.g. CO2 if A is CO). The first stage in the reaction mechanism is known as electron 

abstraction, and the second as electron donation. 

 

 

7.2 Model assumptions 

 

In order to formulate a useful mathematical model based on the electrochemical 

reaction scheme, it is necessary to make certain assumptions about the sensors, the 

surrounding equipment (e.g. the gas delivery system, interface electronics etc), and the 

experiment. 

 

In the context of the whole system model approach discussed in Chapter 6, the 

necessary modelling assumptions can be attributed to the various components of the 

full model. 

 

Gas / odour generation and transport assumptions: 

 

• Both O2 and A are introduced to the chamber at piecewise constant rates (i.e. the gas 

flow rate into the chamber and its composition are constant (so the headspace 

composition is assumed static)). 

• A fixed fraction of the gas in the chamber is removed per unit of time elapsed (i.e. 

the gas flow rate out of the chamber is fixed). 

• The volume of the gas chamber is fixed (so the absolute numbers of gas molecules 

or concentrations of the gases may be used interchangeably). 

 

Sensor model assumptions: 

 

• The diffusion of the analyte A into the sensing material is sufficiently fast as to be 

considered instantaneous, and thus neglected. 
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• The volume of sensor material is fixed (so the absolute numbers of the species 

present in the bulk or concentrations of these species may be used interchangeably). 

• The number of chemisorption sites available to the oxygen is fixed. 

 

Interface electronics assumptions: 

 

• The mechanism by which a change in the number of conducting electrons produces 

a measured change in the resistance of the sensor material requires modelling itself. 

This mechanism is described in section 7.3. 

• The measured value is directly proportional to the resistance of the sensor material. 

i.e. the effects of any noise, filtering effects, delays etc. induced by the interface 

electronics are ignored. 

• The only species observed is the number of conducting electrons in the sensor 

material. 

 

The standard method of converting the above physical model into a mathematical 

model would involve applying the law of mass action to the electrochemical reaction 

scheme above. This would require an implied assumption that all of the gas molecules 

in the chamber are always available for reaction at the sensor surface / within the 

sensor material, and that the molecules are always well-mixed. This is clearly not an 

accurate description of what can occur in the chamber, since the sensor material 

occupies only a tiny fraction of the sensor chamber volume, and the gases are passed 

into the chamber at one end, and exhausted at the other. 

 

There are a number of ways of dealing with this problem in the mathematical model. 

The most accurate would be to incorporate the spatial effects into the model with 

partial differential equations (possibly even stochastic equations) to describe the 

diffusion of molecules in the chamber and quantify the ‘availability’ of the molecules 

based upon their proximity to the sensor. This would produce a very complex model 

which would be difficult to work with. The objective is to produce a much simpler 

model, which could be feasibly used in practice without requiring excessive computing 

hardware and software. 
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The simplest way of dealing with the potential inaccuracy of the model produced by 

blindly applying the law of mass action would be simply to ignore it, and proceed 

regardless. However, even ignoring the distastefulness of applying assumptions which 

are known to be wrong, it rapidly becomes clear that for any sensible estimates for the 

parameters, the system of differential equations produced is too stiff to be simulated 

reliably. Hence the model is very difficult to use in practice. 

 

A more plausible method would be to model the mixing and availability in the 

chamber via the following assumptions: 

 

• The chamber can be thought of as being split into two different regions: the main 

chamber itself, and a smaller ‘local region’ in the immediate vicinity of the sensor 

material. 

• Only molecules within the local region are available for reaction with / at the sensor 

material. 

• Gas molecules within each region are well-mixed at all times. 

• Gas molecules arriving into, and departing from, the chamber, do so only to / from 

the main chamber. 

• Molecules pass from each region to the other at rates proportional to the 

concentration difference of the species in question between the two regions. 

• The main chamber is very large compared with the local region, thus the 

concentration of gases in the main chamber is effectively unaffected by exchange of 

molecules with the local region. 

 

These assumptions are illustrated in Figure 7.1. Note that so far no assumptions have 

been made about the shape of the concentration profile within the chamber as the 

experiment progresses. By the assumptions above, this is dependent only on the gas 

flow dynamics from the headspace to the chamber. This is intentional to permit 

flexibility later on. 
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Diffusion 

Gas flow into chamber 

 

 

 

 

 

 
MOS sensor 

 
Local region  

 Main chamber 
 

 

 

 

 
Exhaust  

Figure 7.1 Diagram illustrating the model assumption with regards to the partitioning 
of the sensor chamber into a main region and a local region around the sensor. 

 

 

7.3 Mathematical model 

 

Let: 

 

Ax #1 =  in the local region, 
−= ex #2  in the sensor bulk, 

23 2
1# Ox =  in the local region, 

[ ]−= Ox #4  in the local region, 

AOx  #5 =  in the local region, 

[ ]⋅=#6x  in the sensor bulk and 

AOx #7 =  in the main chamber,   (7.3) 
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where # denotes ‘number of’. 

 

Now let the volume of the local region be vollr, the concentration of analyte in the main 

chamber be Can and the concentration of oxygen ⎟
⎠
⎞

⎜
⎝
⎛

22
1 O  be Cox. Then the number of 

analyte molecules passing into the local region from the main chamber in unit time is 

given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

lr
an vol

xC 1
1δ ,        (7.4) 

 

and the number of oxygen atoms passing into the local region from the main chamber 

per unit time is given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

lr
ox vol

xC 3
2δ ,        (7.5) 

 

where δ1 and δ2 are diffusion rate constants. The diffusion rates of the two species 

could be slightly different though they are assumed to be approximately equal. This 

allows simplification by setting 

 

anan Cr 1δ= ,      

 

oxox Cr 2δ=  and      

 

lrvol
q 1δ

= .        (7.6) 

 

Applying the law of mass action to the local region yields the differential equations 

describing the system (7.1) and (7.2): 
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     (7.7) 

 

The conductance of the sensor material is determined by the number of charge carriers, 

and their mobility, thus 

 

κμ neG e=              (7.8) 

 

where G is the conductance of the sensor, μe is the mobility of the conducting 

electrons, e is the charge on each electron, n is the number of available (i.e. charge-

carrying) electrons and κ is a constant relating to the dimensions of the sensing 

material. 

 

The variable n in equation (7.8) clearly relates directly to one of the species in the 

reaction scheme, and thus to one of the state variables in the corresponding 

mathematical model. However, the relative changes in n effected by exposure of the 

sensor to analytes are very small. The magnitude of the changes in the resistances of 

the sensors cannot be explained by the change in the number of charge carriers, thus 

they must be attributed to changes in the mobility of the electrons (Gardner 1991; 

Heiland 1982). The mobility of the electrons is strongly affected by even small 

changes in the number of charge carriers, via changes in the width of the depletion 

region at each grain boundary in the sensor material (Gardner 1991; Williams 1991). 

Thus the important term in equation (7.8) is μe, which is a function of the state variable 

x2. The n term in (7.8) is approximately constant. The recorded quantity is proportional 

to the resistance of the sensor. Consequently, the observation function can be written 

 

( )( ) ( ) κμ nex
pptxh

e 2

1,, = ,    (7.9) 
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The function μe, modelling the dependence of the electron mobility on the free electron 

concentration, could take many functional forms. Frequently, it is expressed as an 

exponential function of the intergranular barrier height. The function μe will be 

approximated by a linear function: 

 

( ) 22 xxe βαμ +=       (7.10) 

 

This then gives equation (7.9) the form 

 

( )( )
2

1,,
x

pptxh
βα +

= ,          (7.11) 

 

for suitable α and β. 

 
 

7.4 Decoupled model with only three equations 

 

The system of six ODEs (7.7) can be reduced by the application of conservation rules 

(or equivalently by inspection of the equations): 

 

• Conservation of charge: 042 =+ xx && , so eoxcxx =+ 42 , a constant. 

• Conservation of chemisorption sites: 064 =+ xx && , so Nxx =+ 64 , a constant. 

 

This decouples two of the six ODEs. Notice that 5x  and 7x  appear nowhere in the 

differential equations for any of the other ix ’s, and that neither are observed quantities. 

Thus the equations for 5x  and 7x  are largely irrelevant, so can be ignored. 

 

There remains a system of only three non-linear ODEs: 

 

( )
( ) ( ) ( )
( ) ( ) .32321213

2122321212

11221

xqrxcNxxkxckx

xcxkxcNxxkxckx
xqxxckrx

oxeoxfeoxb

eoxeoxfeoxb

eoxan

−++−−−=

−++−−−=

−−−=

&

&

&

  (7.12) 
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7.5 Steady states of full model 

 

To find the steady states for the model (7.12), set 0321 === xxx &&&  and then solve for 

1x , 2x  and 3x  to give the steady states . *
3

*
2

*
1  and  , xxx

 

Setting 01 =x&  gives: 

 

⎟⎟
⎠

⎞
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⎝

⎛
−−= q

x
r

k
cx an

eox *
12

*
2

1 .       (7.13) 

 

Setting 03 =x&  and substituting for  gives: *
2x
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11
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Now, setting 02 =x& gives: 

 
*
3

*
13210 qxrqxrxxx oxan +−−=−+= &&& ,    (7.15) 

 

which rearranges to 

 

*
1

*
3 x

q
rr

x anox +
−

= .     (7.16) 

 

Equating (7.16) with (7.14) gives 
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which rearranges to give the cubic equation 
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(7.18) 

 

The solutions to equation (7.18) (and hence steady states of the system (7.12)) can be 

found, but are very large expressions and thus difficult to analyse. However, 

knowledge of the likely relative sizes of some of the parameters can give us some 

information about the nature of the steady states. The parameter rox will be greater than 

ran, thus the constant coefficient (the last term in equation (7.18)) will be positive. The 

coefficient of  is positive (since each of the parameters is positive). The signs of the 

coefficients of  and  are not obvious. Hence Descartes rule of signs (Hall and 

Knight 1950, pp. 459-460) yields only that there can be either two or zero positive real 

roots of the cubic equation (7.18). Hence there are potentially two feasible steady 

states of the system (7.12). 

3*
1x

2*
1x *

1x

 

 

7.6 Initial conditions as steady states from odourless system 

 

In a typical experiment, the system is first allowed to reach an equilibrium whilst only 

air (the odour carrier gas) is pumped through the sensor chamber. Then valves are 

actuated to present the required odour to the sensors. The initial conditions for the 

system of ODEs (7.12) thus come from the steady states of the equivalent ODE system 

where there is no analyte present (i.e. the steady state where oxygen is present in the 

gas flow, but no odour, so that the chemical reaction described in equation (7.1b) is no 

longer occurring). 
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In the absence of analyte, equations (7.7) become: 
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Again (7.19) can be reduced using the conservation rules eoxcxx =+ 42  and 

Nxx =+ 64 . Then there remains a system of only two coupled differential equations: 

 

( ) ( )
( ) ( ) .32123213

2123212

xqxckxcNxxkrx

xckxcNxxkx

eoxbeoxfox

eoxbeoxf

−−++−−=

−++−−=
&

&
  (7.20) 

 

Now, to find the steady states of (7.20), set 032 == xx && . The steady states  and  

are: 
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However,  (since ), so there is only one feasible 

steady state, given by: 
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These values (plus the initial condition ) provide the initial conditions for the 

full model in (7.12). 

00
1 =x
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7.7 Model identifiability 

 

An identifiability analysis of the model given by equations (7.12) using the Taylor 

series approach is difficult due to the complexity of the expression for the initial 

condition for 2x . Instead the similarity transform approach for non-linear systems is 

used, as described in Chappell et al. 1990. 

 

In order to apply Corollary 1 of Vajda et al. 1989 later, it is required that the system 

has zero initial conditions. Thus, it is necessary to translate the state variables 

32  and xx . 
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The system can now be written in its general form as: 
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where , ( )321 ,, xxxx = ( )βα ,,,,,,,,, 211 qcNrrkkkp eoxoxanbf= . The functions f, g and h 

are given by: 
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(Note that the α in equation (7.25) is really different from that in equation (7.11) (in 

fact it takes the value ), but the symbol is kept the same for notational 

simplicity.) 

0
2xβα +

 

For typical electronic nose experiments the function u might take the form of a step 

input for a particular duration of time, i.e. 

 

( )
⎩
⎨
⎧

<
≤<

=
tT
Tt

tu
0

01
,     (7.26) 

 

for some T > 0. 

 

The similarity transform approach requires that the system in question be both 

controllable and observable (i.e. minimal). Lemma 1 in Vajda et al. 1989 states that if 

for a particular value p* of the parameter vector p the system becomes linear, and if 

this linear system is controllable and observable, then so is the corresponding nonlinear 

system. For the system above, it is possible to choose a p* so that the system is linear, 

however, this linear system is neither controllable nor observable. So the minimality of 

the system must be checked using the controllability and observability rank criteria 

(Chappell et al., 1990). 

 

 

7.7.1 Controllability rank criterion 

 

The following definitions and results are taken directly from Chappell et al., 1990. 
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For vector fields ϕ1 and ϕ2, the Lie bracket [ϕ1, ϕ2] is defined by: 

 

[ ]( ) ( ) ( ) ( ) ( ),2
1

1
2

21 x
x

xx
x

xx, ϕ
∂

ϕ∂
−ϕ

∂
ϕ∂

=ϕϕ     (7.27) 

 

where ( )
x

xi

∂
ϕ∂  denotes the Jacobian matrix of ϕi, i = 1, 2. For a piecewise constant 

control ui, the vector field ϕi is defined by: 

 

( ) ( ) ( ),xguxfx ii +=ϕ  i = 1, 2, 3,… .                     (7.28) 

 

Consider the Lie algebra f, which has elements which can be represented by finite 

linear combinations of elements of the form 

 

[ ][ ][ ][ ]LL ii ϕϕϕϕ − ,,, 121 .     (7.29) 

 

Note that g is in f. Let f (x) denote the space of vectors spanned by the vector fields of f 

at x. The system of equations (7.24) is said to satisfy the controllability rank criterion 

(CRC) at x0 if the dimension of f (x0) is n (n is the number of state variables, so in our 

case, n = 3) (Vajda et al. 1989) 

 

To check that the CRC is satisfied for our system, consider piecewise constant controls 

, then (since for our system, g is constant): 21 uu ≠

 

[ ]( ) ( )( ) ( )( )

( )

( )
( )
( ) .

0

,

0
222

0
222

21

21

2121

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−−−

−=

∂
∂

−=

+
∂
∂

−+
∂
∂

=

xxck
qxxck

uur

g
x
fuu

guxf
x
fguxf

x
fx

eox

eox

an

ϕϕ

   (7.30) 

 

So 

 

 121



Chapter 7: A reaction-based model for MOS sensors   
 

[ ]( ) ( )
( )
( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−−

−=
0

, 0
22

0
22

21
0

21 xck
qxck

uurx eox

eox

anϕϕ .   (7.31) 

 

The first and second co-ordinates of  [ϕ1, ϕ2](x0) are generically non-zero. 

 

Now, taking a third piecewise constant control u3, we consider the Lie bracket 

 

 

[ ][ ]( ) [ ]( ) ( ) ( )[ ]( )

( ) ( )( ) ( ) .
0010

000
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,,,,

0
22

2
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321
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∂
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⎟
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⎜
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⎛

−
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∂
=

xxc
k
qcxx

x
x
fguxfuukr

xx
x

xx
x

x

eox

eox

an

ϕϕϕϕϕϕϕϕϕ

       (7.32) 

 

Substituting initial conditions and expanding gives 

 

[ ][ ]( )

( )
( ) ( ) ( )

( ) ( )( ) (( )
( ) ( )( )

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−+−
−−−++−+−

−+−−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

−=
0
2

0
311

0
2

0
312

0
3

0
2

0
2

0
2

0
31

0
22

0
312

2

0
2

0
3

0
21

0
21

2

2

*
22

21
2

0
213

2
22

,,

xcNxkkxc
xkkxxqxxNxkxkqcxkkc

cxNxxkxckr
k
qxck

uukr

x

eoxfbeox

ffeoxfeox

eoxfeoxboxeox

an

ϕϕϕ

)

(7.33) 

 

Note that [ϕ3 ,[ϕ1, ϕ2]](x0) has (generically) non-zero components. Thus 

[ ] [ ][ ]{ }21321 ,,,,, ϕϕϕϕϕg  is a linearly independent set, and so dim(f (x0)) is 3. Thus the 

CRC is satisfied, and the system is controllable. 
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7.7.2 Observability rank criterion 

 

Again, the following definitions and results are taken from Chappell et al., 1990. 

Assuming the output function h(x) is continuously differentiable in x, the Lie 

derivative of h along the vector field ϕi is defined by: 

 

( )( ) ( ) ( ),xxdhxhL i
i ϕ⋅=

ϕ
     (7.34) 

 

where dh(x) denotes the gradient vector field: 

 

( ) ( ) ( ) .,,
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂
=

nx
xh

x
xhxdh K              (7.35) 

 

Consider the space of 1-forms dg whose elements are finite linear combinations of 

elements of the form: 

 

( )( )( )( )( )( )KK xhLLLd ii 11 ϕϕϕ − .     (7.36) 

 

Note that dh(x) is in dg. Let dg(x) denote the space of vectors obtained by evaluating 

the elements of dg at x. The system of equations (7.24) is said to satisfy the 

observability rank criterion (ORC) at x0 if the dimension of dg (x0) is n (Vajda et al. 

1989). 

 

To check that the ORC is satisfied for the system in question, first consider dh(x): 

 

( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

β+α
β

−= 0,,0 2
2x

xdh .     (7.37) 

 

Note that dh(x0) ≠ 0. Now, let u1 = 0, so that ϕ1 = f(x), then 
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( )( ) ( ) ( )

( )
( ) ( )( )( ) ({ }.0

2212
0
22

0
33

0
221

0
2212

2

1

xxcxkxxcNxxxxkxxck
x

xfxdhxhL

eoxeoxfeoxb −−+++−++−−−
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=⋅=
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)
 (7.38) 

Thus 

 

( )( )( )
( )

( )( ) ( )( )( )[ ]
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xck
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eoxf

eoxfeoxb

eox

ββαβα
αα

β
ϕ

 

(7.39) 

 

Now, all three components of ( )( )( )01 xhLd
ϕ

 are generically non-zero, so dh(x0) and 

( )( )( )01 xhLd
ϕ

 are linearly independent. 

 

Let u2 ≠ 0, then ϕ2 = f(x) + u2g. Expressions for ( )( )( )xhLL 12 ϕϕ
, ( )( )( )( )xhLLd 12 ϕϕ

 and 

( )( )( )( )012 xhLLd
ϕϕ

 are then readily obtained using Mathematica (see Appendix 2). The 

expressions are not displayed here since they are far too large to be informative. 

 

In order to check that the ORC is satisfied, it must be shown that , ( )0xdh ( )( )( )01 xhLd
ϕ

 

and ( )( )( )( )012 xhLLd
ϕϕ

 are linearly independent. To do this it is only necessary to show 

that the ratios of the first to third components of ( )( )( )01 xhLd
ϕ

 and ( )( )( )( )012 xhLLd
ϕϕ

 

are not the same. It is easily checked using Mathematica that this is indeed the case 

(see Appendix 2) (in fact, the ratio of the components of ( )( )( )( )012 xhLLd
ϕϕ

 depends 

upon parameters which do not even appear in ( )( )( )01 xhLd
ϕ

). Thus the three vectors are 

linearly independent, so their span has dimension three, and the ORC is satisfied. Thus 

the system is observable. 
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7.7.3 Identifiability analysis 

 

 125

]
Now that the minimality of the system has been established, the identifiability analysis 

can proceed. Let , the set of bounded measurable functions defined on a 

time interval [0,T]. Let  denote that the parameter values p and  in Ω are 

indistinguishable in the experiments 

[ TUu ,0∈

pp ~~ p~

( ) [ ]( )TUpx ,0,0 . The system is globally 

identifiable at  if  implies that Ω∈p pp ~~ pp ~= , and it is locally identifiable if there 

exists an open neighbourhood W of p in Ω such that  for p in W implies that 

. Now, in order to establish the identifiability of the system, use is made of the 

following theorem (statement taken from Chappell et al. 1990, proof to be found in 

Vajda et al. 1989). 

pp ~~

pp ~=

 

Theorem 1 

 

Assume that the system of equations (7.20) is locally reduced at x0(p) for almost all p 

in Ω. Consider the parameter values of p,  in Ω, an open neighbourhood V of xp~ 0(p) 

in Rn, and an analytical mapping  defined on  such that nV R→λ : nV R⊆

 

(i) Rank ( ) n
x
x

=
∂
λ∂

~
~

 for all Vx ∈~     (7.40) 

(ii) ( )( ) ( )pxpx 00
~ =λ       (7.41) 

(iii) ( )( ) ( ) ( )pxf
x
xpxf ~,~

~
~

,~
∂
λ∂

=λ              (7.42a) 

( )( ) ( ) ( pxg )
x
xpxg ~,~

~
~

,~
∂
λ∂

=λ        (7.42b) 

( )( ) ( )pxhpxh ~,~,~ =λ         (7.42c) 

 

for all Vx ∈~ . Then there exists T > 0 such that the system of equations (7.24) is 

globally identifiable at p in the experiments ( ) [ ]( )TUpx ,0,0  if and only if conditions 

(i), (ii) and (iii) imply that pp ~= . 

 

Now, since we do not have access to all bounded measurable controls for the 

experiment, Corollary 1 of  Vajda et al. 1989 must be employed, which states that 
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Theorem 1 extends to systems with specified controls and zero initial conditions 

provided that the following conditions hold: 

 

(i) ( ) ( )pbpxg =, ; that is, the input is multiplied by a constant vector b. 

(ii) ; that is, with no input, the system stays at rest. ( ) 0,0 =pf

(iii) ( ) xTx ~~ =λ , where T is an n × n constant non-singular matrix; that is, the 

equivalence transformations are linear and time-invariant. 

 

The first condition does indeed hold, since in this case g depends only on the 

parameter ran (see equations (7.25)). Similarly the second condition holds simply by 

the definitions of  and , and the (translated from the original) variables x0
2x 0

3x 2 and x3. 

The third condition requires somewhat more work. 

 

Let ( ) ( ) ( ) ( )( xxxx )~,~,~~
321 λλλ=λ , and notice that λ(0) = 0 (from equation (7.41)). Now, 

equation (7.42) immediately gives information about λ2: 

 

( ) 22
~~~

1
~

1
xx β+α

=
βλ+α

.         (7.43) 

 

Which rearranges to yield: 

 

( ) ( )[ ].~~~1~
22 xx β+α−α

β
=λ            (7.44) 

 

 

Now, since λ2(0) = 0, equation (7.44) implies that α=α~  and hence 

 

( ) 22
~

~
~ xx

β
β

=λ            (7.45) 

 

So the second row of the Jacobian ( )
x
x

~
~

∂
λ∂  (which will eventually be the T matrix 

mentioned in the conditions for Corollary 1, once the linearity of λ is established) is 
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known. To find further elements of this Jacobian, consider equation (7.42b), which 

gives that: 

 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂
λ∂

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0

~

~
~

0
0

anan r

x
x

r
.        (7.46) 

 

The first component of this equation shows that 

 

an

an

r
r

x ~~
1

1 =
∂
λ∂

.            (7.47) 

 

The second component of equation (7.46) yields no further information. However the 

third component gives that: 

 

0~
1

3 =
∂
λ∂
x

,           (7.48) 

 

which completes the first column of the Jacobian.  

 

Now consider the second component of equation (7.42): 

 

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )( ).~~~~~~~~~~~~~~~~~~~
0
2212

0
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0
33

0
221

0
221
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0
222
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(7.49) 

 

On substitution for λ2 (from equation (7.45)), this becomes 

 

( )

( ) ( )( )( ) ( )( ).~~~~~~~~~~~~~~~~~~~

~
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β
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  (7.50) 
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Now, differentiating (7.50) with respect to 1

~x  gives 

 

( ).~~~~~
~

~
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~

~
~

~
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222

1
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222

1
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0
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xxck
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xxck
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β
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 (7.51) 

 

However, from equation (7.47) we know that 
an

an

r
r

x ~~
1

1 =
∂
λ∂

, and from equation (7.48) we 

know that 0~
1

3 =
∂
λ∂
x

, so (7.51) becomes 

 

( .~~~~ )
~

~
~

~
0
222

0
222 xxckxxc

r
r

k eoxeox
an

an −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

β
β

β
β         (7.52) 

 

Now equating coefficients of 2
~x  gives 

 

anan rkrk ~~
22 = .             (7.53) 

 

Also equating constant terms in (7.52) gives 

 

( ) ( ).~~
~

0
2

0
2 xcxc eoxeox −=−

β
β                    (7.54) 

 

 

Since f(0) = 0 (from the construction of the state variables), we have that 

 

( ) ( ) 00
2

0
3

0
21

0
21 =+−−− xcNxxkxck eoxfeoxb ,         (7.55) 

 

which rearranges to give 

 

( )( ) Nxxkxxkkxc ffbeox
0
3

0
21

0
3

0
211

0
2 =+− .   (7.56) 
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Now, , and 00

3
0
21 >Nxxk f ( ) 00

3
0
211 >+ xxkk fb , so it follows that  

 

( ) 00
2 >− xceox ,      (7.57) 

 

and hence (from equation (7.55)) 

 

( ) 00
2 >+− xcN eox .        (7.58) 

 

Now, substituting λ(0) = 0 into equation (7.50) gives 

 

( ) ( ) ( ) ( )( ).~~~~~~~~~~
0
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0
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0
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0
21

0
21 xcNxxkxckxcNxxkxck eoxfeoxbeoxfeoxb +−−−=+−−−

β
β ,   

(7.59) 

 

which implies that (using equation (7.55)) 

 

( ) ( ) 0~~~~~~~~~ 0
2

0
3

0
21

0
21 =+−−− xcNxxkxck eoxfeoxb          (7.60) 

 

since .0
~

≠
β
β  Hence 

( ) 0~~ 0
2 >− xceox , and     (7.61) 

 

( ) 0~~~ 0
2 >+− xcN eox .     (7.62) 

 

Consider the third component of equation (7.42): 
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(7.63) 
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Differentiating (7.63) with respect to 1

~x  gives 

 

( )0
222

2

3 ~~~~
~0 xxck
x eox −−

∂
∂

=
λ .    (7.64) 

 

Thus either  for all time or 0
22

~~~ xcx eox −= 0~
2

3 =
∂
λ∂
x

. The former is impossible, since 

( ) 00~
2 =x , and ( ) 0~~ 0

2 >− xceox  (from (7.61)). Hence 

 

0~
2

3 =
∂
λ∂
x

.     (7.65) 

 

Now consider the first component of equation (7.42a). Again expanding this using the 

information we have about λ, we obtain the following: 
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(7.66) 

 

Differentiating (7.66) with respect to 1
~x  gives 
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(7.67) 

 

since 
an

an

r
r

x ~~
1

1 =
∂
λ∂

. Differentiating (7.67) with respect to 3
~x  shows that  
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0~~
32

1
2

=
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λ∂
xx

.           (7.68) 

 

Now, differentiating (7.50) with respect to 3
~x  gives 
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 (7.69)   

 

Differentiating (7.69) with respect to 2
~x  (and using (7.65) and (7.68)) gives 
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β
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Now differentiating again with respect to 2
~x  (and again using (7.65) and (7.68)) gives 
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which implies that (from equations (7.48) and (7.65), and because λ3(0) = 0 (see 

equation (7.41)) 
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Now that λ2 and λ3 are known, equation (7.49) becomes
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Differentiating (7.73) with respect to 2
~x  gives 
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Differentiating again, this time with respect to 3
~x , and then rearranging, gives 
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Now, on substitution for λ2 and λ3, equation (7.63) becomes 
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Differentiating (7.76) with respect to 3
~x  and simplifying gives 

 

 132



Chapter 7: A reaction-based model for MOS sensors   
 

( )( )( ).~~~~~~~~
~

1

~
1~

~
~

~
~

0
22

0
221

1

1

0
22

0
22

qxxcNxxk
k

k
qxxcNxx

eoxf
f

f
eox

−++−+−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

β
β

β
β

β
β

β
β

β
β

   (7.77) 

 

Equating coefficients of 2
2

~x  yields the relationship 
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Now equating coefficients of 2
~x  in equation (7.77) and substituting equation (7.78) 

gives 
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which when substituted into equation (7.75), tells us that 
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Now equation (7.66) becomes 
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Differentiating equation (7.81) with respect to 3
~x  and using equations (7.68) and 

(7.80) gives 
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Since (except for possibly two values of 2
~x ) ( )( ) 0~~~~~~ 0
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follows that 
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Thus the Jacobian is complete, and is given by (using equation (7.78) to simplify the 

(3,3) element) 
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This shows that the final condition of Corollary 1 is satisfied (i.e. λ is linear), and thus 

Corollary 1 can be applied to our system. 

 

Now, the first component of equation (7.42a) becomes 
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which reduces to 
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Equating coefficients of 2

~x  gives 
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and so 
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Equating constant coefficients gives 
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which, together with equation (7.54), implies that 
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and thus q is globally identifiable. 

 

The second component of equation (7.42a) becomes 
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Equating coefficients of 3

~x  in equation (7.91) and using equation (7.78) gives 
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Similarly equating coefficients of 2
2

~x  in equation (7.91) and simplifying gives 
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however, since 
q
rx ox=0

3  and qq ~=  (by equations (7.22) and (7.90)), it follows that 
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Equating coefficients of 2
~x  and simplifying using equations (7.78), (7.79) and (7.93) 

gives 

 

bb kk 11
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and thus  is identifiable. bk1

 

Now no more individual parameters can be shown to be identifiable without using the 

definition of  in equation (7.22) (which is algebraically very difficult). This is a 

potential problem since if the model is unidentifiable then parameter estimates may be 

unreliable. However, there are a couple of possible courses of action to remedy the 

situation: 

0
2x

 

• Other information could be employed to fix the values of one or more of the 

parameters – for example, the parameter β corresponds to the sensitivity of the 

output to changes in the value of x2, the number of conducting electrons. Thus 

an estimate should be available from the physics literature. 
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• It may be possible to reparameterise the model to produce a slightly different 

model, which retains the important features of the present model, yet is 

structurally identifiable. 

 

Now, in this particular case, both options are capable of yielding success. The latter 

method is chosen. In fact, the reparameterisation used results in a model equivalent to 

the current one, with the value of β set to unity. So in a sense it is equivalent to the 

former method, with units for some of the parameters and variables altered to reflect 

the fixing of β. The reparameterisation used is given by setting 
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With this reparameterisation, the system of differential equations (7.7) becomes: 
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with the new observation function: 
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The system of equations (7.97) and (7.98) is exactly the same (apart from labelling) as 

that described by (7.7) and (7.11), except with the value of β set to unity. The physical 

meanings of the parameters ceox and N are also altered by the reparameterisation, being 

replaced by βceox and βN respectively. Thus all of the calculations of this chapter 

remain valid for this new reparameterised system. Thus the ‘hats’ are dropped for 

convenience, and the identifiability analysis can proceed for the new system.  

 

Note that since β is characteristic of the sensor material and thus not related to the 

analyte, this reparameterisation does not affect which of the parameters are appropriate 

for use in an odour discrimination method. 

 

Now, since in the new system β is replaced by one, equations (7.94), (7.78), (7.88) and 

(7.53)  give us that 
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and 
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Equations (7.54), (7.79) and (7.92) have now reduced to: 
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Adding together equations (7.103) and (7.104) gives 
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Rearranging equation (7.103) gives 

 
0
2

0
2

~~ xxcc eoxeox +−= .              (7.108) 

 

Now, using equations (7.107) and (7.108), we have that 
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which rearranges to give 
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Now, substituting equation (7.110) into (7.105) and rearranging yields 
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Thus either 0
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~ xx = , in which case all of the remaining parameters are identified, or 
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in which case we have a second (distinct) solution to the system of equations (7.103), 

(7.104) and (7.105): 
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Nceox =~ , and            (7.114) 

 

eoxcN =~ .        (7.115) 

 

Thus the (reparameterised) model is shown to be at least locally identifiable, with two 

possible parameter sets. 

 

 

7.8 Conclusions 
 

A physical model for the interaction between gaseous analytes and an MOS gas sensor 

has been taken from the literature and converted into a mathematical model, described 

via a system of nonlinear ordinary differential equations. 

 

Assumptions were made regarding the gas delivery system and electronic interfaces, as 

discussed in Chapter 6, in order to produce a model for the measured outputs of the 

electronic nose system. The model was reduced via decoupling and subsequently 

analysed for steady states. Steady states were also calculated for the system in the 

absence of the analyte, to be used as initial conditions for the full system, representing 

typical experimental operating procedures. 

 

The system was shown to be controllable and observable, using the CRC and ORC 

respectively. The identifiability of the system was investigated, using the similarity 

transformation approach. The system was found to be at least locally identifiable, with 

at most two solutions to the set of equations generated by the identifiability analysis. 

 

It remains to be seen whether use of the expression for (7.22) can discount the 

second solution set and thus guarantee global identifiability for all of the parameters. 

0
2x
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Even without such a result, given the physical meanings of N and ceox it is possible that 

bounds on estimates of the two parameters may be produced, which might permit 

positive identification of each (for example if one were expected to be many orders of 

magnitude greater than the other, then selecting which was which would be possible). 

In any case neither parameter relates directly to the analyte being sensed, so (to a 

point) it is not important for odour discrimination that the correct choice of solutions 

be made. 
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Chapter 8  
Parameter estimation and validation of 

nose system model 
 

In this chapter, the usefulness of the model of the previous chapter is investigated 

using data collected from the experimental test rig detailed in Chapter 5. Having 

established the identifiability of the model (at least locally), it is reasonable to proceed 

with parameter estimations and simulations to compare with experimental data in order 

to establish how well the model describes an actual electronic nose system. The 

practical usefulness of the model is investigated, in terms of using the model for 

discriminating between unknown analytes. The versatility and extensibility of the 

model is also examined as the effects of operating a discrimination system based on 

the model under less controlled conditions are investigated (i.e. with varying ambient 

temperature, strength of odour, flow rates). 

 

 

8.1 Experimental data 

 

The experimental data used for the model validation in this chapter were collected 

using the test rig described in Chapter 5. Three sample pots were used, the first 

containing nothing (except air), the second containing approximately 0.01ml of 

acetone diluted in approximately 6.25ml of water and the third containing a similar 
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dilution of isopropyl alcohol. The system was set up so that the sensors were exposed 

to the following repeated cycle: 

 

•  20 min - air only 

•  1 min - acetone diluted in water 

•  20 min - air only 

•  1 min - isopropyl alcohol diluted in water. 

 

The outputs from the sensors were sampled once per second for a period of 

approximately 13 days, producing 1,134,000 data vectors corresponding to 450 

exposure cycles. Over the period of the experiment, the responses of the gas sensors 

varied considerably. This is illustrated with a plot of the output of sensor 1 in Figure 

8.1. As mentioned previously, the responses of metal oxide sensors depend heavily on 

factors such as their operating temperature, the temperature of the samples, the 

humidity of the odour carrying air and the flow rate through the gas delivery system. 

The long term responses of the sensors are also potentially affected by sensor 

poisoning effects and possible variations in the headspace concentrations of the target 

gases in the sample containers (Gardner and Bartlett 1999). The long duration of the 

experiment and fairly low concentrations of the diluted samples mean that the 

reductions in the concentrations of the target gases presented to the sensors over the 

course of the experiment may be a highly significant factor in the ‘drift’ of the 

response. A typical response of one of the gas sensors to an exposure cycle is plotted in 

Figure 8.2. 
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Figure 8.1 A plot of the output of sensor 1 over the entire duration of the experiment, 

showing the long term variation in the responses of the sensor. 
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Figure 8.2 A typical response of sensor 2 to a single exposure cycle. The first response 

is to an input of acetone, the second to isopropyl alcohol. The dotted line shows when 

the valves were operated on the gas delivery system. 

 

The flow rate and exposure duration were selected to provide a compromise between 

the desire to record the full response of each sensor (i.e. for the sensor output to level 

off before the gas input is switched back to just air), the desire to maintain a static 

headspace in the sample container (see Section 6.2.1 for explanation of this), and the 

desire to reduce the risk of substantial poisoning of the sensors by over-exposure. 

 

It is clear from the flatness of the saturation level of the sensor response to an input of 

acetone in Figure 8.3 that there was no significant headspace degradation over the 

period of the exposure. This was an unusually fast sensor / analyte combination – 

typically the sensors took longer to reach equilibrium levels, so the exposure period 

chosen was deemed appropriate. 
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Figure 8.3 A response of sensor 2 to an input of acetone. The flatness of the saturation 

level shows the concentration of the analyte in the headspace of the sample container 

was not significantly degraded over the sixty seconds for which it was sampled. 

 

  

8.2 Initial model fitting and parameter estimations 

 

There are a number of methods available for numerical simulation and parameter 

estimation for systems of nonlinear ordinary differential equations. Preliminary 

investigations showed that the system considered here is very stiff (order of stiffness 

approximately 1012) – this rules out a number of software packages which do not 

provide algorithms that are capable of coping with this level of stiffness. Facsimile 

(http://www.mcpa-software.com) and Berkeley Madonna 

(http://www.berkeleymadonna.com) are two software packages which are able to 

simulate very stiff systems. After initial investigations with both packages, it was 

decided to use Berkeley Madonna for this model, since it seemed to cope much better 

than Facsimile for this particular system, producing simulations for parameter sets 

where Facsimile could not.  
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Parameter estimation with Berkeley Madonna was found to be relatively 

straightforward and flexible. The curve fitting procedure requires the minimisation of 

the root mean square error between real data points and corresponding simulated data 

points from numerical solutions to the system of differential equations. As with most 

procedures requiring the minimisation of a complicated cost function over a large 

number of parameters, the success of the minimisation routine depends heavily upon 

the initial guesses for the unknown parameter set. The Berkeley Madonna package uses 

the ‘downhill simplex’ minimisation algorithm (for details of this algorithm see Press 

et al. 1993) to produce curve fits. 

 

A further restriction on the application of the software was imposed by the difficulty / 

impossibility of automating the process of parameter estimation for a great many 

exposure cycles. This meant that the parameter estimation for each exposure cycle for 

each sensor had to be performed manually, thus restricting greatly the amount of data 

that can realistically be produced. 

 

It was decided that all parameter estimates would be made based only on the ‘on’ 

portion of the sensor responses (i.e. the part of the response curve in Figure 8.3 where 

the sensor output is dropping, and not the part after the valve has switched over to 

flush the sensor chamber with air and the sensor recovers to (or at least near to) its 

original state). This was decided for two main reasons: 

 

• It is clear from the electrochemical reaction scheme described in equations (7.1) and 

(7.2) that the ‘off’ portion of the response (where the mechanism of (7.2) is no 

longer occurring) does not directly involve the analyte gas, so this portion of the 

response should not be useful for odour classification purposes. The only useful 

information carried in this portion relates to the final value that the sensor outputs 

take (which of course can also be obtained from the ‘on’ portion). 

• Whilst it was possible to obtain very good simulations for the ‘on’ period of the 

sensor response (see the next section), it was found to be very difficult to obtain 

accurate simulations for both the ‘on’ and ‘off’ portions simultaneously. Even after 

extensive investigations using different initial guesses and parameter bounds, 

acceptable fits were never produced. This is possibly due to the simplicity of the 
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model for the gas dynamics in the chamber. The concentration of the analyte in the 

main chamber will not in fact drop instantaneously to zero, and it would appear that 

more complex modelling of the concentration profile in the vicinity of the sensor 

would be required to produce simulations that match the real data. 

 

If the model had described the ‘off’ portion of the sensor response well, then this part 

of the response could have been useful for estimating some of the analyte-independent 

parameters, however, since this is not the case, this portion of the response was 

discarded.  

 

 

8.2.1 Parameter estimation for a single sensor response 

 

The first step was to produce a simulation using the model of Chapter 7 that matched a 

single sensor response. A portion of a response of sensor 1 to an exposure of diluted 

acetone (only the ‘on’ phase of the response – so not including the recovery of the 

sensor after the target gas input is removed) was isolated and Berkeley Madonna was 

used to produce parameter estimates and fit the model to the data. A step change in the 

value of the parameter ran was used to model the introduction of the target gas to the 

sensor chamber. This corresponds to a step change in the concentration Can of the 

target gas in the main chamber (see Section 7.3 and Section 7.7.3). The results are 

shown in Figure 8.4.  
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Figure 8.4 The ‘on’ portion of a response of sensor 1 to diluted acetone; x’s are the 

real data points, the solid line relates to simulated data using the model of Chapter 7. 

The r.m.s. error of the curve fit was approximately 4.58 × 10-3 V. 

 

The curve fit shown in Figure 8.4 is very encouraging, however, the structural 

identifiability of the model established in the previous chapter was not empirically 

observed in the practicalities of the parameter estimations for this experiment. It was 

found that several parameters could be fixed at almost any desired value, and then 

acceptable model fits could be obtained by varying only the remaining parameters. It 

should also be noted that the curve fit in Figure 8.4 was only obtained after a great deal 

of experimentation with different initial guesses for the parameter values. In fact, it 

was necessary to manually experiment with different parameter values to get a 

response curve of the right qualitative form, prior to using the minimisation algorithms 

to home in on the minima produced. Earlier curve fits did not reproduce the shape of 

the response curve at the start of the odour introduction and instead produced sharp 

drops. This apparent failure of the software, the model, and perhaps the experiment, to 

produce an empirically identifiable system leads to a lack of confidence in the 
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accuracy of any parameter estimates produced on a single sensor response. As 

discussed in Chapter 6, the aim of the modelling is to produce a classification system 

using estimates of the parameters relating to the target species to distinguish between 

different analytes. However, not all of the parameters in the model depend upon the 

analyte in question. Thus some parameters should be constant or at least bounded over 

multiple responses. 

 

 

8.2.2 Model fitting to multiple analyte responses 

 

The parameters in the mathematical model all have a physical meaning. Although the 

precise meaning of them is slightly modified by the reparameterisation in Section 

7.7.3, it is still clear that some of the parameters relate only to the e-nose system, and 

not at all to the analyte being detected. Thus these parameters should be constant for a 

given sensor operating under fixed operating conditions (i.e. same temperature, 

humidity, gas flow rate settings, background odours etc.), irrespective of which analyte 

the sensor is exposed to. This is potentially a great help in reducing the choice of 

parameters which can give rise to equally good model fits, and thus ensuring the 

consistency and reliability of parameter estimates. 

 

A model fit was performed using Berkeley Madonna, to two sections of data 

simultaneously, both from sensor 1, from successive exposures to the analyte gases; 

one exposure to acetone and one to isopropyl alcohol. The following parameters were 

fixed to be equal over the two model fits since they relate to the nose system hardware 

and not the choice of analyte: k1f, k1b, ceox, rox, N, q and α. The parameters k2, ran and a 

delay parameter (included to allow for possible slight inconsistencies in the splitting up 

of the data – not because significant differences in the physical delay introduced by the 

gas dynamics of the system for different analytes were expected or observed) were 

allowed to take different values for each analyte. The results are plotted in Figure 8.5. 
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Figure 8.5 Simulations produced by simultaneous parameter estimations to the 

response of sensor 1 to (a) an input of acetone and (b) an input of isopropyl alcohol. 

The parameters corresponding to the nose system and not the analyte were kept equal 

for the estimation procedure. The combined r.m.s. error of the two curve fits was 

approximately 0.175 V. 

 

It is clear from Figure 8.5 that the model fits to the data are significantly poorer than 

those obtained when the supposedly analyte-independent parameters are allowed to 

vary for the different analyte inputs. It was found that curve fits to multiple responses 

to the same analyte were also noticeably poorer than individual fits when these 

parameters were held constant for the different responses. This indicates that the cause 

of the poor fits was a combination of experimental variations and possibly the 

simplifications inherent in the model used. To rectify this, the parameters which relate 

to the nose system and not to the analyte sensed were constrained to lie within certain 

intervals, rather than held constant, for different response fits. This produced 

significantly better results. An example of a pair of curve fits produced using the same 

narrow bounds for the sensor / system parameters, and much more freedom for the 
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analyte parameters, is plotted in Figure 8.6. The fit to the isopropyl alcohol response in 

particular, is extremely good – having an r.m.s error of only approximately 5.45 × 10-3 

V. 

 

 
 

Figure 8.6 Simulations produced by parameter estimations to the response of sensor 1 

to (a) an input of acetone and (b) an input of isopropyl alcohol. The parameters 

corresponding to the e-nose system and not the analyte were constrained to lie within 

the same narrow bounds for each curve fit. The combined r.m.s. error of the two curve 

fits was approximately 0.0174 V. 

 

If the model had not been reparameterised then it may have been possible to use the 

fact that some of the parameters (namely ran and rox) should remain constant for 

different sensors, to more accurately pin down their values. However, the 

reparameterisation of the model had the effect of making ran and rox also depend upon 

the characteristics of the sensor and the interface electronics. Thus it is not reasonable 

to expect these parameters to remain constant across different sensors. 
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8.3 Parameter estimates over the range of the entire experiment 

 

The method of constraining sensor / system dynamics to lie within certain bounds and 

allowing the analyte-dependent parameters to vary to reflect the differences in sensor 

responses was employed for a number of responses taken from the whole range of the 

experiment. Each parameter estimation run had to be performed manually. Due to the 

very long duration of the experiment and hence large number of response cycles (450), 

it was not possible to estimate the parameters for all of the responses. Instead, every 

tenth response cycle was extracted from the whole data set, a curve fit produced, and 

the parameters recorded. It was found by trial and error that the parameters k1f and k1b 

could be fixed without loss of fitting accuracy. The parameter α could be determined 

directly from the steady state sensor output prior to the odour input and the other 

parameters. Thus the remaining four system parameters were constrained within 

certain limits (which were found by trial and error), and the two analyte-specific 

parameters and a delay parameter were allowed to vary widely. The parameter ranges 

chosen are detailed in Table 8.1. 

 

Parameter: Minimum allowed value: Maximum allowed value: 

k2  3 × 10-13 1 × 10-11

ran 1 × 105 8 × 105

k1f 6.35607 × 10-12 6.35607 × 10-12

k1b 1.16128 ×10-6 1.16128 ×10-6

ceox 6 × 103 8 × 103

rox 6 × 105 7 × 105

N 1 × 104 1.4 × 104

Q 0.15 0.2 

 

Table 8.1 The ranges selected for the various parameters for curve fits to sensor 1 

responses throughout the entire duration of the experiment. 

 

The values of the analyte-dependent parameters fitted to the response curves for the 45 

extracted response cycles (thus 45 responses to each of the two tested analytes) are 
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plotted in Figure 8.7, along with the r.m.s errors produced (a measure of goodness of 

fit). 

 
 

Figure 8.7 The variation in the fitted values for  k2 (top), ran (middle), and the 

associated r.m.s. errors (bottom) for curve fits to responses of sensor 1 over the 

duration of the experiment. The solid lines represent data corresponding to acetone 

responses, the dashed lines represent data corresponding to isopropyl alcohol 

responses. 

 

 

8.3.1 Investigation of correlations between fitted parameters as a partial check for 

reliable parameter estimation 

 

As shown in Figure 8.7, although the fitted values for k2 are fairly stable, they do vary 

slightly over the course of the experiment, more notably so for the responses to acetone 

than for those to isopropyl alcohol. The fitted values for ran also generally decline. 

These variations may be attributed to a number of possible factors. It is important for 

confidence in the fitted values that the fitted values for k2 and ran are not too closely 
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correlated with each other. If there were a clear relationship between the fitted values 

for the two parameters, then it might be the case that estimates for them are not 

reliable. A significant correlation could indicate that only some function of the two 

parameters (e.g. their product) might be empirically identifiable. In order to check this, 

Figure 8.8 plots the fitted values of k2 against those of ran for each analyte. 

 

 
 

Figure 8.8 Plot of the fitted values of k2 against those for ran for (a) acetone response, 

and (b) isopropyl alcohol responses, all from sensor 1. 

 

It is evident from Figure 8.8 that the fitted value of k2 and ran are not strongly 

correlated for each analyte. The correlation coefficient between k2 and ran for acetone is 

approximately 0.438, and that for isopropyl alcohol is approximately −0.0111. 

Although the value for acetone is a little higher than might be expected for totally 

uncorrelated variables, this may not be significant. It may also be the case that both k2 

and ran genuinely did vary over the course of the experiment due to other factors, for 

example, the temperature of the sample and the temperature of the sensor chamber 

may have affected each of the parameters, and there may have been a decrease in the 
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concentration of the analyte in the sample headspace caused by evaporation over the 

course of the experiment, affecting the ‘true’ value of ran. 

 

 

8.3.2 Investigation of the effects of variations in the temperature and humidity on 

the fitted parameters 

 

The two temperature sensors (one positioned in the sensor chamber itself, and another 

mounted externally to monitor ambient temperature) were highly correlated with each 

other (with a correlation coefficient of approximately 0.9865 for the 90 responses 

selected). Therefore only the ambient temperature sensor data was used. The outputs of 

the humidity sensor (which measures relative humidity) in the chamber were strongly 

correlated (with a correlation coefficient of approximately 0.8866) with the ambient 

temperature, and more weakly correlated with the fitted values of k2 and ran, suggesting 

that perhaps the humidity was varying as a result of the variations in temperature. If 

there was a significant portion of data where the temperature remained fairly constant, 

yet the humidity varied, then the effects of variations in humidity on the values of k2 

and ran might be determined. Since this was not the case, no firm connection between 

humidity and the parameter values can be established. 

 

The matrix of correlation coefficients for the fitted values of k2 and ran and the 

temperature sensor output, is given in Table 8.2. 
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r k2 ran Temperature 

k2 1 0.4380 0.7408 

ran 0.4380 1 0.7106 

Temperature 0.7408 0.7106 1 

 

Table 8.2 Matrix of correlation coefficients (given to four significant figures) for the 

fitted parameters to acetone responses of sensor 1, and the recorded temperature and 

humidity values for the experiment. 

 

The values of the fitted parameters k2 and ran are plotted against the ambient 

temperature in Figure 8.1. 

 

 
 

Figure 8.9 Plot of ambient temperature versus (a) k2, and (b) ran for responses of sensor 

1 to acetone. 
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The points to the right of Figure 8.9(b) showing great variation of estimates for ran 

around 23.5°C correspond to the fits near to the start of the experiment, where the 

temperature was stable, but the fits for ran varied considerably. This could be due to 

evaporation of the acetone from the sample (see also Figure 8.7 to see the fall in the 

estimates for ran near to the start of the experiment). The variation in the fitted values 

of ran might be attributable to changes in the sensitivity of the sensor material with 

temperature (this is unlikely, since the sensor itself contains a microheater which heats 

the sensing material to a few hundred degrees Celsius) or to changes in the gas 

dynamics in the sensor chamber. However it seems most likely that the dominant 

mechanism by which this parameter is affected by temperature is through the 

evaporation rate and saturation concentration of the headspace of the sample itself. 

This parameter would not generally be considered useful for identification of a sample 

in non-laboratory conditions, since the strength of the odour (to which the parameter 

corresponds) could be expected to vary widely from sample to sample. For this reason 

there is little to be gained from attempting to remove or compensate for the effects of 

temperature on this parameter. 

 

The data plotted in Figure 8.9(a) suggest a fairly good linear relationship between the 

fitted values of k2 and the ambient temperature. A similar (albeit slightly weaker) 

relationship is found for the responses of sensor 1 to isopropyl alcohol. A linear 

function of the form  

 

( ) 0,22 kTkTk T +=         (8.1) 

 

was fitted to the k2 data sets, where T is the temperature (in degrees Celsius), kTT

  is a 

temperature coefficient and k2,0 is a temperature compensated rate constant (effectively 

an extrapolated estimate of the value that k2 would take at zero degrees Celsius). Note 

that since the linear fit is made over a small temperature range, a negative value for k2,0 

is not cause for concern.   

 

Linear fits to the acetone and isopropyl alcohol responses separately yield markedly 

different values for kTT

 (approximately 3.8 × 10  and 8.7 × 10  respectively), 

suggesting that the dependence of the rate constant is analyte-specific. However, using 

-13 -14



Chapter 8: Parameter estimation and validation of e-nose system model   
 

 159

the same temperature coefficient for all fits to compensate for temperature variations 

still yields positive results (a correlation coefficient of approximately 0.6029 is 

calculated between the temperature and the combined mean-centred acetone and 

isopropyl alcohol k2 estimates). A linear fit to the fitted k2 values for both analytes 

together yields a coefficient of temperature of approximately 2.3 × 10 . Temperature 

compensated rate constant estimates were produced by simply taking each estimate for 

k

-13

2 and subtracting from it kTT

T, where kTT

 is an estimate for the temperature coefficient 

obtained from linear regression using the whole data set, and T is the recorded 

temperature for that sample exposure. A plot of temperature compensated fitted values 

of k2 for all of the responses of sensor 1 is given in , showing the reduced 

dependence of the parameter upon the temperature. 

Figure 8.10

 

 
 

Figure 8.10 Plots of (a) fitted values of k2, and (b) temperature compensated fitted 

values for k2 (k2,0 as described in equation (8.1)). The x’s represent values extracted 

from acetone responses and the o’s represent values extracted from isopropyl alcohol 

responses, all from sensor 1. Note the reduced within-group variation in the values of 

k2 for plot (b) compared with plot (a). 
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Figure 8.11 Plots of (a) k2 and (b) temperature compensated k2, against response 

number, showing the slightly improved separation between the two classes after 

temperature compensation. The solid lines represent data corresponding to acetone 

responses, the dashed lines represent data corresponding to isopropyl alcohol 

responses, all from sensor 1. 

 

It is evident from Figure 8.11 that the temperature compensation improves the 

separation of the two classes (acetone and isopropyl alcohol) slightly. However, there 

were possibly other factors which might affect the fitted parameter values, which were 

not controlled (most notably possible variations in the composition of the carrier gas 

(air from the room) or drift / poisoning of the sensors). Thus it would be foolhardy to 

rule out the possibility that the variations in the fitted parameters were not actually 

caused by the variations in temperature, but rather just happened to appear correlated 

with the temperature by chance. 
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8.4 Evaluation of the discrimination performance of parameter extraction versus 

steady state methods 

 

It is clear from Figure 8.10 that the two analytes are clearly distinguishable from the 

values of k2, with or without temperature compensation. A simple rule-based algorithm 

based on the size of the estimate for k2 from a curve fit to an unknown analyte response 

would produce a 100% successful classification rate (since the highest fitted value for 

an isopropyl alcohol response is lower than the lowest fitted value for an acetone 

response). However, using a classification test policy of training on the first half of the 

data, and testing on the second half (50% cross validation), there could be one mis-

classification towards the end of the testing set, depending on how the cut-off value 

was chosen. If instead the temperature-compensated values of k2 are used, perfect 

classification rates can easily be obtained using 50% cross validation. Notice that the 

responses of only one sensor are required to achieve this perfect classification rate. 

 

In order to compare this result with existing techniques, data from the same 45 

response cycles (for all four sensors) were pre-processed as described in Section 3.3. 

Examples of the data which resulted are plotted in Figure 8.12. 
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Figure 8.12 Plots of pre-processed static data from sensor 2: (a) static response, (b) 

static difference, (c) fractional difference, and (d) relative difference. The solid lines 

represent data corresponding to acetone responses, the dashed lines represent data 

corresponding to isopropyl alcohol responses. 

 

It is clear from Figure 8.12 that the simple pre-processing applied to data from a single 

sensor does not produce the separation of the two classes that the physical parameter 

extraction technique does (compare the plots in Figure 8.12 with those of Figure 8.11). 

To test the success of the static techniques discussed in Chapters 3 and 4 when applied 

to the data from all four sensors, multi-input single-output linear time invariant black-

box models were constructed using Matlab. As in the earlier chapters, various 

structures and orders were tested. It was found that black-box models using only 

information from single sensors were not able to produce 100% successful 

classification rates. However, when the information from all four sensors was used as 

inputs to the black-box models, low order (order one or two for each of the A and B 

polynomials) ARX models (see Chapter 3 for explanation of what this means) were 
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able to produce perfect classification rates (again these were tested using 50% cross 

validation). 

 

 

8.5 Discussion and conclusions 

 

In this chapter, it has been established that the model described and analysed in 

Chapter 7 is capable of producing excellent fits to real data (with r.m.s. errors as low as 

4.58 × 10-3 V) from sensor exposures to simple odours (see Figure 8.4). However, 

despite the theoretical identifiability of the parameters in the model (which was 

established in Chapter 7), the actual numerical estimation of the parameters was far 

from straightforward. 

 

Initial investigations showed that it was in fact very difficult to reproduce the 

qualitative shape of the start of the response curves (specifically the gradual rather than 

sharp drop of the sensor output) using most initial estimates for the parameters. 

Because of this, it was initially thought that the model might be unable to reproduce 

this feature, whilst using the simple (step change) form for the gas input to the main 

chamber. A model for a diffused input to the chamber (as discussed in Chapter 6) was 

incorporated in the software, and the shape of the start of the sensor response was 

easily reproduced. It was only after extensive investigations with both forms of input 

that it was found that with appropriate initial parameter estimates, the shape of the 

response can be reproduced using a square odour input function. The use of a square 

input function is preferable to a diffused input. This is because the inclusion of a 

diffused input in the model introduces at least one more parameter which must be 

estimated. Also, experiments with different gas flow rates show that the slow switch-

on is present in the response even at relatively fast gas flow rates – suggesting that the 

qualitative shape at the start is (at least partly) a result of the dynamics of the sensor 

response mechanism rather than just a consequence of diffusion in the pipes / chamber. 

It is of course possible that diffusion in the pipework and / or chamber is a significant 

factor in the shape of the sensor response near to the start of the response. However, 

from the equipment and experiments used, it is impossible to isolate the two possible 

effects and model them both accurately. 
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Ideally, the sensors could be tested in a system whereby the flow of the gaseous 

analyte over the sensors could be controlled and known precisely, and where the 

volume of the chamber surrounding the sensors was minimal, so that the odour input to 

the model would be very close to the square profile that would be the input signal to 

the valve system. This would enable the dynamics of the electrochemical sensor 

responses to be isolated from the gas flow dynamics and thus modelled truly 

independently. Then the responses of the same sensors in a more usual (and practical) 

system (such as that considered here) could be modelled more accurately, including the 

gas flow dynamics. 

 

Once initial parameter estimates had been found which enabled the accurate 

reproduction of the ‘on’ portion of the sensor response (using a square input function), 

restricting the parameter search to those parameter sets narrowed the search slightly, 

and slightly improved the empirical ‘identifiability’ of the system. However, it was 

still the case that choosing different initial estimates and bounds for various parameters 

resulted in the optimisation routines used by Berkeley Madonna finding significantly 

different parameter estimates, many of which produced visually (and numerically) 

acceptable fits to the same data set. This undesired flexibility in the choice of 

parameters was largely overcome via the use of the fact that the majority of the 

parameters in the model depend only on the sensor and system, and not the analyte that 

the sensor is exposed to. This means that these parameters should remain the same 

over multiple responses (for the same sensor, but different samples). Fitting parameters 

to multiple sensor responses to different analytes, whereby the sensor / system 

parameters were fixed to be the same for each response, was not very successful. This 

is possibly attributable to un-monitored external influences or experimental variations 

(including variations in the composition of the carrier gas, which was air from the 

laboratory). It is also possible that the reason for this is simply that the model, based as 

it is on assumptions and simplifications of the actual system, does not perfectly 

describe the system, and so in practice, the estimates for the supposedly analyte-

independent parameters are actually affected by the analyte being sensed. Realistically 

the latter reason is perhaps the most likely. 

 

The most practical compromise to enable parameter estimates to be used for odour 

classification, was to constrain the sensor / system parameters to lie within certain 
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bounds. This allowed sufficient flexibility for the model to accurately fit data from 

sensor responses to each analyte, but constrained the estimates enough so that 

repeatable and reproducible estimates for the (less constrained) analyte parameters 

could be extracted from the sensor responses. Using this technique, the key (for analyte 

identification purposes) model parameter k2 was extracted from sensor responses over 

the course of a long-term experiment. It was found that the fitted values for this 

parameter were sufficiently well separated (between the two different analytes tested) 

so that perfect classification rates were easily obtainable using the data from just a 

single sensor. 

 

It was found that the fitted values of the analyte parameter k2 were correlated with the 

measured ambient temperature. However, using this correlation to produce 

temperature-compensated k2 values produced only a slight improvement in the stability 

of the estimates for the parameter. 

 

The same data were tested using the linear time-invariant black-box models 

investigated in detail in Chapters 3 and 4. It was found that the black-box models for 

static data were not able to match the discrimination performance of the parameter 

extraction technique when applied to only a single sensor, but when all four sensors 

were used for the inputs to the inverse black-box models, they were also able to 

produce perfect classification results. As a further test of its potential, in the following 

chapter the parameter extraction technique is applied to data from complex biological 

odours. 
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Chapter 9  
Parameter extraction technique applied 

to cyanobacteria data 
 

In this chapter, the technique for the classification of odours based upon estimates of 

parameters in a physical model describing the electronic nose system, developed in the 

previous chapter, is applied to a more realistic classification problem. The data from 

cyanobacteria experiments, used previously in Chapters 3 and 4, are again utilised to 

provide a comparison between the black-box models of the earlier chapters, this new 

parameter extraction technique, and the artificial neural networks used elsewhere. 

 

This provides a challenging test for the technique, and thus a measure of its potential, 

as well as an opportunity to investigate how best to use the extracted parameters from 

an array of sensors (rather than just the required single sensor for the data in Chapter 8) 

to classify odours. 

 

The application of this technique to complex odours requires slightly different 

assumptions than in the previous chapter. In the experiments considered in Chapter 8 , 

the odours to which the sensors were exposed consisted only of single chemical 

species (with possibly some water in addition). In the cyanobacteria experiments 

considered in this chapter, the headspaces of the samples consist of many different 

chemical species. Attempting to expand the model of the previous chapter to explicitly 
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model the responses of the sensors to each of the many chemical species present would 

be futile. Even increasing the number of analytes modelled (by a few) would render the 

model almost useless, since there would be no realistic chance of obtaining accurate or 

consistent estimates of the many parameter values in the model. The experimental set-

up and the data collected from it simply do not support the use of such a complex 

model. Instead the model is applied in exactly the same way as in Chapter 8, with the 

assumption that the response of a given sensor to the complex odour containing a 

mixture of many chemical species is approximately the same as the response to a 

simple odour. Because of this, the physical parameters k2 and ran extracted from the 

sensor responses will now no longer correspond directly to a (scaled) rate constant and 

a (scaled) rate of introduction of the target analyte molecules to the vicinity of the 

sensor. Instead they will correspond to ‘average’ or ‘effective’ values for these 

physical parameters for the odour as a whole (being made up, as it is, from many 

different compounds). 

 

 

9.1 Cyanobacteria strain identification  

 

The first test for the classification technique is the identification of the strain of a 

cyanobacteria colony. The data set is exactly the same as that used in Chapter 3, as is 

the task. The bacteria must simply be classed as ‘toxic’ or ‘non-toxic’. The linear time 

invariant black-box models used in Chapter 3 were very successful, obtaining a 100% 

successful classification rate using steady state data, as did the artificial neural 

networks used elsewhere (Shin et al. 2000). Thus if this new technique is to be 

regarded as successful, perfect (or at least near-perfect) classification rates are required 

on these data. 

 

 

9.1.1 Experimental data 

 

The experiment was designed to evaluate the ability of an electronic nose system to 

discriminate between two strains of cyanobacteria (blue-green algae), one toxic and the 

other non-toxic.  
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The headspaces of separate cultures of the two strains of cyanobacteria, grown in a 

nutrient medium (BG11), were sampled periodically by an electronic nose system over 

40 days (Shin et al. 2000). The nose system used consisted of six commercial metal 

oxide resistive odour sensors (Alpha MOS, France), and two other sensors to monitor 

ambient temperature (LM35CZ, National Instruments) and humidity (MiniCap 2, 

Panametrics) (Shin et al. 2000). The repeated exposure cycle was as follows: 

 

•  23 min 20 s   - medium only 

•  2 min   - medium with toxic microcystis aeruginosa PCC 7806 strain 

•  23 min 20 s   - medium only 

•  2 min   - medium with non-toxic microcystis aeruginosa PCC 7941 strain. 

 

The outputs from the sensors were sampled every 10 seconds, producing 350,358 data 

vectors corresponding to 1,150 exposure cycles. 

 

 

9.1.2 Initial model fitting and parameter estimations 

 

The experiment considered here was performed using a modified commercial 

instrument, in slightly less controlled conditions than the experiment studied in the 

previous chapter. The experiment took place in an active laboratory in the Department 

of Biological Sciences at the University of Warwick, where the ambient temperature 

and gas composition of the room varied considerably over the course of the 

experiment. For these reasons, the data produced from the experiment fluctuate more 

and are somewhat more noisy than those considered earlier. These fluctuations are 

shown in Figure 9.1. Note also that the sensor outputs were also sampled only once 

every 10 seconds, instead of once per second. A typical sensor response to an exposure 

to the headspace of the toxic bacteria is plotted in Figure 9.2. 
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Figure 9.1 The output of sensor 2 over the whole experiment, showing the diurnal and 

longer term variations observed. 
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Figure 9.2 A response of sensor 3 to exposure to the headspace gas from toxic bacteria 

sample. 

 

Parameter fits to the model described in Chapter 7 and used in Chapter 8 were 

performed on a single response of each sensor to each sample of the two sample 

headspaces. As in Chapter 8, for each sensor, bounds for the parameters k1f, k1b, ceox, rox, 

N and q were established, within which acceptable model fits were produced for both 

classes of odour and over the range of the data set. An example curve fit to a response 

of sensor 3 to an exposure to the headspace of the toxic sample is plotted in Figure 9.3. 

 

 

 170
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Figure 9.3 The response of sensor 3 to an exposure to the headspace gases from a 

sample of toxic bacteria sample, together with a model fit to the data. The data points 

are plotted as x’s, the model fit as a solid line. The r.m.s. error for the fit was 8.32453 

× 10-3 V. 

 

With the data analysed in Chapter 8, the values of the parameters k2 and ran (which 

were expected to be strongly analyte-dependent) were allowed to vary over a wide 

range during the curve-fitting process. It was found that when the sensor-dependent 

parameters were restricted to fairly narrow ranges, the values of k2 and ran were fairly 

well determined by the response curves. However, with the cyanobacteria data 

considered here, these crucial parameters seemed less empirically identifiable. It was 

found that, for a given sensor response curve, the value of ran could be fixed almost 

arbitrarily with little or no difference to the success of the resulting curve fit obtained 

from varying only k2 (and the other parameters within their bounds). This contrasts 

with the results of Chapter 8. This apparent lack of empirical identifiability could 

perhaps be caused by poor choices for the bounds on the sensor / system parameters, or 

by a lack of information in the data set itself. The former reason is plausible, though 
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extensive investigations failed to find a set of parameter bounds that produced more 

favourable results. There are differences between the cyanobacteria data considered 

here, and the data from experiments involving simpler analytes, considered in Chapter 

8. The use of the model for a simple (i.e. single chemical species) odour for this 

experiment (which involves a complex odour containing many chemical species) 

involves, as mentioned previously, some possibly large assumptions. If these 

assumptions produce a poor description of the actual process, it is feasible that the 

success of parameter estimates might be affected. Another difference between this data 

set and that considered in Chapter 8 is the data sampling rate. In the experiment of the 

previous chapter, the sensor outputs were recorded once per second. For this 

cyanobacteria experiment the outputs were recorded only once every ten seconds. This 

is because the experiment was actually designed to test the ability of neural networks 

to classify the odours based only on static data (Shin et al. 2000). This had the result 

that the faster changes in the sensor responses (typically at the start of the response 

curve) were poorly recorded. It could be the case that this portion of the response is 

important for accurate determination of the appropriate values for the parameters k2 

and   ran. 

 

To partially test this hypothesis, a section of data from the experiment described and 

analysed in the previous chapter was resampled at a lower sampling rate. Every fifth 

data point was kept, and the rest discarded. Parameter estimation runs were performed 

with this new data set. It was found (as with the cyanobacteria data) that the values of 

k2 and ran were no longer empirically identifiable, even when the remaining parameters 

were quite tightly bound (as before). The value of ran was fixed to lie within five 

different bounded intervals (200,000 to 205,000, 300,000 to 305,000 … 600,000 to 

605,000), and the value of k2 allowed to vary freely to fit the data. For each of the five 

parameter estimates, visually and numerically, acceptable fits were obtained. The 

r.m.s. errors for the five fits varied only between 4.29136 × 10-3 V and 4.68943 × 10-3 

V. This would seem to support the suggestion that the reduced sampling rate is at least 

partially responsible for the observed lack of empirical identifiability of these two 

parameters. 
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9.1.3 Parameter estimations for responses throughout the whole experiment 

 

In Chapter 3 the modelling techniques were implemented in Matlab, and thus the 

testing was carried out using Matlab programs to automate the process. This enabled 

the use of the whole data set (all 1,150 exposure cycles). The technique used in this 

chapter requires parameter estimations to be run manually for each sensor response, so 

to use all of the data would require 13,800 manual parameter estimation runs. This is 

not feasible, so instead a subset of the data set was used. Every fiftieth response was 

extracted from the data set, producing 46 response curves for each of the six sensors; 

276 response curves in total. As mentioned in the previous section, the parameter 

values k2 and ran were not empirically identifiable from the response curves produced, 

so the value of ran was constrained to lie within fairly tight bounds (the value was fixed 

to lie between 2 × 105 and 2.05 × 105). This represents an assumption corresponding 

approximately to the strength of the odour remaining fairly constant throughout the 

experiment. The result of this is that the fitted values of the remaining analyte-

dependent parameter, k2, would be expected to vary with changes in the strength of the 

odour signal. This is undesirable when k2 is to be used for odour discrimination but 

unfortunately unavoidable, since the alternative would be to constrain the rate constant 

k2 more tightly, and to allow the value of ran to vary for different sensor responses. That 

would constitute an assumption that the electrochemical rate constants for different 

samples remain similar, and consequently to attempt discrimination based purely (up 

to the accuracy of the model) upon a parameter which corresponds to the ‘strength’ of 

the odour. This may yield success for simple experiments but would be unlikely to be 

useful for more complex experiments or real-world applications. With ran constrained, 

the value of k2 became well-determined for each given response curve. 

 

Curve fits were carried out to each of the 276 response curves extracted from the data 

set. The fitted values for k2 were noticeably less stable than those for the simpler 

experiment of the previous chapter, as shown in Figure 9.4. 
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Figure 9.4 Plot of fitted values for k2 (top) and the associated r.m.s. errors for curve 

fits (bottom) to responses of sensor 3 over the duration of the experiment. The solid 

lines represent data corresponding to responses to the headspace of toxic bacteria, the 

dashed lines to non-toxic bacteria responses. 

 

The instability of the estimates for the parameter k2 produced from the model curve fits 

means that a simple rule-based algorithm for discrimination based only on the estimate 

of the parameter for a single sensor will not yield acceptable discrimination 

performance. Instead, a method for discrimination based on the values extracted from 

the responses of all six sensors in the array must be used. As discussed previously, (see 

Chapter 2) there are many approaches which might be applied (since effectively the 

data extracted from the responses is of a similar nature to the traditionally-used pre-

processed steady state information). Since the pre-processed data have already been 

analysed using linear time invariant black box models (see Chapter 3), this technique is 

applied to the extracted dynamic parameter values, for easy comparison of the 

discrimination power of the information within the data. 
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In Chapter 3 all 2300 response curves were used in the training and testing of the black 

box models. For fair comparison of discrimination performance, the pre-processed data 

corresponding to the 276 sensor responses which were used for curve fitting were 

extracted from the full pre-processed data set. These were then used to test black box 

models as in previous chapters, using a variety of structures and orders (see Chapter 3 

for details of the technique used) and again 50% cross validation. It was found that 

after being trained on the first 23 pre-processed data vectors, simple low order (order 

two) FIR models were able to produce the correct classifications on the remaining 23 

test vectors using the absolute response and relative difference pre-processing 

algorithms. The static difference and fractional difference algorithms successfully 

classified 22 and 21 of the test vectors respectively. 

 

Using exactly the same technique applied to the fitted k2 parameter values produced 22 

out of 23 correct classifications using an FIR model of order two. Including an A 

polynomial in the model structure to form an ARX model produced perfect 

classification results on the testing set (using order one for the B polynomial, and order 

3 for the A polynomial). 

 

Investigations of the relationships between the fitted values of k2 and the chamber 

temperature showed that the parameter estimates for the sensor responses to the 

headspace of the toxic bacteria were correlated with the chamber temperature with 

correlation coefficients of up to 0.8031 (varying slightly between the different 

sensors). The k2 values for the sensor responses to the headspace of the non-toxic 

bacteria sample were correlated with the temperature with correlation coefficients of 

up to 0.7759. Taking all of the responses (to both toxic and non-toxic) together 

produced correlation coefficients of up to 0.6653. As in Section 8.3.2, linear regression 

was used to produce temperature compensated k2 values. These compensated values 

are plotted in Figure 9.5. Note that since the linear fit is made over a small temperature 

range, a negative value for the temperature compensated k2 is not cause for concern – 

the compensated k2 does not have the same physical interpretation as k2 itself. Using 

these temperature compensated k2 values for the black box model inputs produced 

perfect classification success using an FIR model of order two. Interestingly, this 

perfect success rate was repeated when using only the temperature compensated k2 

estimate from a single sensor. 
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The correlation coefficients between the fitted values of k2 and the output of the 

humidity sensor were low – at most 0.3105. This was deemed too low for correction of 

the parameter values to be worthwhile. 

 

 
 

Figure 9.5 Plots of (a) k2 and (b) temperature compensated k2, against response 

number, showing the slightly improved separation between the two classes after 

temperature compensation. The solid lines represent sensor responses to toxic bacteria 

exposure, the dashed lines represent data sensor responses to non-toxic bacteria, all 

from sensor 3. The temperature compensation changes the physical interpretation of 

the value, so negative values are not unexpected. 

 

 

9.2 Cyanobacteria growth phase identification 

 

The final test for the classification technique is the identification of the growth phase 

of a cyanobacteria colony. The data and task are the same as those used in Chapter 4. 
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Each bacteria sample must be placed into one of four growth phase classes. The linear 

time invariant black-box models used in Chapter 4 were only moderately successful, 

obtaining a maximum successful classification rate of 82.3%. The artificial neural 

networks used elsewhere (Shin et al. 2000). obtained a maximum success rate of 

95.1%. The aim of the analysis of this chapter is to compare the efficacy of variations 

on the new parameter extraction technique with the results obtained previously. 

 

 

9.2.1 Experimental data 

 

As discussed in Section 4.2, the experiment considered here involved a single (toxic) 

strain of cyanobacteria, monitored over a 40 day period. As well as electronic nose 

data, information concerning the mean size of the bacterial cells and the biomass 

present in the cultures was recorded using a CellFacts instrument (Microbial Systems 

Ltd.). This enabled the identification of the four distinct growth phases through which 

the bacteria pass during their life cycle. 

 

The experiment in question was intended to not only test the ability of an electronic 

nose to discriminate between the different growth phases of a cyanobacteria strain, but 

also to investigate the reproducibility of the measurements and success rates. For this 

reason the experimental system consisted of three vessels, two containing nominally 

identical cultures of toxic microcystis aeruginosa PCC 7806 in nutrient medium 

(BG11), and one reference vessel containing only the nutrient medium. The 

headspaces of these vessels were connected via a system of pipes and computer-

operated valves to an electronic nose system. The nose system used consisted of six 

commercial metal oxide resistive odour sensors (Alpha MOS, France), and two other 

sensors to monitor ambient temperature (LM35CZ, National Instruments) and 

humidity (MiniCap 2, Panametrics) (Shin et al. 2000). The repeated exposure cycle 

was: 

 

• 50 min - medium only 

• 5 min - medium and toxic microcystis aeruginosa PCC 7806 strain sample 1 

• 50 min - medium only 

• 5 min - medium and toxic microcystis aeruginosa PCC 7806 strain sample 2. 
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The sensor outputs were again sampled every 10 seconds, producing 361,698 data 

vectors corresponding to 548 full exposure cycles. 

 

The information collected using the CellFacts instrument was used to produce a 

‘correct’ classification vector for the data, identifying the four growth phases of the 

bacteria using understanding of the biological processes involved. It should be noted 

that the boundaries between the growth phases were by no means sharp, making the 

manual identification of the phases subjective, and thus the nose data classification 

problem highly non-trivial. Some of the data from the CellFacts instrument are plotted 

in Figure 9.6. 

 

 
 

Figure 9.6 Plot of data from the CellFacts instrument for the growth phase 

identification experiment. The upper plot shows the general increase in biomass (cell 

counts) with time. The lower plot shows the variation in mean size of the bacteria cells 

with time. The four growth phases (lag, log, stationary and late stationary), are labelled 

I to IV in each plot, respectively. 
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9.2.2 Initial model fitting and parameter estimations 

 

The data considered in this section were gathered using the same electronic nose 

equipment as was used for the experiment of Section 9.1. As can be seen from Figure 

9.7, there were considerable variations in the sensor outputs, both diurnally and more 

long-term. 

 
 

Figure 9.7 The output of sensor 3 over the whole growth phase identification 

experiment. 

 

As in Chapter 8 and subsequently Section 9.1 of this chapter, the model discussed in 

Chapter 7 was fitted to single responses of each sensor. As before, bounds for the 

parameters k1f, k1b, ceox, rox, N and q were established such that acceptable model fits 

could be produced for sensor responses to each of the two samples over the entire 

course of the data set. In fact, the parameter bounds established in Section 9.1.2 for 

data from the previous experiment were used as these gave acceptable fitting 
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outcomes. An example of a model fit to a sensor response from this data set is plotted 

in Figure 9.8. 

 
 

Figure 9.8 The response of sensor 6 to an exposure to the second toxic cyanobacteria 

sample, together with a model fit to the data. The data points are plotted as x’s, the 

model fit as a solid line. The r.m.s. error for the fit was 6.91129 × 10-3 V. 

 

 

9.2.3 Parameter estimations for responses throughout the whole experiment 

 

As in Section 9.1, the data set produced by the cyanobacteria growth phase experiment 

was too large for manual parameter estimation runs on each of the sensor responses to 

be feasible. This experiment produced 548 full response cycles, so every twentieth 

response was extracted and used for parameter estimation. This gave a total of 336 

response curves (two cyanobacteria samples, six sensors, 28 responses for each) for 

manual parameter estimation runs. 
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Figure 9.9 Plot of fitted values for k2 (top) and the associated r.m.s. errors (bottom) for 

curve fits to responses of sensor 2 over the duration of the experiment. 

 

If Figure 9.9 is compared with Figure 9.6, there is no clear correlation between the 

fitted k2 values and the biological parameters used to produce the ‘correct’ growth 

phase classifications. 

 

In order to test the discrimination power of the extracted rate constants, black-box 

models were again used. As in Section 4.3, the data were randomly reordered, and then 

multi-input multi-output models were trained and tested on different portions of the 

data set. Due to the relatively small amount of data available (only 28 response data 

vectors for each of the two data sets), 50% cross-validation was not considered 

practical – 14 data vectors spread over four classes is too few. Instead it was decided to 

use 18 data vectors to train the models, and ten for testing. This is still many fewer 

than is ideal, but time limitations prevented the extraction of more parameter values. 
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MIMO models of various structures (FIR, ARX, MAX and ARMAX) were trained and 

tested using the extracted k2 parameter values for both the Toxic 1 and Toxic 2 data 

sets. Due to the small size of the data sets, each model structure was trained and tested 

on 100 different random reorderings of the 28 data vectors. Static pre-processed data 

sets were formed for the same reordered data sets and tested in exactly the same way, 

for comparison. 

 

For each of the data sets, the best model structure was found to be the simplest: an FIR 

model of order 1. This slightly contrasts with the results of Section 4.3, where FIR 

models of orders between one and four were found to produce the highest success rates 

(using static data from the whole growth phase experiment data). This might be 

attributable to the greatly reduced size of the data set. The success rates obtained using 

the extracted parameter values, and the static (pre-processed) data are given in Table 

9.1. 

 

% successful classification 

using 

Toxic 1: Toxic 2: 

k2: 55.0 60.3 

Absolute response: 68.0 60.0 

Difference: 73.2 70.9 

Relative difference: 81.6 82.0 

Fractional difference: 78.6 80.1 

 

Table 9.1 Comparison of the average classification success rates using FIR models of 

order one for extracted k2 values with those using static (pre-processed) data for the 

classification of cyanobacteria growth phase. The rates given are averages over 100 

different random reorderings of the data set. For each reordering, the first 18 data 

vectors were used to train the model, and the remaining 10 to test it. 

 

It is clear from Table 9.1 that the models for the extracted rate constant k2 were 

outperformed significantly by the models for the simple pre-processed static data. The 

correlation coefficients between the fitted values of k2 and the chamber temperature 

varied between 0.0535 and 0.5159 for the different sensors and data sets. Since these 
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figures are low, it is unsurprising that attempting to remove variations in the fitted 

parameter by linear temperature compensation was unsuccessful (producing, in fact, 

lower success rates than the not-compensated values). 

 

 

9.3 Discussion 

 

In this chapter, the parameter extraction techniques established in Chapter 8 were used 

to fit analyte-dependent rate constants to dynamic sensor responses from biological 

experiments involving cyanobacteria samples. In order to do this, assumptions were 

made regarding the application of the model described in Chapter 7 (which describes 

the interaction of a simple odour (i.e. an odour containing a single chemical species)) 

to complex odours. This was necessary, since models describing the interactions 

between the sensors and all potential analyte species would be too complex to be 

useable. 

 

The parameter estimation techniques developed in Chapter 8 were applied to data 

resulting from cyanobacteria experiments. These data have been previously analysed 

elsewhere using artificial neural networks (Shin et al. 2000), and linear black-box 

models (in Chapters 3 and 4), and thus provided a worthwhile test for the technique of 

identifying complex odours via parameter estimation. 

 

The techniques were first applied to data from a bacterial strain identification 

experiment, where the aim was to classify a sample of bacteria as ‘toxic’ or ‘non 

toxic’. As in Chapter 8, it was found that it was necessary to constrain the parameters 

k1f, k1b, ceox, rox, N, and q to lie within fairly tight bounds. However, unlike in Chapter 8, 

with these parameters constrained the remaining (analyte-dependent) parameters k2 and 

ran were not found to be well-determined by the data. There are a number of possible 

reasons for this – the mostly likely seems to be that the cyanobacteria data were 

sampled only once every 10 seconds, compared with the once per second sampling rate 

of the experiments of Chapter 8. This reduced the dynamic information contained in 

the sensor response data, especially near to the start of the sensor response, where the 

initially gradual drop in sensor output value was almost entirely missed. This 

explanation was partially validated by resampling the data of Chapter 8 at a lower 
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frequency and performing parameter estimations with these new data. A similar lack of 

empirical identifiability was then found with the resampled data. 

 

In order to obtain consistent parameter estimates, the value of the parameter ran was 

then also constrained to lie within narrow bounds, leaving k2 then well-determined 

from each sensor response curve, though potentially susceptible to changes in the 

odour signal strength. 

 

The parameter k2 was then estimated for 276 response curves from the cyanobacteria 

strain identification experiment. Plots of extracted k2 values for the two bacteria strains 

showed variations in the estimates that were consistent between the two strains – 

suggesting that they result from variations in ambient conditions (especially 

temperature, which might affect the sensors responses to a given stimulus, and 

possibly more significantly the activity levels of the bacteria and the evaporation rates 

of odourant chemicals given off by the samples). The variations in the estimates for k2 

over the duration of the experiment meant that a simple rule-based discrimination 

algorithm (as was successful for the data in the previous chapter) would no longer 

yield successful results. Instead, linear black box models were applied to the extracted 

k2 vectors (one value per sensor). The discrimination ability of the technique was tested 

using 50% cross validation – training on 23 test vectors, and testing on the remaining 

23. Low order (order two) FIR models for static (pre-processed) data were able to 

correctly classify between 21 and 23 of the 23 test data points depending on the choice 

of pre-processing algorithm. An FIR model of order two for the k2 data produced 22 

out of 23 successful classifications. Extending the model to an ARX model (order one 

for the B polynomial, and two for the A polynomial) produced 100% successful 

classification on the test set. 

 

Investigations of the relationships between the fitted k2 values and the outputs from the 

ambient temperature and humidity sensors showed a significant correlation between k2 

and the temperature, but no great correlation between k2 and the humidity sensor 

output. Linear temperature compensation was performed (as described in Section 

8.3.2) on the fitted k2 values. The compensated k2 values were tested using black box 

models, as before, and they were found to produce perfect (23 out of 23) successful 

classification results on the test set using an FIR model of order two. This represents 
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an improvement over the results obtained using the not-compensated k2 values, since 

the model complexity required to produce 100% success is less. This might be 

attributed to the fact that the bacterial activity levels could be expected to increase with 

increasing temperature, so that the ‘strength’ of the odour would be expected to vary 

with changes in temperature. Compensating for changes in k2 with temperature might 

thus provide an indirect (and partial) compensation for the ‘strength’ of the odour – 

something otherwise lacking due to the constraints placed upon ran. It should be noted 

that the improvement in the model successes effected by this temperature 

compensation were slight, and should not be regarded as conclusive evidence that such 

a practice should always be expected to be successful. 

 

For the second test data set, the parameter k2 was estimated for 336 response curves 

from the cyanobacteria growth phase identification experiment. For this experiment, 

the aim was to classify samples from two nominally identical toxic bacteria colonies 

into one of four growth phases, as described in Section 9.2.1). As with the strain 

identification experiment, very good model fits were obtained using a range of 

different parameter values for a given response, so the system parameters and the 

analyte-dependent parameter ran were again constrained to lie within fairly tight 

bounds.  

 

Due to the relatively small number of extracted rate constants (336 spread across two 

cultures and six sensors – thus 28 k2 vectors per culture, incorporating all four growth 

phases) a 50% cross validation model testing regimen was deemed inappropriate. 

Instead, for each culture, 18 vectors were used for training and 10 for testing. Clearly 

the order of the samples was crucial due to the temporal progression of the cultures 

through their growth phases, so 100 different random reorderings were used, and the 

average results taken. 

 

MIMO models of various structures and orders were used, and compared with their 

equivalents using corresponding static data. Simple FIR models of order one were 

found to produce the best success rates, of 55% for the ‘Toxic 1’ culture and 60.3% for 

the ‘Toxic 2’ culture using the extracted k2 values. These results were inferior to those 

obtained using static data – the best of which were 81.6% for the ‘Toxic 1’ culture and 

82% for the ‘Toxic 2’ culture (both using the relative difference pre-processing 
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algorithm). Temperature compensation was found to produce no improvement in 

success rates for the models for extracted k2 values. 

 

 

9.4 Conclusions 

 

There are a number of possible causes for the relative lack of success of the models for 

the extracted k2 rate constants. As mentioned before, the sampling rate of these data 

was too low to capture some of the features of the dynamic responses of the sensors. 

This may have been the cause of the noted lack of empirical identifiability of the 

analyte-dependent parameters in the model, and thus allowed external variations 

(which might have been taken care of in corresponding variations in ran) to be carried 

through into variations in the fitted values of k2. The theoretical (at least local) 

identifiability was established in Chapter 7, suggesting that all of the parameters in the 

model (both system and analyte parameters) could perhaps be estimated from 

experiments without the need to constrain many of the parameters to lie within tight 

bounds. This result was not mirrored in the practical investigations of this (and the 

previous) chapter. It may be the case that by employing different experimental 

protocols (such as a higher sampling rate, different form of analyte input) this may be 

rectified. Alternatively, reliable estimates for some of the parameters might be 

obtained through separate experiments (for example experiments involving no analyte 

as such, but varying concentrations of oxygen in the carrier gas to estimate the oxygen 

reaction rate constants more accurately). Also, the experimental set-up used had 

significant volumes in the gas delivery system, making the dynamics of the gas 

delivery system difficult to isolate from the dynamics of the sensor responses. The 

odour input to the sensors was assumed to have a square profile, though this is almost 

certainly not accurate due to diffusion effects in the pipework and sensor chamber. If a 

system could be used with very low volumes between the sample and the sensors then 

the dynamics of the sensor responses could almost all be attributed to the 

electrochemical reactions rather than gas diffusion effects. 

 

There is also perhaps scope for performance improvements through dynamic pre-

processing of the data, to attempt to remove effects of variations in the strength of the 

odours (resulting from temperature changes or other influences). Array normalisation 
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or scaling with a reference sensor prior to parameter estimation might produce more 

consistent estimates for the reaction rate constant k2. It should also be noted that the 

training and test sets were smaller than desired, especially for the growth phase 

experiment. The development of a more automated parameter estimation procedure 

would allow the evaluation of the technique using much larger data sets. 

 

To conclude, the technique of identifying odours based on extracted rate constants 

from a physical model for the electronic nose system which showed promise when 

applied to simple odours was able to produce perfect classification results for the data 

from the cyanobacteria strain identification experiment. However, it did not deliver 

improved results for the more challenging cyanobacteria growth phase experiment. It 

has nonetheless provided valuable insights into the experimental design and data 

analysis tools which might be required to produce great improvements in the results 

produced by this technique. 
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Chapter 10  
Conclusions 
 

In this thesis, a variety of techniques for odour classification using the dynamic 

responses of arrays of metal oxide sensors have been developed and analysed. 

 

 

10.1 Black box modelling 

 

In Chapter 3, linear time-invariant black box models were applied to the analysis of 

data from a cyanobacteria strain identification experiment. The data had previously 

been analysed using artificial neural networks, in Shin et al. 2000, where the best-

performing neural networks (a nonlinear Fuzzy ARTMAP network) produced 100% 

successful classification rates. Techniques for applying black box models for both 

static (steady-state) pre-processed and dynamic data were developed and tested on the 

cyanobacteria data. It was found that very simple, low order models were able to 

produce perfect classification rates using 50% cross validation of static data. With 

dynamic data, the black box models gave successful classification rates of up to 

99.3%. The success rates achieved demonstrate the suitability of linear black box 

modelling techniques for both static and dynamic data for simple classification 

problems with complex biological odours. 
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In Chapter 4, the techniques developed in Chapter 3 were extended and applied to a 

second set of cyanobacteria data. Here the classification problem was more 

challenging – to identify the growth phase (of which there are assumed to be four) of a 

culture of a single strain of cyanobacteria. The boundaries between the four growth 

phases were found to be not very well-defined, and were subjectively assigned (based 

on data from the ‘CellFacts’ instrument) for the purposes of model training. Again, this 

data set had previously been analysed elsewhere using nonlinear neural networks. The 

best networks were reported to achieve a successful classification rate of 95.1% (Shin 

et al. 2000). For this application it was found that the linear black box models were not 

able to match the artificial neural networks. Black box models for the static data 

produced maximum success rates of 82.3%. Models for dynamic data achieved a 

76.6% success rate. 

 

Thus it has been demonstrated that the linear black box models, for both static and 

dynamic data, can achieve excellent classification success rates when analysing 

complex odours. However, when the set of classes is not well-separated, other 

techniques, such as the use of nonlinear artificial neural networks, may outperform 

them. For the data sets considered here, the black box models for static data generally 

produced better results than those for dynamic data. This might suggest that the static 

responses of the sensors in the array carry more significant discriminatory information 

than the dynamic, or perhaps just that the linear black box model structures used were 

better suited to the static data. Since the processing power required to implement these 

linear black box models is minimal, this technique might be an attractive choice for use 

in low cost handheld devices for relatively simple classification applications. 

 

There are a number of possible extensions to the work on linear black box models 

presented here. One of the potential causes of the limitations of the technique is the 

linearity of the models, and the nonlinearity of the sensor response processes. There 

are nonlinear system identification techniques that might produce improved 

classification performances. For both the static and dynamic models, the criteria used 

during the parameter estimation (training) stage were not precisely the same as those 

used for evaluation of the model performance, so it is plausible that a modification of 

the training algorithms might also yield improvements. The time-invariant nature of 

the models may also have had a restricting effect on their performance, so another 
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possible extension of the work might be to investigate the use of time-varying or self-

re-calibrating analogues of these models. 

 

 

10.2 Models based on the physical system 

 

In Chapter 7, a physical model for the electrochemical mechanism governing the 

response of MOS sensors was presented. This mechanism was converted into a system 

of coupled nonlinear ordinary differential equations. These equations were analysed 

and reduced to a simpler, equivalent system. The observability and controllability of 

the system were established using the ORC and CRC respectively. The identifiability 

of the system was investigated, and it was found that, after reparameterisation, the 

system could be shown to be at least locally identifiable. This provided the theoretical 

basis required for confident attempts to estimate the parameters in the model from 

experimental data. 

 

 

10.3 Classification by parameter extraction 

 

The experimental test system described in Chapter 5 was used to conduct some long-

term experiments and produce high quality data from two simple odours: acetone and 

isopropyl alcohol. In Chapter 8, the model presented and analysed in Chapter 7 was 

used to produce curve fits to sensor responses to these simple odours. The model was 

found to be capable of producing excellent curve fits to the data (with a typical r.m.s 

error of approximately 0.1%). Despite the theoretical results obtained in Chapter 7, the 

task of estimating the parameters of the model to fit the experimental data was found to 

be challenging. It was found that, for a given sensor response curve (i.e. the response 

of a sensor to a single odour exposure), the values of the full set of model parameters 

were not well-determined. Thus highly satisfactory curve fits could be obtained using a 

range of different parameter sets. This posed a problem since the intention was to 

classify odours based upon parameter estimates calculated from responses to unknown 

odour samples. 
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The majority of the parameters in the system model relate to aspects of the system that 

do not depend (or at least are assumed not to depend) upon the odour sensed. Thus, it 

was found that these parameters could be constrained to lie within fairly tight bounds, 

with only the analyte-dependent parameters allowed to vary widely for different 

response curves. With the analyte-independent parameters constrained, it was found 

that the remaining analyte-dependent parameters, namely ran and k2, were well-

determined by the experimental response curves, and could be repeatably extracted 

from the data. 

 

The parameter k2 corresponds to a rate constant in the electrochemical reaction 

mechanism, so is the primary parameter which (according to the postulated model) 

distinguishes analytes. In contrast, ran corresponds to the rate of input, or ‘strength’, of 

the analyte. For a laboratory-based experiment where the signal is consistent, the 

information carried in this parameter may aid with the separation of classes, however 

this could not be assumed to be the case in real-world applications where the strength 

of the signal might vary widely. The parameter k2 was extracted from responses of a 

single MOS sensor over a period of about 13 days, during which time the sensor 

response changed considerably. It was found that excellent separation of the two 

classes was achieved, using only this single parameter, from a single sensor. Thus a 

simple rule-based algorithm applied to the k2 data was able to produce a 100% 

successful classification rate. By contrast, none of the pre-processed steady-state 

parameters extracted from the same data showed comparable separation over the 

course of the experiment. It was also found that linear temperature compensation of the 

extracted k2 values produced slight, though not significant improvements to the 

consistency of the extracted parameter values over the course of the experiment. 

 

This showed that, at least for this data set, the extracted parameter k2 provided a more 

stable description of the sensor response, and produced superior classification 

performance. However, the classification of a simple odour into two classes was not a 

particularly challenging test of the newly-developed technique (indeed when pre-

processed steady state data from all four MOS sensors were analysed using the black 

box models described in the earlier chapter, perfect classification results were also 

obtained), so the technique was applied to more challenging odour discrimination 

applications. 
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In Chapter 9, the data from cyanobacteria experiments analysed in Chapters 3 and 4 

was used to test the suitability of the newly-developed parameter extraction technique 

of Chapter 8 for the analysis of complex odours. This provided a difficult test for the 

new technique, as well as results for comparison with the other techniques previously 

used (i.e. the linear black box models for static and dynamic data earlier in this thesis, 

and the nonlinear artificial neural networks used elsewhere (Shin et al. 2000)). 

 

As mentioned, in Chapter 8, once the nose-dependent parameters had been heavily 

constrained, the two remaining nose-dependent parameters k2 and ran were well-

determined by the experimental data. For the bacteria experiment data, in Chapter 9, 

this was not found to be the case. It was found to be necessary to further constrain ran 

in order to obtain repeatable estimates for k2 from the curve-fitting process. This was 

undesirable since it could be expected to remove the ability of the technique to 

‘automatically’ compensate for variations in the strength of the odour signal, and 

perhaps to a lesser extent, variations in the ‘perceived’ strength due to drift or 

poisoning of the sensor. However, it was unavoidable, since otherwise estimates for k2 

would have been inconsistent and not repeatable, and so odour classification based on 

k2 would have been impossible. 

 

With ran constrained, estimates for k2 were produced from responses of the six MOS 

sensors used. The estimated values for k2 for individual sensors did not show good 

separation between the two classes, so linear black box models were applied to the 

extracted k2 values from the full array of six sensors. Using an FIR model of order 2 

gave 22 successful classifications out of 23 (using 50% cross validation). Extending 

the model to an ARX model produced a 100% successful classification rate. A 

correlation was found between the extracted k2 values and the recorded temperature. 

This was used to produce temperature-compensated k2 vectors. The use of these 

temperature-compensated values for k2 produced 100% successful classification using 

an FIR model of order 2. For comparison, using the same sensor responses, standard 

steady state pre-processed data vectors were produced (as in Chapter 3) and tested 

using the same black box model structures. These were also able to produce success 

rates of up to 100%. 
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For the cyanobacteria growth phase data set, excellent curve fits were again obtained 

using the model. As with the strain data, it was necessary to constrain ran to lie within 

fairly tight bounds. The parameter k2 was estimated from 336 response vectors related 

to exposure to two (nominally identical) cultures. Thus there were 28 response vectors 

per culture, per sensor, spread over the four growth phases. Given this small number, it 

was decided to use 18 vectors for training, and the remaining 10 for testing. The choice 

of training and testing sets was made randomly, 100 times, and the average success 

rates used. 

 

Black box models for the extracted k2 values produced successful classification rates of 

55% for the ‘Toxic 1’ culture, and 60.3% for the ‘Toxic 2’ culture. This did not 

compare well with the results obtained on the same data sets using pre-processed static 

data: 81.6% and 82% for the ‘Toxic 1’ and ‘Toxic 2’ cultures respectively. 

Temperature compensation of the extracted k2 values produced no improvement in the 

success rates obtained. 

 

There are a number of possible reasons for the lack of success of the parameter 

extraction technique when applied to the growth phase identification problem. One 

possible reason is the low sampling rate employed for the recording of the sensor data 

(0.1 Hz compared with 1 Hz for the simple odour experiments analysed more 

successful in Chapter 8). It may be the case that this low frequency sampling was 

responsible for the lack of empirical identifiability, and this in turn prevented the 

automatic ‘compensation’ for variations in odour signal intensity (via free estimates for 

the parameter ran). There was significant variation in the magnitudes of the sensor 

responses over the duration of the experiment. Some of this may be due to changes in 

the bacterial activity levels as a result of their changing growth phase, but some may 

be due simply to changes in the ambient temperature (resulting both in differing 

sample headspace concentrations, and in differing sensor sensitivities). Were these 

effects to be isolated, one might expect the growth phase classification performance to 

improve. Another possible reason for the relatively poor results might be simply the 

lack of training data used, or the method of analysing the extracted data vectors. It may 

be the case that linear black box models might not be the most appropriate for 

classification systems based on extracted k2 values. 
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The research detailed in this thesis has suggested a number of ways in which the 

parameter extraction technique developed here might be improved. The physical 

configuration of the hardware used made it difficult to isolate the dynamics of the 

different components of the system. The relatively high volume of the gas delivery 

system matched with relatively low gas flow rates meant that diffusion and mixing 

effects in the system between the sample headspace and the odour sensors may well 

have had a significant effect on the recorded sensor outputs. Faster flow rates could not 

have been used since this would have degraded the sample headspace over the course 

of the exposure, so that the concentration being sampled was not constant. One 

solution to this would be to use much larger samples and headspaces, though this 

would not necessarily be feasible in all applications. A better solution would be to 

employ a different hardware configuration where there was very little volume between 

the sample headspace and the odour sensors. Another alternative would be to use 

faster-responding sensors, so that faster gas flow rates could be used with less 

degradation of the sample headspace. 

 

In order to capture the relevant dynamic information for odour classification, the data 

recording rate must be sufficiently high to record the fastest relevant changes in the 

sensor outputs. It seems likely that this was not the case for the cyanobacteria strain 

and growth phase experiments (these experiments were designed with the intention of 

using only static information, hence the low sampling rate). The designers of future 

experiments should ensure that the sampling rate used is adequate. There is also 

perhaps scope for the use of extra experiments (perhaps involving varying the 

concentration of oxygen in the carrier gas) in order to obtain high quality estimates for 

some of the analyte-independent parameters in the model. This might produce better 

estimates for these parameters than attempt to estimate all of the model parameters at 

once, and thus make the analyte-dependent parameters more reliably and accurately 

estimable from experimental data. 

 

There is a lot of potential for progress in the analysis of the dynamic data recorded. 

The parameter estimation technique used here required a great deal of laborious 

manual intervention and data manipulation in order to extract the parameters for each 

sensor’s response curve. This fact severely limited the amount of data available for 

data model building and evaluation. A software system which could automate this 
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process and thus produce much larger data sets would permit a much more thorough 

investigation and evaluation of the potential of the technique. For the cyanobacteria 

data sets, the extracted k2 vectors were analysed using linear black box models. This 

was done in order to provide a direct comparison with the previous work using pre-

processed steady state data. However, there are a great many other techniques which 

might be applied to the k2 data, which might yield success, such as artificial neural 

networks, SIMCA, etc. (see Chapter 2 for details of these techniques). It is also 

feasible that a system using some combination of steady-state parameters and extracted 

dynamic parameters might produce superior performance to systems using just one or 

the other. 

 

 

10.4 Final remarks 

 

To conclude, it has been shown that linear black box models for both static and 

dynamic data are capable of matching the best nonlinear artificial neural networks, and 

producing excellent classification results (up to 100% success rates) with the 

cyanobacteria strain identification data set. This suggests that this essentially simple 

technique might be useful in a wide range of applications involving complex odours, 

where the number of classes is small and reasonably well separated in sensor space. 

 

It has also been shown that for the more challenging cyanobacteria growth phase 

identification experiment, the simple linear techniques employed here were 

outperformed by nonlinear neural networks elsewhere. This suggests a limitation on 

the capabilities of the black box modelling technique for this type of application. For 

this data set, it was also demonstrated that the black box models for the pre-processed 

steady-state data produced superior results to those for the dynamic data. 

 

An ODE model for the dynamic responses of MOS sensors to odour stimuli was 

proposed and analysed. It was established that the model was (at least locally) 

identifiable, and thus potentially usable for odour classification by parameter 

extraction. 
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Excellent curve-fits of the model to experimental data were produced. A method for 

extracting the most significant analyte-dependent parameter from experimental data 

was developed. This method was applied with great success to data from experiments 

involving simple odours – producing 100% successful classification results. The 

method was also applied to cyanobacteria strain and growth phase experiments. For the 

strain identification data, once again, 100% success rates were achieved. However, for 

the growth phase identification problem, the success rates were only around 55% – 

60%. This was inferior to results obtained elsewhere using nonlinear artificial neural 

networks, demonstrating that further work is required. 

 

It is anticipated that, with developments in sensor technology, hardware design, and 

data processing, this technique could evolve into a more versatile and powerful tool for 

odour classification than any that are currently available. The approach of mechanistic 

modelling rather than the more common data-driven techniques, allows the 

incorporation of knowledge about the mechanisms involved, and permits the creation 

of a much more efficient, versatile and extensible odour classification system. 
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Let Ch be the concentration of odour gases in the headspace,  be the flow rate of gas 

through the headspace, C

&Qh

hs the saturated concentration of odour gases and ke an 

evaporation rate constant. Then, the physical system relevant to the odour generation 

stage of the nose system can be described by the following first order ordinary 

differential equation: 
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Separating variables gives: 
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and so, after integrating, 
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Taking exponentials and rearranging gives 
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Further rearrangement, and substitution of the initial condition that initially the 

headspace is saturated (i.e. Ch(0) = Chs) gives the solution of the differential equation: 
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Mathematica output 
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