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Summary 
 

This PhD thesis reports on the potential application of an electronic nose to 
analysing the quality of potable water. The enrichment of water by toxic 
cyanobacteria is fast becoming a severe problem in the quality of water and a 
common source of environmental odour pollution. Thus, of particular interest is the 
classification and early warning of toxic cyanobacteria in water. This research reports 
upon the first attempt to identify electronically cyanobacteria in water. The 
measurement system comprises a Cellfacts instrument and a Warwick e-nose 
specially constructed for the testing of the cyanobacteria in water. The Warwick e-
nose employed an array of six commercial odour sensors and was set-up to monitor 
not only the different strains, but also the growth phases, of cyanobacteria. A series of 
experiments was carried out to analyse the nature of two closely related strains of 
cyanobacteria, Microcystis aeruginosa PCC 7806 which produces a toxin and PCC 
7941 that does not. Several pre-processing techniques were explored in order to 
remove the noise factor associated with running the electronic nose in ambient air, 
and the normalised fractional difference method was found to give the best PCA plot. 
Three supervised neural networks, MLP, LVQ and Fuzzy ARTMAP, were used and 
compared for the classification of both two strains and four different growth phases of 
cyanobacteria (lag, growth, stationary and late stationary). The optimal MLP network 
was found to classify correctly 97.1 % of unknown non-toxic and 100 % of unknown 
toxic cyanobacteria. The optimal LVQ and Fuzzy ARTMAP algorithms were able to 
classify 100% of both strains of cyanobacteria. The accuracy of MLP, LVQ and 
Fuzzy ARTMAP algorithms with 4 different growth phases of toxic cyanobacteria 
was 92.3 %, 95.1 % and 92.3 %, respectively.  

A hybrid e-nose system based on 6 MOS, 6 CP, 2 temperature sensors, 1 
humidity sensor and 2 flow sensors was finally developed. Using the hybrid system, 
data were gathered on six different cyanobacteria cultures for the classification of 
growth phase. The hybrid resistive nose showed high resolving power to discriminate 
six growth stages as well as three growth phases. Even though time did not permit 
many series of the continuous monitoring, because of the relatively long life span 
(30–40 days) of cyanobacteria, improved results indicate the use of a hybrid nose. The 
HP 4440 chemical sensor was also used for the discrimination of six different 
cyanobacteria samples and the comparison with the electronic nose. The hybrid 
resistive nose based on 6 MOS and 6 CP showed a better resolving power to 
discriminate six growth stages as well as three growth phases than the HP 4440 
chemical sensor. Although the mass analyser detects individual volatile chemicals 
accurately, it proves no indication of whether the volatile is an odour. 

The results demonstrate that it is possible to apply the e-nose system for 
monitoring the quality of potable water. It would be expected that the hybrid e-nose 
could be applicable to a large number of applications in health and safety with a 
greater flexibility. 
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Chapter 1 

 

Introduction 

 

 The purpose of this chapter is both to introduce the electronic nose technology 

upon which the research is based and provide an outline of this thesis. The term 

‘electronic nose’ describes an electronic system that is able to mimic the human sense 

of smell [1].  Electronic noses have been the subject of much research at the 

University of Warwick over the past 17 years [2]. The research described here covers 

the development of an electronic nose system to analyse water quality, based upon a 

hybrid modular approach, which consists of an array of metal oxide semiconductor 

resistive gas sensors and conducting polymer gas sensors.   

 

1.1 Electronic Nose Technology  

Generally, the system comprises the chemical sensor array, signal interfacing 

electronic units, and a pattern recognition sub-system. At present many applications 

of electronic nose have been reported [3-30]. This has led to improvements in both 

sensor technology and pattern recognition techniques resulting in several commercial 

electronic nose systems. These systems use a number of different gas sensors 

depending on the applications, e.g. metal oxide chemoresistors, conducting polymer 
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chemoresistors, SAW devices, and catalytic gate MOSFETs. Some commercial 

electronic nose systems reported to date are listed below in Table 1.1.  

 

Table 1.1 Some commercial electronic noses (at Sept. 1999). 

Product name Supplier Sensor type(s) No. of 
odour 
sensors 

    
Fox 3000/4000/5000 
αCentauri 
αPrometheus 

Alpha MOS, 
France 

Metal Oxide Resistive, SAW, 
Conducting Polymer 
Resistive 

6/12/18 

    
AromaScanner Osmetech., UK Conducting Polymer 

Resistive 
32 

    
Olfactometer HKR Sensor System 

GmBH, Germany 
Quartz Microbalance 
 

6 

    
eNOSE 5000 EEV Ltd, UK Metal Oxide Resistive, BAW 

Conducting Polymer 
Resistive 

12 

    
MOSES II [3] Lennartz Electronics 

GSG, Germany 
Quartz Microbalance,  
Metal Oxide Resistive,  
Calorimeter, 
Electrochemical Sensor 

24 

    
Nordic Electronic  
Nose 

Nordic Sensor AB, 
Sweden 

MOSFET,  IR CO2 sensor, 
Metal Oxide Resistive 

15 

    
The Rhino Mosaic Industries 

Inc., USA 
Metal Oxide Resistive 4 

    
BH 114 [4] Bloodhound Sensors 

Ltd, UK 
Conducting Polymer 
Resistive 

14 

    
Scentinel Mastiff Electronic 

Systems Ltd, UK 
Conducting Polymer 
Resistive 

16 

    
Hand held Electronic 
Nose 

Cyrano Science Inc., 
USA 

Composite Resistive Polymer 32 

 

While classical gas chromatograph (GC) / mass spectroscopy (MS) techniques 

separate, quantify and identify individual volatile chemicals, they cannot tell us 
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whether the compounds have an odour. Therefore the electronic nose was developed 

not to replace traditional GC/MS analytical instrumentation or indeed human sensory 

analysis, but to augment these. The electronic nose allows people to transfer expert 

knowledge from highly trained sensory panels and very sophisticated analytical 

techniques to the production floor for the control of quality. Researchers are at present 

developing the second generation of artificial electronic nose that will be smaller and 

cheaper and thus will also find applicability in the consumer marketplace. A more 

detailed description of the electronic nose system is given in chapter 2. 

 

1.2 Applications of the Electronic Nose System 

During the past few years, the food and beverage industries have been the largest 

users of electronic nose technology [5].  Table 1.2 summarises some of the reported 

applications of electronic noses (research and commercial) pertaining to the food 

industry which are listed from seafood, such as oysters and squid, through to cheeses, 

such as cheddar. At present, the broad range of applications for electronic noses is 

constantly expanding on the market of several competing electronic devices. By the 

automated identification of volatile chemicals, the electronic nose can assess an 

aroma for many purposes, which include the grading of larger, beers and whiskeys [5, 

6, 7], identifying perfumes [8], controlling cheese ripening, evaluating seafood quality 

[5, 6, 9] and the grading of coffee beans [6]. The product packaging, pharmaceutical, 

environmental [3], petrochemical, agricultural [5, 10], personal care and medical area 

[4, 11]  also  use electronic noses.  Continuous process control systems, food security,  

Table 1.2 Some reported applications of electronic noses in the food industry.    

Food Test Sensors/type Year [Ref.] 

    
Seafood (oyster, sardine, squid) Freshness 1/MOS†

 1991 [12] 
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Fish (cod, haddock) Freshness 4/MOS 1992 [13] 
    
Fish Freshness 1/MOS†

 1994 [14] 
    
Fish (trout) Freshness 8/EC 1994 [15] 
    
Grains Classification 15/mixed 1995 [16] 
    

Ground Pork/Beef Discriminate and effect  
of ageing 15/mixed 1993 [17] 

    
Boar Taints in meat 14/MOS 1995 [18] 
    
Sausage meats Discriminate 6/MOS 1995 [19] 
    
Food Flavours (orange, apple, 
strawberry, grape, peach) 

Flavour identification 8/BAW 1993 [8] 

    
Wheat Grade quality 4 x 4/EC 1993 [20] 
    
Wheat and Cheese Discriminate and ageing 20/CP 1994 [21] 
    
Tomatoes Effect of irradiation  

and stress 
7/mixed 1995 [22] 

    
Cheese Maturity of cheddars 20/CP 1997 [23] 
    
Cheese Discriminate 8/CP [24] 

†Strictly not an electronic nose (as defined here) but an odour monitor. Key: MOS = 
Metal Oxide  Semiconductor, EC = Electrochemical, BAW = Bulk Acoustic Wave, 
CP = Conducting Polymer. 
 
 
environmental monitoring and medical diagnosis areas are quite likely to be the 

promising application fields of electronic noses in the near future. Monitoring of the 

spoilage of foodstuffs is closely related to monitoring the growth of bacteria, in a 

certain medium. In other words, an electronic nose may be able to recognise 

characteristic smells from diseases and bacteria cells due to cell metabolism which is 

the biological oxidation of organic compounds, such as glucose (C6H12O6), to yield 

ATP and secondary metabolites, as shown in Figure 1.1. There is now great interest in 

the clinical application of an electronic nose; that is in the ability of an electronic nose 
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to diagnose illness. It is well-known that certain diseases are associated with  

characteristic smells, for example, diabetes produces the sweet smell of acetone on 

the breath and stomach ailments are often associated with halitosis. Other diseases, 

like cancers associated with the lungs, liver and intestine can also produce 

characteristic odours. Some reported clinical applications of electronic noses are 

listed in Table 1.3. 

The Sensors Research Laboratory (SRL) group at Warwick University has 

carried out a number of experiments on the uses of electronic noses for medical 

applications: (i) the identification of pathogens that cause infectious disease of the 

upper respiratory tract and ears [25, 26]; (ii) diagnosing the presence of sub-clinical or 

clinical ketosis from the breath of dairy cows [28]. Recently, the electronic nose has 

been used as a new analytical tool that enables electronic olfactory discrimination and 

recognition in the water treatment industry. So far, water analysis has been carried out   

 

O2

     Nutrient 
such as glucose Energy

 Secondary 
 metabolytes 

H2O

CO2

 
       Fig. 1.1 Schematic diagram of the bacteria cell metabolism. 

 
Table 1.3 Some reported applications of electronic noses in medical diagnostics.           

Pathogens Application Sensors Group Year [Ref.] 

6 micros ENT Infections 6 MOS Warwick 1994 [25] 
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4 micros ENT infections 6 MOS Warwick 1997 [26] 

13 micros Various 16 CP Leeds 1996 [27] 

Dietary problem Ketosis in cows 6 MOS Warwick 1997 [28] 

Bacterial vaginosis Vaginal infection 32 CP UMIST 1997 [30] 

E. coli; S. aureus Infections 6 MOS Warwick 1998 [11] 

E. coli; Human factor VII Batch process MOSFET Linkoping 1998 [31] 

Key: ENT = Ears, Nose and Throat, E. coli = Eschericha coli, S. aureus = 
Staphylococcus aureus.  
 

mostly by analytical instruments, which are based on liquid chromatography or 

optical microscopy in liquid phase. These instruments may give precise analytical 

data, but in most cases they need several days for data analysis. This disadvantage 

makes clear the importance of the electronic nose, employing gas sensors, as an 

alternative to analytical instrument and supports trials to replace if gas sensors can 

detect and classify odour components in water. The SRL group had applied the 

adaptive back propagation technique for the classification of several types of Severn 

Trent water and three types of mineral water using a 4-element electronic nose and 

the results were encouraging [29]. 

 

1.3 Objectives of the Project 

The objectives of the project were to design an electronic nose, based upon a 

hybrid modular sensor system, and to construct a measurement system for the 

monitoring of the quality of potable water with data acquisition via virtual 

instrumentation (LabVIEW) and artificial neural networks.  
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Previously, Craven [26] reported on the use of an array of 6 MOS sensors to 

predict the class and phase of two potentially pathogenic micro-organisms, 

Eschericha coli (E. coli) and Staphylococcus aureus (S. aureus). The type and the 

growth phase of bacteria was correctly predicted for 96% and 81% of all samples 

taken during a 12 h incubation period, respectively. The results for the clinical 

application were promising but the flexibility in the choice of sensors and sensor 

materials was limited because he used a MOS array only.  

Here a hybrid sensor system comprising a MOS array and a CP array has lead 

to a system with greater flexibility for the general aim of electronic noses. A number 

of different sensor technologies, sensor chambers and odour pattern recognition 

techniques have been investigated for the application of assessing water quality. The 

purpose being to correlate the odorous headspace of water to cyanobacteria1 strain 

and growth phase. 

 The enrichment of water by inorganic plant nutrients is becoming both a 

severe problem in maintaining water quality, and a common source of odour pollution 

[32, 33]. Thus, it is very important to identify cyanobacteria in water, which can cause 

serious nuisance from an unpleasant odour and, in the case of reservoirs, taste. Many 

species of cyanobacteria have been observed to produce toxins, thus rapid analysis to 

detect and quantify these toxins in natural waters is also required.  

  
1The cyanobacteria (blue-green algae) are the largest group of photosynthetic prokaryotes 

(Whitton, 1992) and contain chlorophyll which differ from the bacteriochlorophylls of the 

photosynthetic eukaryote. It is derived from the Greek for blue (Kyanos) because of their characteristic 

blue-green colour. 

This research covered the first attempt to identify cyanobacteria in water made 

with an electronic nose. The modified Warwick Fox 2,000 has been used for the 
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continuous monitoring of the growth of cyanobacteria over a period of 40 days [34, 

35]. 

 

1.4 Outline of Thesis 

 This thesis is presented in two parts. In the first part, an electronic nose, 

comprising an array of six commercial odour sensors, has been used to monitor not 

only different strains, but also the growth phase, of cyanobacteria (i.e. blue-green 

algae) in water. In the second part, it outlines the modification of the electronic nose 

system to include a new sensor chamber with conducting polymer sensors, hence 

producing a hybrid electronic nose for superior discrimination. 

Chapter 1 contains a brief description of the electronic nose technology 

including the various applications reported so far. It highlights the potential 

importance of the electronic nose employing gas sensors for the monitoring of an 

environmental problem such as water enrichment. 

 Chapter 2 is a review of electronic nose systems. It details a historical 

background of the electronic nose, odours and a mammalian olfactory system and an 

artificial olfactory system.  

 Chapter 3 describes the original experimental set-up for applying the 

electronic nose to water analysis. This describes the procedures for testing and 

characterisation of the modified Fox 2,000 system, the methods of data collection, and 

the characterisation of a discrete thin film sensor.  

Chapter 4 describes the initial data analysis, which consists of data processing 

and classification using MATLAB and NeuralWorks Professional II/Plus 

(NeuralWare Inc., USA). Principal component analysis (PCA), three supervised 

classifiers, multi-layer perceptron (MLP), learning vector quantisation (LVQ) and 
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Fuzzy ARTMAP were used to explore the data and classify the cyanobacteria samples 

in water. 

 Chapter 5 details the design and fabrication of a new sensor chamber and other 

modifications to the electronic nose. Although a MOS-based sensor array - based on 

one class of sensor - is good for the simplicity of the electronic nose system, its range 

of application was found to be limited. Therefore a mixed or hybrid array comprising 

different types of sensor, such as MOS and conducting polymers was investigated. 

This chapter also describes further a second set of experiments carried out after the 

modification of the electronic nose system. 

 Chapter 6 describes a HP 4440 chemical sensor, which has been installed to 

determine the gases present. The relevant performances of the two units, the 

electronic nose and the HP 4440 chemical sensor, are examined from the 

classification of cyanobacteria samples.  

 Chapter 7 contains the principal conclusions drawn from the results achieved. 

Also possible future explorations are discussed.   
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Chapter 2 

 

Review of Electronic Nose System 

 

 The objective of this chapter is to detail a historical background of the 

electronic nose, the chemical properties of odours, a mammalian olfactory system and 

an artificial olfactory system.  

Until recently, the mammalian nose has been the best sensing system to 

discriminate odours, such as foods, beverages and perfumes. The structure of the 

mammalian olfactory system can be crudely compared with an electronic system, 

which is composed of various kinds of sensors, and an artificial neural network 

system. Three distinct phases - detection, signal processing and 

recognition/interpretation - of activity allow the mammalian nose to detect, analyse 

and react to changes in the smell of its environment. Attempting to detect complex 

odours by conventional analytical techniques is not only very expensive but 

sometimes impossible. It is therefore not surprising that traditional (organoleptic) 

methods of odour assessment are still in use. Recently, significant interest in the use 

of electronic nose systems instead of human sensory systems has arisen. Here the 

brief history and technology of electronic nose systems are introduced. Also the 

relationship between mammalian and artificial olfaction is outlined. 
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2.1 Historical Review of an Electronic Nose 

Gardner and Bartlett [1] defined an 'electronic nose' as: ‘an instrument, which 

comprises an array of electronic chemical sensors with partial specificity and an 

appropriate pattern recognition system, capable of recognising simple or complex 

odours’. Lundström et al. [2] described it as: ‘an electronic nose consists of an array 

of gas sensors with different selectivity patterns, a signal collecting unit and pattern 

recognition software applied to a computer’, but there are also various synonyms such 

as artificial olfactory system, odour monitor, odour-sensing system, mechanical nose, 

and artificial intelligent nose. In this research, the term, ‘electronic nose system’, is 

used to avoid confusion. Research on electronic noses began at the University of 

Warwick in 1982 [3], although the use of the term 'electronic nose' appeared in 1985 

[4] and it was also specifically used at a conference [5, 6]. The first work of an 

experimental instrument performed in this area was reported in 1954 by Hartman [7], 

this research described an electrochemical sensor. It was ten years later that the 

concept of an odour sensor was investigated by Wilkens and Hartman [8]. The idea of 

using metal and semiconductor gas sensors for odour sensors was published one year 

later by Buck et al. [9] and also the use of modulated contact potentials by Dravnieks 

[10]. Zaromb and Stetter [11] proposed the use of an array of gas sensors with 

partially overlapping sensitivities in the mid 1980s. Pattern recognition techniques 

and neural network analysis were also used to analyse the multi-dimensional data sets 

from sensor arrays. Table 2.1 shows a brief history of electronic nose technology.  

Table 2.1 Brief history of electronic nose technology 

Year Electronic Nose Technology Investigator 

   
1954 First report of an experimental instrument Hartman 
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1964 First electronic nose using a redox reaction Wilkens, Hatman 
   
1965 Detection by modulation of conductivity at an electrode Buck, Allen, Dalton 
   
1965 Detection by thermal modulation of contact potential Dravieks, Trotter 
   
1982 First intelligent chemical sensor array system  Persaud, Dodd 
   
1985 Olfactory detection using integrated sensors [12] Ikegami 
   
1985 Application of conducting polymers as odour sensor [4] Persaud, Pelosi 
   
1985 Appearance of the term ‘electronic nose’ Persaud, Pelosi 
   
1989 Quartz resonator array and neural network [13] Nakamoto, Moriizumi 
   
1990 MOSFET gas sensor and pattern recognition [14] Sundgren et al. 
   
1991 Aroma discrimination by pattern recognition [15] Aishima 
   
1996 Electronic nose using a fuzzy neural network [16] Singh, Hines, Gardner 
   
1997 Electronic nose with hybrid modular sensor systems [17] Göpel et al. 
 

 

2.2 Odours and the Mammalian Olfactory System 

 Olfaction is known as a molecular sense, in which information carried in 

external signal molecules is transformed into patterns of brain activity that underlie 

odour perception. The nature of the mammalian olfactory system is much more 

complex than any of the other senses and the least understood in terms of the sensing 

mechanism and biological transduction1. For the application of  an artificial electronic  

 
 1It is the process by which the events of the physical environment become represented as 

electrical activity in a sensory nerve cell. 
nose system, it is necessary to have a basic understanding of odours and the 

mammalian olfactory system. 
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2.2.1 Odours 

 An odour consists of one or more types of compounds, which is typically a 

small hydrophobic molecule with a molecular mass in the range of 18 to 300 Daltons. 

Recognisable odours arise from the specific combination of complex mixtures of 

many odour molecules, each of different concentrations. Most natural odours and 

flavours are complex mixtures of chemical species and so contain at least tens and 

more often hundreds of constituents.  For example, coffee aroma consists of hundreds 

of different odorous molecules, typically: 108 furans, 79 pyrazines, 74 pyrroles, 70 

ketones, 44 phenols, 31 hydrocarbons, 30 esters, 28 aldehydes, 28 oxazoles, 27 

thiazoles, 26 thiophenes, 21 maines, 20 acids, 19 alcohols, 13 pyridines, and 13 

thiols/sulfides [18]. 

Therefore, subtle differences in the relative amounts of these odorous 

molecules determine the characteristic smell of a substance. Moreover, the shape, size 

and polar properties of the molecule relate to its odorous properties. Figure 2.1 shows 

the properties and structures of some typical odorants. Typical properties that all 

odours have in common are that they are all volatile substances [19]. To stimulate the 

sense of smell materials must be airborne and in a finely divided state. For example, 

liquids can not be smelled until they vaporise. However volatility seems to be a 

necessary but not a sufficient condition for the generation of odour. Solubility is 

necessary because odour materials must be captured by the mucous lining of the 

nostrils before they can stimulate. In addition to volatility and solubility, a large 

number of other physical properties have been investigated by many people but no 

comprehensive structure-activity relationship has emerged. 
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Fig. 2.1 The properties and structures of some typical odorants. 

 

2.2.2 Architecture of the Mammalian Olfactory System 

  The architecture of the mammalian olfactory system consists of three main 

subsystems - the olfactory epithelium, the olfactory bulb and olfactory cortex. Figure 

2.2 shows where the olfactory system in a human is sited and gives an overview of the 

mammalian olfactory pathway.  

 

2.2.2.1 The Olfactory Receptor Cells – Gas Sensors 

 An odour is delivered to the olfactory epithelium through a series of nasal 

passages, or nares. The olfactory epithelium is composed mainly of three cell types: 

receptor cells, supporting cells and basal cells. The receptor cells are arranged like a 

mosaic  between  supporting  cells  and  overlie  a  single  layer  of  basal  cells.   
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Olfactory epithelium

Air flow

Tongue

(a) 

 
 

 

(b) 

 

Fig. 2.2 Overview of (a) the human and (b) the mammalian olfactory pathway. 

Olfactory epithelium: OSN = olfactory sensory neurone. Olfactory bulb: PG = 

periglomerular cell; M = mitral cell; T = tufted cell; Gs = superficial granule cell; GD 

= deep granule cell; r.c. = recurrent axon collateral; c.f. = centrifugal fiber. Olfactory 

cortex: P = pyramidal cell; r.c. = recurrent axon collateral [20]. 
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Odorants diffuse through a layer of mucus to bind with the chemically sensitive 

membranes of the olfactory receptor cells in the epithelium. It is thought [21] that the 

first stage of signal generation occurs in an olfactory receptor and this reaction seems 

to be based on G-protein neurotransmitter receptors. The number of different receptor 

protein  types is  relatively  small (about 1,000),  while the number of receptor cells is 

relatively large (about 100 million). Therefore, there are overlapping sensitivities 

between individual receptor cells, i.e. receptors are not intrinsically specific to single 

odorants and do not have selectivity imposed on them by the mucus, later stages of 

the olfactory system must recognise the pattern of activity produced by that set of 

receptor cells that bear receptor proteins specific to molecules of a given odour2.   

 

2.2.2.2 The Olfactory Bulb – Signal Processing 

 The olfactory bulb is the first relay station for olfactory inputs, which is 

composed of three main layers: glomeruli, mitral cells, and granular layer [20, 22]. 

For example, there are about 2,000 glomeruli in the rabbit olfactory bulb and a 

convergence of the order of 1,000 to 1 for the olfactory input to mitral cells. The 

electrical signals produced are processed by the mitral cells and sent via the granular 

layer, which forms a thick layer, to the olfactory cortex. The mitral cells receive 

feedback signals from the brain that relate to the current emotional status. The granule 

cells have a superficial process that terminates in the external plexiform layer, 

forming numerous connections with the lateral dendrites of the mitral cells. The 

granule  cells  lack  a  true  axon  and   their   processes   resemble  dendrites  in   their 

 

 2It is reported that human is able to detect up to 10,000 odours and the life span of human 

receptor cells is about 3 to 4 weeks. 
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fine  structural features, being covered with numerous small spines. The granular 

layer is believed to provide specificity in the olfactory system. Therefore, olfactory 

signals in this stage undergo considerable processing that reduces the noise associated 

with the signal and amplifies it, effectively increasing both the sensitivity and 

selectivity. 

 

2.2.2.3 The Olfactory Cortex – Odour Recognition 

 The final stage of the mammalian olfactory system is the olfactory cortex of 

the brain. The primary olfactory cortex is still a relatively unexplored region of the 

brain, but it is known [20] to mainly be comprised of associative connections between 

pyramidal cells and the lateral olfactory tract. The output of the olfactory bulb goes to 

the olfactory cortex, a region on the basal and lateral surface of the forebrain. A basic 

circuit for this region was established by Haberly and Shepherd [21, 23]. Harberly 

suggested [23] that the “olfactory cortex serves as a content-addressable memory for 

association of odour stimuli with memory traces of previous odour stimuli.” 

Therefore the olfactory information is transformed into a unified sensory experience, 

as well as creating and evoking memories of name, places and feelings, etc., which 

associate the current experience with previous experiences of the mixture.  

 The brain is a highly complex, non-linear, and parallel computer [24]. In the 

case of the human brain, it contains approximately 1011 neurones and 104 

interconnections per neurone. It has the capability of organising neurones so as to 

perform certain computation such as odour recognition many times faster than the 

fastest digital computer in existence today. Over the past ten years many attempts 

have been made to model the olfactory cortex in the brain with artificial neural 

network paradigms.  
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2.3 Artificial Olfactory System 

 Like the mammalian olfactory system, this electronic system incorporates 

sensors that are conceptually analogous to olfactory receptor cells, and a signal 

processing system that conceptually simulates the mammalian brain. This section 

describes how an artificial olfactory system in an electronic nose works and how it is 

related to the mammalian olfactory system.  

 

2.3.1 Architecture of the Artificial Olfactory System 

 Figure 2.3 shows a comparison between an artificial olfactory system [1] and 

the mammalian olfactory system. The chemical sensor array and an analogue to 

digital convertor represent a group of olfactory receptor cells of the olfactory 

epithelium and produce time-dependent electrical signals in response to odours. Any 

noise and sensor drift may be reduced by using appropriate signal processing 

techniques, the odours can be recognised and classified by a PARC (pattern 

recognition) engine in a computer like the olfactory cortex of the mammalian brain. 

 

2.3.2 Gas Sensors 

A sensor is defined [25] as a device that converts a non-electrical physical or 

chemical quantity into an electrical signal and is classified by many different criteria, 

such as the transduction principle, measuring property, and application. Table 2.2 

shows a number of typical sensor-active materials and applications. A gas sensor is 

one of the chemical sensors and has grown rapidly in importance encompassing a 

broad spectrum of technologies including food, safety, pollution, fuel economy,  

medical engineering and industrial processes.   

 



24                                                                                       Chapter 2.  Review of Electronic Nose System 

  Input
(Odour)

   Output
(Predictor)

Olfactory epithelium
     (Receptor cells)

Mammalian
     Nose Olfactory bulb

          Brain
(Olfactory cortex)

Electronic
    Nose Sensor array Analogue to Digital

Converter

          Computer
    ( Signal Processor &
Pattern Recognition Engine)

  SENSOR
         1

  SENSOR
         2

  SENSOR
         3

  SENSOR
         n

    ARRAY
PROCESSOR

  PARC
ENGINE

KNOWLEDGE
        BASE

  SENSOR
PROCESSOR

  SENSOR
PROCESSOR

  SENSOR
PROCESSOR

  SENSOR
PROCESSOR

TRAIN TEST

ANALOGUE SENSING DIGITAL PROCESSING

V1j(t)

V2j(t)

V3j(t)

Vnj(t)

X1j

X2j

X3j

Xnj

Xj

 

Fig. 2.3 A comparison between an artificial olfactory system and the mammalian 

olfactory system. 

 

A large variety of gas sensor technologies have been developed for use in an 

artificial olfaction system. At present, the most common sensing materials for 

commercial electronic noses are metal oxide semiconductors (MOS) and conducting 

polymers (CPs) as shown in Table 1.1. This is due to their attractive material 

characteristics.  Generally, MOS  thick-film  gas sensors have very good sensitivity at 

high operating temperature and are relatively easy to make and conducting polymers 

operate at room temperature and exhibit fast  reversible  changes in conductivity  

when   exposed  to  gas  species.  Although  CPs  may  have  a  lower sensitivity when  

 

Table 2.2 Typical sensor materials and application fields [26]. 
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Materials Examples Typical application fields 

Metals Pt, Pd, Ni, Ag, Au, Sb, Rh, …  
   
Semiconductors Si, GaAs, InP, … Industrial process control 
   
Ionic 

compounds 

Electronic conductors (SnO2, TiO2, 

 Ta2O5, IrOx, In2O3, AIVO4 …) 

Mixed conductors (SrTiO3, Ga2O3, … 

in general: perovskites) 

Ionic conductors (ZrO2, LaF3, CeO2, 

CaF2, Na2CO3, β -alumina, Nacicon, 

…) 

Exhaust gases 

   
Molecular 

crystals 

Phthalocyanines (PbPc, LuPc2, LiPc, 

(PcAlF)n, (PcGaF)n, …) 

Volatile organics in air 

and water, NOx 

   
Langmuir-

Blodgett films 

Polydiacetylene, Cd arachidate Medical applications, 

Environmental monitoring 

   
Cage 

compounds 

Zeolite, calixarenes, cyclodextrins, 

Crown, ethers, cyclophanes, …  

Food industry, flavour 

Monitoring, … 

   
Polymers Polyethers, polyurethanes, 

polypyrrole, 

Polysiloxanes, polythiophenes, PTFE, 

 Polyfluorcarbons, polyolefins, Nafion, 

Cellulose, polyacetates, … 

 

   
Components of 

 biomolecular 

systems 

 

Synthetic: phospholipids, lipids, HMD 

and HIV epitopes, … 

Natural: glucose oxidase, lactose 

Permease, E.coli cell membrane, in  

General: enzymes, receptors, cells, 

 transport proteins, membranes, ... 

Water and blood analysis, 

pharmascreening, toxicity 
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compared to MOS, a wide variety of polymers are available and readily grown by 

electrochemical polymerisation of the monomer under controlled conditions. In order 

to understand the gas-sensing characteristics of the MOS and conducting polymers 

used in this research, the sensing mechanisms are described later in chapter 3.  

 They possess partial specificity, similar to the overlapping sensitivity of 

receptor cells in the mammalian nose. This lack of selectivity may be overcome by 

using a sensor array, where each sensor within the electronic nose produces a time-

dependent electrical signal in response to a particular odour. For example, 

conductance variations resulting from the exposure of the sensors to an odour is a 

popular electrical signal to monitor and process in order to classify like the 

mammalian nose. Therefore the comparable partial specificity of a sensor array within 

the artificial olfaction system provides similar benefits of high order information like 

receptor cells.      

 

2.3.3 Signal Processing 

 Signal processing [1, 4, 26] is used to condition input data from the sensor 

array prior to odour recognition by the PARC engine in a computer, like the 

mammalian olfaction system performs a comparable signal conditioning at the 

olfactory bulb. Any drift such as base-line drift of the sensors can be reduced at this 

stage. This means that the signal processing significantly affects the performance of 

the next stage of odour recognition. Each sensor i produces a time-dependent signal, 

, in response to odour j and it is often convenient to remove the time 

dependence of the signal output. Table 2.3 shows typical examples of sensor signal 

processing algorithms that have been applied for the application of sensors.  Signal 

conditioning 

)(txij′
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Table 2.3 Some examples of signal processing algorithms used.  i = sensor, j = 

odour, a = odour a, b = reference odour b, σ = population standard deviation, 

x =average value, N = the number of feature vectors in the feature-set with i 

component to each vector. 

Signal processing algorithms Formula 

Difference signal ijbijaij xxx ,,′ ′−=  
  
Relative signal ijbijaij xxx ,,′ ′=  
  
Averaging 

Nxx
N

j
ijij ∑

=

′=
1

 

  
Fractional difference ijbijbija xxx ,,, )( ′′ijx −′=  
  
Linearisation   

minmax

minmax ),log(

ijijij

ijijij

xx

xx

′−′=

′−′=

x

x
 

  
Normalisation 

∑
=

=

′−′=
m

i
ijijij

ijbijaijij

xxk

xxxk

1

2

,, ,
 

  
Autoscaling iijijij xxk )(  σ= −

 

 
Xis the link between the sensor output vector, ′  and the input vector to the 

algorithms, . The components of the input vector, , may 

be scaled by a constant, k, in a normalisation algorithm. Various pre-processing 

algorithms are applied and related to the transduction mechanisms of particular types 

of sensor array or different types of pattern recognition techniques. For example, the 

difference signal algorithm, where the sensor parameter is the difference of sensor 

responses in air and in gas, has been used by many researchers [27, 28]. The 

fractional difference algorithm has been used with good results by Morrison [29] and 

Gardner et al. [27]. The relative signal algorithm is a very common model, which 

),...,,...,2 mjj xx ijx,( 1 jxX = ijx
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defines the sensor parameter as the ratio of sensor response in air to the response in 

the odour being measured [27, 30, 31]. It has especially been used for considering 

drifts in the sensitivity coefficient. An averaging algorithm can be used to reduce 

noise effects and a linearisation technique may be usefully applied in odour sensing 

when odour component intensities are of particular importance. In a linearisation 

model, the log or root of the output has been used to linearise the sensor response as 

shown in Table 2.3 [25, 32]. The log function increases the relative contribution of 

sensor responses and the overall dynamic range of the system. Normalisation 

algorithms have also been used for the signal processing of sensors and sensor arrays 

[27]. Array normalisation divides each sensor value by the norm of the array vector. 

This technique is often used in order to reduce experimental error and the effect of 

variations in sample concentration. It improves overall pattern recognition 

performance but will enhance the noise with small signals. Array normalisation and 

autoscaling sets the length of all response vectors to unity3 and puts the vector on the 

surface of a unit hypersphere.  

Recently, dynamical signal processing [33, 34] has been employed in addition 

to those static parameters that were mentioned earlier. A combination of static and 

dynamic information in signal processing can be applied to obtain a signal vector 

more useful for the subsequent pattern recognition in most practical cases. Dynamic 

features may be represented by a set of parameters, some of which are specific for a 

specific gas and independent of the gas concentration. For example, derivative and 

equilibrium  values processing algorithms  which  contain  time  domain  information  

 

3Sensor normalisation removes concentration information in the data set and the output of 

each sensor over the entire data set lies in the range [0, 1] whereas autoscaling sets the mean value to 0 

and the variance to 1. 
improve the selectivity of a specific sensor.  
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2.3.4 Odour Recognition  

 Finally, a pattern recognition engine in the artificial olfactory system 

represents the  olfactory cortex of the mammalian brain, which classifies and 

memorises odours. The output from the signal processor is fed into the PARC engine, 

which attempts to recognise and discriminate odours using chemometrics4 and neural 

networks.  Gardner et al. [27] have compared different methods of pattern recognition 

including multicomponent analysis, cluster analysis and neural networks in this field. 

PARC techniques has been widely split into two areas [1, 4, 35]; classical PARC and 

ANNs (Artificial Neural Networks). Figure 2.4 shows a simplified classification 

survey [26] of the most popular numerical methods which describe model-based and 

model-free methods used for qualitative and quantitative analysis. Also, this survey 

categorises supervised and unsupervised methods, referred to by the method of 

calibration. The following sections describe a more detailed methods commonly 

applied to electronic nose data. 

 

2.3.4.1  Classical Pattern Recognition 

Classical PARC is a statistical method described by the application of a 

probability model and was first developed and used in the field of applied 

mathematics. In this section some mathematical methods are presented that may be 

applied  for  multi-component  analysis in odour sensing. Categorisation of classifiers 

 

 4Chemometrics is defined as the use of statistical techniques to extract relevant, but often 

hidden, information from chemical data. 

can be made depending on certain aspects as shown in figure 2.4. For example, 

discriminant function analysis is a parametric and supervised learning classifier, 
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which can be used for both qualitative and quantitative analysis. Internal classifier 

parameters are adjusted according to the error between the actual output and desired 

output. Principal components analysis is nonparametric and is often used to 

implement a linear supervised classifier, in conjunction with discriminant analysis. At 

this point it is important to understand the following typical chemometrics. 

 

projection method
PCA
principal components
analysis

linear algebr
PCR
principal comp
regression

PLS
partial least-sq
regression

topology conservation
context conservation
SOM
selforganizing maps

ART
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Fig. 2.4 Survey on multivariate approach. PCA = principal components analysis; CA 

= cluster analysis; PCR = principal components regression; PLS = partial least-

squares regression; SOM = self-organizing feature map; ART = adaptive resonance 

theory; BPN = back-propagation neural network [26]. 
 
 
Principal Components Analysis (PCA) 
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 PCA is a multivariate statistical method, based on the Karhunen-Lowve 

expansion, used in classification models, which produces qualitative results for 

pattern recognition. PCA is a linear supervised pattern recognition technique that has 

often been used to explore gas sensor array data in conjunction with cluster analysis. 

In PCA, a set of correlated variables are transformed into a set of uncorrelated 

variables (principal components) such that the first few components define most of 

the variation in the data set. It is a specific kind of orthogonal projection and its 

coordinate system is usually called ‘feature space’. The principal component, or 

score, is expressed in terms of linear combinations of the variables,  

and the eigenvectors, , which are often called the ‘loadings’. 

,,...,, 21 pXXX

j

p

j
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=

=
1
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                                                                                                       (2.1) 

 

where  is the ith principal component and p is the number of sensors. 

PCA is in essence a data reduction technique for correlated data, so that PCA 

has been applied to high dimensional data sets to identify their variation structure for 

gas sensor applications, such as the discrimination of beverages, coffees, alcohols, 

and tobaccos. For example, PCA was able to differentiate between several classes of 

odours when it was applied to electronic nose data, but if the sensor outputs have not 

been linearized, the results of PCA can not be guaranteed. Hexahedra of data, which 

are 3D matrices for a simultaneous analysis of distributed sensor arrays, have also 

been considered by Gemperline et al.     

 

Cluster Analysis (CA) 
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 Cluster analysis is a model-free qualitative analysis and generally undergoes 

an unsupervised learning phase. The term cluster analysis covers a class of techniques 

which seek to divide a set of samples or objects into several groups or clusters. The 

clusterings are based on the proximity of the vector in feature space and five basic 

types of clustering methods have been identified [36]: hierarchical, optimization-

partitioning, clumping, density-seeking and other methods. The hierarchical and 

optimization-partitioning methods are the most popular. The hierarchical technique 

has been applied to electronic nose data for the discrimination of beverages, such as 

bitters, lagers, and spirits [27]. It is simple and rapid to compute and interpretation is 

straightforward and intuitive. In this study, objects are grouped first into small 

clusters of two or three objects; these are then grouped into larger clusters, and so on. 

Also, there was a comparison of CA on original and normalised responses and it was 

revealed that the normalisation enhanced the results of CA [27]. Although CA is very 

sensitive to data pre-processing methods, it is still widely used in many fields 

including electronic noses [4, 27, 37] with PCA to identify groups or clusters of 

points in feature space.     

 

Discriminant Function Analysis (DFA) 

 Discriminant function analysis (DFA) is one of the parametric PARC 

techniques. There are many ways of computing DFA, but the classical approach, 

devised by the statistician Fisher [38], is called linear discriminant analysis (LDA). A 

direction is found to pass through the data. This direction is a straight line, and is 

somewhat analogous to a principal component, but a different criterion is used to find 

this line. LDA is not always clear, for example there is sometimes a little overlap 

between classes: it is not possible to guarantee that a cut-off value will exactly 
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separate classes. Many other sophistications have been developed, these include 

quadratic discrimination and logistic discrimination that require some assumptions 

about the original data, but provide better discrimination performance. One of the 

problems is that the nature of the resultant function is dependent on the algorithm 

used. LDA  has been applied to the discrimination of commercial coffee flavours [28] 

and alcohol vapours [27] with almost 100% success rate.  

 

Partial Least Squares (PLS) 

 Partial least squares is one of the latest regression procedures, based on the 

properties of multiple linear regression, to be developed for concentration prediction. 

PLS was first described in the mid-1960s by Wold [39]. The groups of Wold and 

Martens have been refining and specialising the method for chemical applications. In 

contrast to principal component regression (PCR), this approach takes into account 

the concentrations already in the model building. One of the main advantages of PLS 

and its applicability to sensor arrays is that it can separate noise from useful 

information. 

 A nonlinear PLS for correcting nonlinearities after calculations has been 

applied to evaluate signals of gas sensor arrays and used for quantitative 

multicomponent analysis [40]. Without any linearisation the prediction using PCR 

and PLS showed clearly the nonlinearity of the sensor but linearisation improved the 

results of this analysis. However, in most situations the electronic nose is not used to 

solve multi-component problems and so PLS is less important. 
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2.3.4.2  Artificial Neural Networks (ANNs) 

 Since the 1990, Artificial Neural Networks (ANNs) have been widely used in 

the artificial olfactory system. Aleksander and Morton (1990) described the definition 

of a neural network as follows. 

“A neural network is a massively parallel distributed processor that has a natural 

propensity for storing experimental knowledge and making it available for use. It 

resembles the brain in two respects [41]: 

1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights are used to store the 

knowledge.”   

 

Neural networks are also referred to in the literature as neurocomputers, 

connectionist networks, parallel distributed processors, etc. The history of neural 

networks is said to have begun by McCulloch and Pitts [42] who described a logical 

calculus of neural networks. Since then, the number of research and the pioneering 

works has been performed. An historical review on neural networks has been given 

by many researchers [24]. This section gives a brief review of ANNs related to the 

electronic nose systems.  

The recognition ability of ANNs is higher in comparison with the classical PARC 

methods described previously, due to parallel signal processing. ANNs have many 

advantages in that they can handle nonlinear data sets, and have greater tolerance to 

sensor noise and drift. Also ANNs give high speed results, are efficient with 

information processing and learn by themselves. However ANNs have several 

disadvantages, for example, it is often difficult to decide the optimal network 

parameters and training procedures. If the patterns have a great difference in shape, 
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volume and density or they are overlapped with each other, then the ANNs often have 

some problems to get a good recognition. Recently, ANNs have been widely used in 

odour recognition and many different ANN paradigms have been developed.        

 

Back Propagation (BP) 

 Back propagation (BP) is a effective learning algorithm for training a 

perceptron5 network which has more than one layer of adaptive weights. It was 

formalised first by Werbos in 1974 [43] and is now the most widely used algorithm in 

multilayer feedforward networks. The BP consists of a forward phase and a backward 

phase. In the forward phase the input pattern has been applied as a stimulus to the first 

layer of the network and it propagates through the network layer by layer until an 

output is generated. The output is then compared to the desired output and an error 

signal is computed for each output unit. In the backward phase the undefined 

parameters weights of the network are adjusted in order to minimise the sum of 

squared errors. Based on the error signal received, weight values are updated by each 

unit until some convergence criterion is met. However the learning procedure of BP is 

often slow and sometimes fails to converge to a global minimum solution. 

A three-layer back propagation network has been widely used for pattern 

recognition using an electronic nose system. Shin et al. [44] used the BP as the 

supervised  learning   rule  to  identify  4  different gases with different concentrations  

 

5The perceptron was invented by psychologist Frank Rosenblatt in the late 1950s. It is the 

simplest form of a neural network which consists of a single neuron with adjustable synaptic weights 

and threshold. 
and the recognition probability was 100 % for each of five-trials of twelve gas 

samples. At the University of Warwick, a multi-layer perceptron (MLP) with a BP 
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learning algorithm has been applied to the prediction of bacteria type and culture 

growth phase [45]. Results show that the type of bacteria can be correctly predicted 

for 96% of all samples taken during a 12 h incubation period.     

 

Multi-Layer Perceptron (MLP) 

 A multi-layer perceptron (MLP) is the most popular arrangement of neurones 

within an ANNs and it represents a generalisation of the single-layer perceptron. A 

MLP with a BP training algorithm described previously was the first ANN to be 

applied to an electronic nose system. Typically, the MLP consists of a set of sensory 

units that constitute the input layer, one or more hidden layers, and an output layer. 

The input values are linked by weights and each neurone computes a weighted sum of 

the input. In the hidden layers, these values are correlated by other weights with the 

output layer. Each of the weighted sums is transformed by a nonlinear function, 

respectively, and by a threshold value. The output of the neurone is then into the last 

layer and compares the outputs with the desired output to generate an error signal for 

back propagation (see chapter 4.2.2 for further details including equations). MLPs 

generally show a better performance than more established classical PARC methods 

but there are many empirical parameters to be considered, such as network 

architecture, training parameters, recognition estimation etc.   

 

Self-Organising Map (SOM) 

 A self-organising map algorithm was developed by Kohonen in 1982 [46] to 

transform an incoming signal pattern of arbitrary dimension into a one- or two-

dimensional discrete map. A SOM is more closely related to the neural structures of 

the human olfactory cortex than other ANNs because it emulates part of the brain. 
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Furthermore, a SOM has benefits in an electronic nose system because of its inherent 

features such as a reduction in dimensionality and invariance to drift and transitory 

noise [47]. Therefore a SOM is a very promising ANN for the optimal transformation 

of multidimensional nonlinear sensor characteristics without any assumptions.  

 Kohonen developed a supervised learning technique from SOM, which is 

called Learning Vector Quantisation (LVQ). LVQ is an improved supervised learning 

technique with a self-organising feature map. The hidden layer in this network is a 

Kohonen layer, which does the learning and classifying. The LVQ scheme has phases, 

LVQ1 and LVQ2. LVQ1 is the basic LVQ learning algorithm that helps all 

processing elements (PEs) to take an active part in the learning. LVQ2 is a fine tuning 

mechanism, which refines class boundaries. Therefore the output from LVQ2 is the 

final encoded version of the original input signal applied to LVQ1.  

SOM has been applied to a wide variety of applications including the 

classification of odours in the electronic nose [47, 48]. Hines et al. used the 

supervised Kohonen SOM for analysing alcohol and coffee data sets and found good 

performance results in terms of both accuracy (over 90% within only 500) and 

generalisation.         

 
Fuzzy Neural Network (FNN) 

 Fuzzy set theory was invented by Zadeh in 1965 [49] to provide a 

mathematical tool for dealing with linguistic variables. Fuzzy logic has been applied 

to ANNs and many attempts to use fuzzy functions to identify odours have been made 

[16, 50]. A fuzzy set is defined as a set whose boundary is not sharp [24]. The fuzzy 

neural network introduces the fuzzy concept into the neural network system, in 

general, and has received a great deal of attention in recent years [49, 50].  In FNN, 
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the signal conditioning that occurs during fuzzification and de-fuzzification translate 

many properties of overlapping sensor arrays into parameters which are better 

handled by a classifier. It suggests the potential to improve the electronic nose system 

for the goal of an intelligent artificial olfactory system.  

 Singh et al. [16] showed that the performance of FNNs was superior to that of 

non-fuzzy neural network analysis. Ping and Jun [50] used a combined neural 

network with the fuzzy clustering algorithm and could get good performance owing to 

its consideration of the correlation of the samples and the total characteristic of the 

classes. The FNNs are getting popular and produce a considerable improvement for 

the application field of electronic nose systems.  

Carpenter et al. [51] introduced the Fuzzy ARTMAP for incremental 

supervised learning and nonstationary pattern recognition problems. Llobet et al. [52] 

used the Fuzzy ARTMAP to analyse the state of ripeness of bananas and found a 

good performance result in terms of 90.3% accuracy, which outperformed the MLP. 

The Fuzzy ARTMAP is a supervised variant of Fuzzy adaptive resonance theory 

(ART) which is self-organising, self-stabilising and suitable for incremental learning. 

Therefore it has an advantage of performing on-line learning without off-line training, 

unlike MLP. The details of neural network algorithms applied in this research will be 

discussed again in chapter 4. 

 

2.4 Summary 

In this chapter a brief history and the technology of electronic nose systems 

were explored, also the relationship between mammalian and artificial olfaction 

outlined. The architecture of the human olfactory system was compared with an 
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electronic system, which is composed of different kinds of sensors, transduction 

circuitry, and an artificial neural network.  

A large variety of gas sensor technology, signal processing and PARC 

techniques were described and the architecture of the artificial olfactory system for 

this study was decided as follows.  

 MOS and CP were chosen as sensing materials, due to their attractive  

material characteristics, i.e. MOS thick-film gas sensors have very good sensitivity, 

stability and are relatively easy to make. CP gas sensors are readily grown by 

electrochemical polymerisation and operate at room temperature with fast reversible 

changes in conductivity. This hybrid sensor system will be employed to give a large 

flexibility to the general purpose of electronic nose used (chapter 5). 

 Several promising pre-processing techniques including a difference model 

and a fractional model will be used in order to improve the classification process and 

reduce any noise and base-line drift of sensors. In addition, autoscaling and 

normalisation will be employed to give equal weighting to each sensor and thus 

compensate for differences in the magnitudes of the signals.  

PCA was chosen to assess clustering within data set. It is the most effective 

classical statistical method to show the visualisation of pattern recognition before 

neural networks. Three supervised classifiers, MLP, LVQ and Fuzzy ARTMAP 

neural network will be used and compared for the classification of both two strains 

and four different growth phases of cyanobacteria in chapter 4.   
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Chapter 3 

 

Experimental Procedure: Analysis of 

Blue Green Algae in Water 
 

 This chapter describes the development of an electronic nose system for water 

analysis; the procedures for testing and characterisation of the modified system, the 

methods of data collection, and the characterisation of prototype thin film sensors as 

well as commercial thick film sensors.  

 

3.1 Environmental Water Monitoring 

The release of chemical pollutants from industries, automobiles and homes 

into the environment has caused global environmental problems, such as acid rain, the 

greenhouse effect, ozone layer depletion, and water enrichment [1]. 

The enrichment of water by inorganic plant nutrients is fast becoming a severe 

problem in the quality of water and a common source of odour pollution into the 

environment [2, 3]. In 1989, widespread toxic cyanobacterial (blue-green algae) 

blooms occurred in lakes within the United Kingdom, causing animal poisoning and 

human health problems. In 1990, a wide programme of research on cyanobacteria was 

commissioned. Figure 3.1 shows the shoreline scum of the cyanobacteria Microcystis 

aeruginosa [4].  
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Fig. 3.1 The shoreline scum of the cyanobacteria Microcystis aeruginosa.  

 

So far water analysis has been carried out mostly by analytical instruments 

that are based on liquid chromatography or optical microscopy. These instruments 

may give precise analytical data, but in most cases they require long data acquisition 

times and can not determine which algae is toxic. Such a disadvantage highlights the 

importance of the electronic nose approach, as another tool in the detection of toxic 

algae. Commercial electronic nose companies such as Osmetec plc. and EEV Ltd are 

trying to expand the possible applications of their electronic nose system into the 

biomedical and environmental field and are revealing the potential uses to the water 

industry.  

3.1.1  Cyanobacteria 
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 Cyanobacteria (blue-green algae) are the largest group of photosynthetic 

prokaryotes and contain chlorophyll that differs from the bacteriochlorophylls of the 

photosynthetic eubacteria. The name, cyanobacteria came to replace the term blue-

green algae as a means of distinguishing them from the eukaryotic algae. It is derived 

from the Greek for blue (Kyanos) because of its characteristic blue-green colour. 

 Cyanobacteria are found to be of some benefit to humans and other living 

organisms. These are the primary producers of organic matter and oxygen in the 

natural environment because of their photosynthetic activity. Moreover, some of them 

are a primary food source, which also includes secretion of substrates to organisms 

associated with them. However there are many negative aspects associated with 

cyanobacteria. When present in large concentrations in lakes and reservoirs, the 

cyanobacteria blooms cause serious nuisance. They clog up water treatment filters, 

impart unpleasant tastes to drinking water, and produce offensive smells resulting 

from bloom decay. More importantly, a major problem associated with some 

cyanobacteria is that they may produce toxins that are effective against cattle, 

wildfowl, fish, and humans. Many species of cyanobacteria have been observed to 

produce these toxins, which can be divided into three groups; peptide hepatotoxins, 

neurotoxins and lipopolysaccharides. Thus finding appropriate methods to detect and 

quantify these toxins in natural waters is essential for pollution control.  

 

3.1.2  Preparation of Blue-Green Algae 

 For the measurement of cyanobacteria samples, it is necessary to grow blue- 

green algae. The growth medium used was BG-11 (table 3.1) that is able to allow the 

growth of blue-green algae commonly found in rivers. This medium was made using 
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analytical grade chemicals and double distilled water, sterilised by autoclaving at 15 

lb inch-2 for 30 minutes. Table 3.1 shows the composition of the BG-11 medium. 

 

Table 3.1  Composition of the BG-11 medium. 

Chemicals g l-1 

NaNO3 1.5 

K2HPO4·3H2O 0.04 

MgSO4·7H2O 0.075 

CaCl2·2H2O 0.036 

Citric acid 0.006 

FeNH4 citrate 0.006 

Na2Mg·EDTA 0.001 

Na2CO3 0.02 

Trace metal mix A5+Co* 

 

Trace metal mix A5+Co 

H3BO3 

MnCl2·4H2O 

ZnSO4·7H2O 

Na2Mo·O4·2H2O 

CuSO4·5H2O 

Co(NO3)2·6H2O 

1 (ml l-1) 

 

 

2.86 

1.81 

0.222 

0.390 

0.079 

0.049 

 

 

The maintenance of a particular cyanobacteria culture is very important, 

because a bacteria culture will be useless if all the cells die, do not grow well, or if the 

culture is contaminated with different micro-organisms.  

Cyanobacteria produce toxic substances when the cyanobaterial population 

forms a bloom. There are many physical factors leading to blooms of cyanobacteria 

such as, the temperature, light and the nutrient. Planktonic cyanobateria are very 
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similar to most photosynthetic plankton in that they require a certain minimum 

average light intensity for growth. Light is usually provided in the laboratory by a 

bank of fluorescent lamps (cool white, daylight, or warm white). The intensity for 

stock culture maintenance can vary enormously, through it has been shown that an 

intensity lower than 500 lux is appropriate [5]. The optimum temperature for 

cyanobactera is generally suggested between 15-30 °C. Rates of nutrient supply may 

be of more importance than actual nutrient concentrations. Actually, the requirement 

of nutrient substances is variable depending on the cyanobacteria species. In this 

experiment, 3.5 l of medium (1.5 l head-space) was placed in a standard 5 l glass jar 

and small number of cells (contained in 100 ml of inoculum) from the reference 

storage (master culture1) were inoculated into the medium.  

 

3.1.3 Measurement of Growth Phase in Bacteria Cultures 

The number of cells and cell size are sensitive indicators of the physiological 

status of cells. They change as the cells go through different stages of growth. Thus 

the cell size and cell numbers can be used to evaluate culture conditions and growth 

phase. 

 

3.1.3.1  CellFacts Instrument 

Small samples of liquid were extracted and analysed using a commercial 

CellFacts instrument  (Microbial  System  Ltd),  from  which  it is possible to measure  

 

1Master cultures were kept in a refrigerator in order to slow the metabolism of the bacteria 

cells and thus lengthen their useful life. 
the size and distribution of the bacteria (Figure 3.2). The CellFacts instrument uses 

electrical flow impedance determination to count and size particles and cells in a 
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water sample. This is done quickly and easily by employing a real-time, on-line 

sampling technique. Cyanobacteria cells are passed through a 30 μm orifice in an 

electrolytic fluid, the displacement creating voltage  pulses,  which  can  be  measured  

and  counted.   The  range  of  cell  size  is 0.1 to 450 μm3 and information about 

individual cells in a population can be gathered and automatically downloaded to a 

computer. 

 

 Cell-Lyte diluent 

 

 

  

 

 

 

 

 

Water sample 

PVC tube 

Bio-filter 

Light (warm white) 

CellFacts main unit 

Magnetic stirrer 

 

Fig. 3.2  Photograph of CellFacts instrument main unit connected with water samples 

in the Biological Sciences Department at the University of Warwick.  
  

 

3.1.4  Measurement System Set-up with the Electronic Nose 

The whole measurement apparatus used for data collection was set-up in the 

Microbiology Laboratory in the Biological Sciences Department at the University of 

Warwick. Figure 3.3 shows a construction of the measurement system for the testing 

of the cyanobacteria (blue-green algae) in water.  

 The system consisted of three main parts: the odour sampling unit, the 

Warwick Fox 2,000 unit and the Cellfacts instrument. The sampling system and the 

Warwick Fox 2,000 were controlled through custom designed software written in 
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LabView (National Instruments, Inc.) within an IBM PC compatible computer. It was 

also possible to achieve automated data gathering, using software that interfaced 

directly to the sensor array within the Warwick Fox 2,000 and the sampling system.  

 

 

ELECTRONIC NOSE
CH1

CH2

CH3

CH4

CH5

CH6
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7 .7 5
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,  

Lamp Medium (+ cyanobacteria) Switching valves 

Cellfacts instrument Head-space sampler A modified Fox 2,000 

 

Fig. 3.3  Schematic diagram of the complete measurement system, to collect data 

from  water samples. 

 

 

 Liquid samples were extracted and analysed by the commercial CellFacts 

instrument and gas samples from each headspace were introduced to the electronic 

nose system. Gas flow was directed through one of three routes by the action of three 

precision solenoid valves (Lee Company LFAA1200118H). Fittings were easily 

assembled onto Teflon tubing, and then connected to Lee miniature three-way 

solenoid valves. Each vessel had a solenoid valve associated with it. When power was 

applied to a valve the associated sample vessel was connected to the rest of the sub-

system and gas flowed through this route. At any one time, only one valve was 

powered (i.e. open). Software run on the PC ultimately controlled the gas flow by 

solenoid valves, through a digital I/O from a data acquisition card (National 

Instruments manuf. No. PC-LPM-16). Thus the sub-system had three channels for gas 

to flow through from the input to the output, with one channel per vessel. The gas 
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pathways for all channels were designed to be of equal length and it was important to 

preserve identical gas flow characteristics across all channels in order to reduce any 

inter-channel variation. The sampling system was operated in a cyclic fashion, 

whereby a set sequence of timed valve actuation was repeated for a pre-determined 

number of times. The system consists of sampling the head-space of three identical 

vessels that contain reference (medium) and odour samples. The reference vessel, 

when selected, allowed the sensor array to stabilise its response to a known odour. 

Next, one of the sample vessels was selected and the change in sensor response was 

observed and recorded. It was possible to set up the sampling system to activate any 

channel at a specific time using a custom LabVIEW program. The sequence of 

channel activation that was adopted in the LabVIEW program for each cycle was; 

channel 1/channel 2/channel 1/channel 3. The connection between the valves and the 

vessels was made using PVC piping, except where brass pipe connectors were used. 

This had an approximate outer diameter of 1.5 mm and an approximate inner diameter 

of 1.2 mm. The rest of the piping was PVC (Lee Company TUVA4220900A), which 

fitted tightly over the brass pipes, the inner diameter was approximately 1.37 mm 

(when unstretched). The small diameter of the pipe-work allowed a small ‘dead-

volume’ and therefore a fast response. The time delay (T ) could be calculated with 

the dead volume (V ) and the gas flow rate (Q ), see equation 3.1: 

d

d

 

                       

                                                              
Q
Vd

d =T                                                      (3.1) 
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 The total length of pipe-work was 700mm, therefore the volume of the pipe-work 

was 1031mm3. The flow rate was 100ml/min.. Using equation 3.1, the time delay, T , 

was calculated to be 0.618 s. 

d

  

3.2 Electronic Nose System Overview 

 The photograph shown in Figure 3.4 shows the Warwick Fox 2,000, which 

was used for data collection, in Biological Sciences, at the University of Warwick. 

The Fox 2,000 was designed and built by the University of Warwick and is sold by 

Alpha M.O.S. There are now several newer electronic noses of Alpha M.O.S., Fox 

3,000/4,0002/5,0002, commercially available with several more arrays, which can be 

consisted of MOS, conducting polymers, or SAW devices. There have been many 

electronic nose studies performed at the University of Warwick. Originally, Craven 

[6] modified the Fox 2,000 system and improved upon the performance of its 

subsequent pattern recognition. There were four major modifications to the Fox 

2,000; an automated odour delivery system was added to the input, the volume 

contained within all the gas fittings was reduced, the gas sensor chamber was re-

designed and an odour temperature controller was installed. This work is detailed in 

his PhD thesis [6].  

Figure 3.5 shows a schematic diagram of the modified Fox 2,000. The main 

sensor  chamber  contained  six  metal  oxide  gas  sensors  and  a  temperature  sensor  

 
2These model were designed and built by Alpha MOS without additional input by the 

University of Warwick. 
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Fig. 3.4 Photograph of the Warwick Fox 2,000 electronic nose system. 

 

 

(LM35CZ). The pre-sensor chamber contained a temperature sensor  (LM35CZ) and 

a relative humidity sensor (MiniCap 2) that measured the temperature and humidity of 

the gas exiting from the pre-heater chamber. The pre-heater chamber was designed to 

reduce the fluctuation of temperature of the gas input to the main chamber. For these 

modifications, an extra circuit was built and connected to a spare analogue channel on 

the ADC (analogue to digital convertor) in the LPM-16 card.  As a sub-system an 

autosampler [6], which controls the delivery of target gases to the sensor chamber, 

was built and added to the electronic nose system. 
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Fig. 3.5 The Warwick electronic nose showing the new main sensor chamber, pre-

sensor chamber, pre-heater chamber, heater control circuit and the temperature sensor 

interface circuit [6].  

 

 The Warwick Fox 2,000 also has a gas flow sensor, a diaphragm vacuum 

pump (KNF Neuberger manuf. No. NMP30KNDC) and analogue op-amp interfacing 

circuitry, that converts the resistance of the gas sensors into a DC voltage (0 to 10 V) 

for input to a computer. The results of these modifications were that the new main 

chamber improved gas flow characteristics, because of its radial design [6], and a 

improved ambient temperature control, to an accuracy of ±0.1 °C using closed-loop 

feedback control via the heaters. 
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3.3 Gas Sensors 

Many kinds of gas sensors have been employed within an electronic nose 

system, e.g. metal oxide chemoresistors, conducting polymer chemoresistors, SAW 

devices, and MOSFETs. In this research, two sensing materials, namely MOS (metal 

oxide semiconductor) and conducting polymer have been studied, for applications in 

water quality. 

 

3.3.1 Thick Film Tin Oxide Gas Sensor 

The gas sensors employed in the first stage of the research were thick-film tin 

oxide gas sensors, which were supplied by Alpha M.O.S. Figure 3.6 shows a diagram 

of the sensor structure and target gases of each sensor (FIS, Japan) employed in the 

Warwick Fox 2,000. Metal oxide semiconductor materials have been extensively 

studied and commonly employed in chemoresistor gas sensors, especially SnO2 and 

the oxides of transition metals. These are the most commercially used materials in 

thick or thin films because they offer relatively high sensitivity and a wide range of 

sensitivity by adding different catalytic materials such as Pd, Pt, Ir and Au [7]. Figure 

3.7 shows the simplified circuit diagram for the measurement of sensor voltage in the 

Warwick Fox 2,000. In this section, the gas sensing mechanism of SnO2 and the 

operation of thick film gas sensors are briefly described. 
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Fig. 3.6  Dimensions of the SP-series FIS gas sensor and the types employed in the 

Warwick Fox 2,000. 

 
No. Sensor model numbers 

(Target gases) 

1 FIS SP12 

(non-polar compounds) 

2 FIS SP11 

(Hydrocarbons) 

3 FIS SP31 

(Polar compounds) 

4 FIS SP AQ 2 

(Polar compounds) 

5 FIS ST MW2 

(Alcoholic compounds) 

6 FIS ST41 

(Heteroatom/chloride/aldehyds)

 
V+

Ic

Sensor

R V  = I  x R

AMP

Gain = G

V  = V  x GHeater
s s c s out s

 
Fig. 3.7 Simplified MOS interface circuit diagram. The sensor voltage, Vs, is 

amplified by an op-amp, providing the voltage output, Vout (0 –10 V). 

 

 SnO2 is an n-type semiconductor and the intrinsic donors are connected with a 

stoichiometric excess of metal (Sn), generating oxygen vacancies. When exposed to 

air, the oxygen is chemisorbed onto the oxygen vacancy sites in the non-

stoichiometric semiconductor [8]. This chemisorption process produces a number of 

surface acceptors that bind free electrons from semiconductor and so create a surface 
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depletion layer. Subsequently, the chemisorbed oxygen reacts with the reducing 

gases, which release electrons to the SnO2, so causing a change in the conductivity of 

the tin oxide.  These reactions are very dependent on operating temperature. 

Generally SnO2 sensors operate at elevated temperatures (300 –500 °C) to avoid 

interference from water, to aid rapid response and recovery times, and to enhance 

selectivity to the target gas. The kinetic reaction scheme on the surface of SnO2  is 

shown in figure 3.8. 

              
                                                                      2OH- 

                                                                                                                        c   H2O 

                          O2(g)       O2(s)   ⇔ ⇔  O2
-   ⇔   O-   ⇔    O2- 

                                                                                                                           CO ⇓

                                                              CO2 
   
Fig. 3.8 Kinetic reaction scheme on the surface of a SnO2 sensor where O2(g)  and  

O2(s)  denote oxygen gas and adsorbed oxygen, respectively. 
 

FIS gas sensors employed in the Warwick Fox 2000 are porous 

polycrystalline, thick-film sensors, which follow the most accepted model [9, 10] for 

adsorbate-dorminated n-type semiconductors as shown in Figure 3.9. The adsorbed 

oxygen has extracted the conduction electrons from the surface of SnO2 grains 

leading to a depletion layer, which forms a barrier at the grain boundary. Therefore, 

when it is exposed to reducing gases, the potential barrier decreases, which 

corresponds to higher conductance. The properties of SnO2 films are highly dependent 

on the choice of sintering temperature, grain size and catalyst. For selectivity to 

different gases, four popular ways are used: the addition of a catalyst, selection of 

operating temperature, the use of a specific surface additive, and the use of a filter. In 
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particular, a catalyst is supposed to impart speed of response and selectivity in gas 

sensors because of “spillover” and control of the Fermi energy [11]. 
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Fig. 3.9 General grain boundary model for adsorbate-dorminated n-type 

semiconductor powder in gas sensing. (a) Schematic of model generating depletion 

layer, (b) band model showing the potential barrier (eVs) at the grain boundary. 

 

3.3.2 Metal Oxide Semiconductor (MOS) Thin Film Gas Sensor  

 

3.3.2.1 SRL125/MOS thin film sensor 

The SRL125/MOS thin film sensor was designed in the Sensors Research 

Laboratory (SRL) at the University of Warwick  [12] and fabricated at the University of 

Neuchâtel in Switzerland. This silicon micromachined device was used as a dual sensor  

that can be simultaneously operated as a microcalorimeter and a resistive gas sensor.  

Conventional semiconducting oxide gas sensors (e.g. Taguchi gas sensor) 

require considerable labour effort to manufacture and have high power consumption. 
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Similarly, conventional calorimetric gas sensors (i.e. pellistors) require considerable 

manual labour to manufacture and possess a high power consumption (ca. 500 mW). 

Consequently, there is a general demand to mass-produce small, cheap, low-power 

calorimeters and resistive gas sensors, e.g. for the automotive market, and in particular 

battery-powered hand-held instruments (including electronic noses). 

Generally calorimetric sensors are based upon the measurement of reaction 

heat fluxes resulting from the catalytic oxidation of combustible gas species in air at 

the surface of the heated device. They are usually operated in a Wheatstone bridge 

arrangement with an inactive reference sensor. The sensor response may be chosen as 

the change in temperature TΔ monitored by the changed resistance of a platinum 

heater. If, under the conditions of measurement, the rate of reaction is dependent on 

the presence of the gas, then determination of the heat evolved is a measure of gas 

concentration. A catalyst is usually required to increase the rate at which a 

thermodynamically feasible chemical reaction approaches equilibrium and achieves 

this without itself becoming altered by the reaction.  For example, the enthalpy 

changes HΔ  (heats of combustion) during these reactions lead to a change in the 

electrical power PΔ  required to keep the sensor temperature at a constant value. The 

oxidation of reducing gas species leads to a decrease in the electrical power 

consumption.  The value  is given by the reaction rate dr/dt (moles of the reducing 

gas oxidised per second), by the catalytically active area Aeff of the calorimetric 

sensor, and by 

PΔ

HΔ . 

 

                                       ≈ΔP Aeff dr/dt  HΔ                                      (3.1) 
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Figure 3.10 shows the wafer processing steps required to make the 

SRL125/MOS thin film sensor. A five mask process is used for the fabrication of the 

device, and the initial substrate was a 3", 280 μm thick, p-type (100) oriented silicon 

wafer.  

 

 
 

Fig. 3.10 Schematic of the wafer processing steps required for the SRL125/MOS. 

 

The fabrication process of the membrane consisted of the thermal oxidation (80 

nm) of Si, followed by LPCVD of 250 nm low stress SiNx The heater was made of .
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platinum (200 nm) deposited on a tantalum layer (10 nm), by d.c. sputtering under 

standard conditions. The metallisation layer was patterned using a positive photo resist 

(Shipley 1813) and conventional UV lithography. A second 250 nm LPCVD low stress 

SiNx was then deposited, which electrically insulates the microheater from the 

electrodes deposited in a later stage. The wafer was subsequently subjected to a 

photolithography process to define contact holes which were etched out by the plasma 

etching. The electrodes and bonding pads were made of an Au/Ti (300/10 nm) double 

layer, deposited on the insulating layer by sputtering.  

After the deposition of the electrodes, the windows for the backside etching 

were made by plasma etching. Another protective layer was then photolithographically 

patterned with the last mask to expose the active areas and the contact pads. The resist 

did not cover the hot active areas and permited on-chip annealing. The wafer was then 

backside-etched anisotropically in KOH, thereby leaving behind the thin membrane. 

The chips were mounted onto a custom-designed PCB header (or metal d.i.l package) 

using a special epoxy resin and the pads were ultrasonically wire-bonded to the gold-

plated PCB. The gas sensitive material selected was Pd-doped SnO2, deposited by 

dropping of paste [13]. Figure 3.11 shows a photograph of the sensor mounted in a 

custom-designed PCB.  

The final stage of fabrication involved on-chip annealing of the SnO2 at 600 °C. 

This device has an ultra-fast thermal response time of ca. 3 ms from 20 to 300°C, a low 

d.c. power consumption of 75 mW at 300°C, and potential low-cost due to the use of 

silicon microtechnology [14]. The fast thermal response permits pulsed-mode of 

operation and hence lower average power of ca. 1 mW. 
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Fig. 3.11 Photograph of SRL125/MOS device 

 

 

In order to measure the output of the calorimeter and chemoresistor, a 

programmable, low noise, high sensitivity Wheatstone-bridge based amplifier circuit 

was used. The use of National Instruments LabVIEW based PC user-interface simplified 

the testing, characterisation and comparison procedures for a range of gas sensitive 

devices including both chemoresistors and microcalorimeters [14].  

1 wt% Pd-doped SnO2
  was selected as the sensing material because tin dioxide 

is widely used in resistive gas sensors but not in calorimetric sensors and was, thus, of 

research interest.  An automated gas flow system was used to supply pulses of the 

sample gas (here ppm levels of CO) and control the temperature and water vapour 

pressure of the zero gas. The typical responses of the resistive and calorimetric sensors 

was acquired to a range of 100 to 500 ppm of CO in 100 ppm steps (Figure 3.12).  The 

response times are set by the dynamics of the mass flow system.  As expected the 

resistance (∝ V) falls with the introduction of CO, however, unexpectedly, the 

temperature (∝ V) of the tin oxide layer also fell. This is believed to be associated with a 
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reduction in film resistance causing a corresponding fall in its thermal resistance.  This 

in turn resulted in an increase in the heat loss to the silicon substrate and so a fall in 

temperature when driving the heating element at constant voltage. 
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Fig. 3.12  (a) Resistive and (b) calorimetric response of the dual silicon microsensor. 

 

 

3.3.2.2 Inter-digital capacitive (IDC 10) thin film sensor 

 The IDC 10 device, fabricated at the University of Neuchâtel in Switzerland on 

a Brite-EURAM project, was also used for the detection of CO and NO2. The 

fabrication steps required for the IDC 10 device were similar to the ones of the SRL125 

device. A low-stress LPCVD nitride passivation layer on top of the CVD films 

improved the robustness of these micro-hotplate membranes. The heater was made of 

the platinum (500 nm) deposited on a tantalum layer (10 nm) by d.c. sputtering under 

standard conditions. A second 500 nm LPCVD low stress SiNx insulates electrically the 

microheater from the electrodes deposited in a later stage. The wafer was subsequently 
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subjected to a photolithography process to define contact holes which were etched out 

by the plasma etching. The electrodes and bonding pads made of the Pt/Ta (150 nm) 

double layer were formed on the insulating layer by sputtering. Figure 3.13 shows the 

schematic and photograph of IDC 10 device without a sensing layer. 

 

 

             
 
 

     (a)                            (b) 
 

Fig. 3.13 (a) Schematic diagram of a IDC 10 device, (b) top side view. 

 

Three MOS sensing materials, CrTiO3, WO3 (Capteur Sensors & Analysers 

Ltd) and SnO2 paste (University of Neuchâtel ) were  investigated as sensing materials 

for the IDC thin film sensor. 

The paste was mixed up and inserted into a syringe for deposition onto the 

surface of the active area of the devices using a precision liquid dispenser (RS 

Components, No. 552-179) under pneumatic control (Figure 3.14). The film thickness 

was less than 50 μm and the area was about 1 mm X 1 mm. From previous 

experience, CrTiO3, WO3 pastes were fired at 600 ºC in a tube furnace for 30 mins 

and Pd-doped SnO2 paste was fired at 700 ºC to evaporate the solvents and obtain 

stable characteristics. It was found that the CrTiO3 and WO3 layers were not stable 

enough to use and the resistance values were too high. Therefore further studies into 
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these   problems are required. The following results are from the IDC device with 

SnO2 as a sensing material. 

 

Plunger

Disposable needle
Syringe

Microcalorimetric

Compressed air hose

Sol solution
Droplet of sol solution  

 
Fig. 3.14 Deposition of ceramic materials using a precision liquid dispenser. 

 

The resistance of the platinum heater was measured as a function of 

temperature in the oven in order to calibrate the temperature scale.  Figure 3.15 shows  
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Fig. 3.15 Heating characteristics of micro-heater in a IDC 10 device. 



68                                     Chapter 3.  Experimental Procedure: Analysis of Blue Green Algae in Water 

the heating characteristics of the micro-heater in an IDC 10 device before and after 

on-chip annealing, at 6 V for 48 hrs. The resistance of the Pt heater, after on-chip 

annealing, was about 35 Ω higher than before on-chip annealing.  The real 

temperature of the active area, of the IDC sensor, was measured as a function of 

heater temperature using Figure 3.15. The power consumption was obtained by 

measuring the voltage and corresponding current across the heating resistance (Figure 

3.16). 
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Fig. 3.16 Power consumption characteristics for an IDC 10 device. 

 

Fig. 3.17 shows the sensitivity associated with CO concentrations (20, 40, 80, 

130 ppm) at constant voltage mode (5 V).  Alternating periods of CO and air were 

used after an initialisation period in air (200 ml/min) for 1 hour. The resistivity of the 

SnO2 falls in the presence of CO. The dopant palladium principally determines the 

height of the potential barrier of SnO2 by the withdrawing of electrons from the SnO2. 

Palladium, on receiving electrons from the CO, would be less electronegative, 
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withdrawing fewer carriers from SnO2 and decreasing the Schottky barrier height, and 

consequently the resistivity. There was a linear trend between the CO concentration 

(20, 40, 80, 130 ppm) and voltage change in the heating element. This resulted in an 

increase in the heat loss to the silicon substrate and so to a fall in temperature when 

driving the heating element at constant voltage. The sensitivity of the micro-heater 

was 38.92 mV/Ω. 
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Fig. 3.17 Characteristics of Pd doped thin film SnO2 sensor (IDC 10) to different CO 

concentrations (20 ppm, 40 ppm, 80 ppm, 130 ppm) at 5 V (heater voltage). 

 

3.3.3  Conducting Polymers (CPs) 

Conducting polymers have attracted considerable interest since their discovery 

in the late 1960s [16]. Although there has been much interest shown in the use of 

conducting polymers as electronic devices, e.g. organic diodes or transistors, there has 

been less interest, until recently, in exploiting their possible use as the active material 
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in gas sensors. A large number of CPs have been used for chemoresistive gas sensors. 

CP sensing materials have three main advantages when used as gas sensors [16]:  

• A wide variety of polymers are available, including substituted polypyrrole, 

polythiophenes, polyindoles and polyanilines. 

• CPs are readily grown by electrochemical polymerization of the monomer or 

deposited under controlled conditions. 

• CP gas sensors operate at room temperature. 

 

Conducting polymer sensors have been fabricated by electro-polymerisation 

of a thin film of polymer across the gap between gold-plated electrodes. Deposition of 

the conducting polymer gas sensor was carried out under the direction of Prof. 

Bartlett at Southampton University. Figure 3.18 and Figure 3.19 show the 

microdeposition apparatus designed for CP deposition.  

Potentiostat

Reference 
electrode

Counter 
electrode Working 

electrode

Frit

Aqueous solution 
of electrolyte

Droplet

 

Fig. 3.18  The schematic diagram of the microdeposition apparatus for conducting 

polymer deposition. 
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Potentiostat

Aqueous solution

Counter electrode

Reference electrode

Working electrode

SRL 127 device

 
 
 

Fig. 3.19 The schematic diagram of the microdeposition apparatus for conducting 

polymer deposition. 

 

The three-electrode configuration is established by dipping the apparatus into 

the droplet and aqueous solution, respectively. These methods were designed by 

Bartlett and Gardner for the deposition of different CPs on the same sensor array 

device [15]. In Figure 3.19, the calomel reference electrode and gold counter 

electrode are held directly above the working electrodes of the sensor device. A frit is 

used to separate the electrolyte and the electrolyte from the droplet when 

microdeposition is processed. The polymers deposited were a series of poly(aniline) 

pentane sulfonate. Aqueous solutions of 0.5 mol dm-3 aniline and 0.5 mol dm-3 

pentane sulfonic acid sodium salt were used. The polymers were deposited 

potentiostatically by applying 0.9 V for 5 s, followed by +0.78 V for a variable time.  

The details of the gas sensing mechanism in conducting polymers are poorly 

understood and several empirical models have been suggested. Bartlett et al. [16] 

have suggested five possible mechanisms of the gas sensitivity of CP chemoresistor 

which are likely to have dominant effects in most cases: (1) direct carrier generation 
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or removal by oxidation or reduction, (2) change in the interchain carrier mobility, (3) 

interaction with the counter ion, (4) change in interchain hopping, and (5) change in 

interfacial charge transfer. G. Wegner et al. [17] have considered the charge-carrier 

motion in conducting polymers which explains the hopping of charge-carrier between 

localised states of adjacent chain segment or different chains. It explains that the 

temperature dependence of the film conductance can be described by a variable 

range-hopping model of the Mott type. At present, the adsorption model by Bartlett et 

al. [18] has empirically shown good explanation for chemoresistive CP gas sensors.   

 

3.4  System Control Software 

 Initially, the Warwick Fox 2,000 system was provided with dedicated software 

to perform data collection but the software was unable to control the new valve 

system and the work involved in the new application. It was thus modified for 

applying the electronic nose to the testing of blue-green algae in water. 

LabVIEW is a language which allows the user to generate virtual instruments 

(VI’s) quickly and efficiently from a series of building blocks and macro units.  In 

this section, the modified software design approach is described for the real-time data 

acquisition/control system. 

 

3.4.1  Software Design 

 LabVIEW is a hierarchical, object oriented language and lends itself to the 

design of highly structured, modular programs. Therefore, the software is structured 

with a main Virtual Instrument (VI) capable of calling and dismissing the sub VIs. 

The LabVIEW hierarchy for the modified system control is shown in Figure 3.20.  
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Main tool for valve control and 
data collection 

Temperature control tool 
for sensor chambers 

Digital output test tool 

Dynamic data exchange  
         Master tool 

DAQ analogue input 
Configuration tool 

Fig. 3.20 The structure of LabVIEW hierarchy for the new Warwick Fox 2,000 system. 
 

The program is divided into a hierarchy of objects, the main VI tool for valve 

control and data collection, the temperature control VI tool for sensor chambers and 

the digital output test VI tool for diagnosis. 

 The following section shows program details for each VI following the 

procedures developed. 

1. To check the digital output lines from the LPM-16 I/O card, it is necessary to run 

LPM port test VI and open solenoid valve 1, before running the whole 

experiment.                                                            
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2. Use the temperature control VI to maintain a constant temperature. Set to proper 

temperature and run by clicking on the running button. This program runs as a 

background task all the time. Figure 3.21 shows the parts of the temperature 

control program, the values of offset and the ratio for the conversion of 

temperature sensor output voltage into degrees centigrade. 

 

Temperature  
conversion factors 

Fig. 3.21 The control panel and diagram of the temperature control program. 

3. Select the main VI for the valve control and data collection. If it is activated, then 

a dialogue box is opened and asks for a configuration file. It simply creates a new 

file or overwrites the old file and changes the configuration within the program. 

Figure 3.22 shows the sampling cycle example for a configuration. For flexibility 

of data collection, the sampling rate is changeable using a cycle division mode.  
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Configuration Example 
Sampling cycle times  

 

Fig. 3.22 Diagram of main VI for valve control and data collection. 

 

4. Start the system control program and leave it for a duration time. If there is an 

error or problem, then simply activate the exit button to stop running the program.  

 

3.5  Initial System Test and Characterisation 

 Before the bacteria experiments commenced, the electronic nose system was 

left in a standby condition for several days to stabilise it in its new environment. This 

helped to reduce start-up drift. During the initial test stage, air leaks, diaphragm pump 

condition, solenoid valve and temperature of sensor chambers were checked by the 

LabVIEW system program. The plot in Figure 3.23 shows an example of output 

results from six gas sensor arrays, the temperature sensor and humidity sensor 

according to the elapsed time.  

Water sample Duration on  

BG 11 medium 23 mins. 20 secs. 

PCC 7806 2 mins. 

BG 11 medium 23 mins. 20 secs. 

PCC 7904 2 mins. 

Total  Cycle Time 50 mins. 40 secs. 

 

Sampling rate: every 10 secs. 
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Fig. 3.23 Plot of gas sensor outputs, temperature sensor output and humidity sensor 

output according to the elapsed time (days). All outputs were expressed by an 

arbitrary voltage (V). 

 

The temperature control program was run, with a target temperature within the 

sensor chamber of 45 °C. This allowed the gas sensor array to be in a stable condition 

before the experiment began. The output of the temperature sensor and relative 

humidity sensor were very stable, but the output from the gas sensors showed 

relatively long-term signal drift because of spurious odours in the laboratory. This 

was an undesirable occurrence because it introduced unwanted variance into 

subsequent data. It does reflect more closely the field situation but may be less than 

diurnal variation of growth rates. The temperature fluctuation of main chamber was 

around ±0.1 °C during the test and it seemed to have negligible effect when 

performing the biological experiment. The temperature sensor ouputs a linear voltage 
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of 10 mV per °C and was interfaced with a simple circuit consisting of a simple op-

amp based amplifier with an adjustable offset as shown in equation (3.2). 

                                                           Ts = a (VT + Vo)                                            (3.2) 

       VT : voltage ouput of temperature sensor          Ts : temperature of sensor (°C)  

          a: coefficient (= 20.1 °C/V)                            Vo : voltage offset         

 

3.6  Initial Experiments with Chemical Samples  

Before the experiment using real cyanobacteria cultures began, validation 

experiments with standard chemical samples were performed in the Biological 

Sciences Department. All data were taken from each sensor every second but it was 

also possible to control sampling rate using a cycle division function in the LabVIEW 

operating program. Each test was based on 4 elements, reference sample-target 

sample 1-reference sample-target sample 2, which are tested during several cycles, 

where one cycle was programmed to be 40 min in length. Figure 3.24 shows the 

responses from standard chemicals, glycerol, citral and β-cyclocitral.   

This validation experiment was for the discrimination between standard 

chemicals and the results are described in chapter 4. The main reason for using these 

standard chemicals was that they are readily available chemical solutions, like the 

medium sample in cyanobateria cultures. The system consists of sampling the 

headspace of three identical vessels containing glycerol, citral, and β-cyclocitral. The 

headspace was sampled by the modified Warwick Fox 2,000 with a set of six 

commercial metal oxide sensors, a temperature sensor and a humidity sensor as 

explained in the previous section. One cycle was programmed to be 40 min as 

follows. 
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Fig. 3.24 Plot of the responses from standard chemicals, glycerol, citral, glycerol and 

β-cyclocitral with cycles. 

        

           One cycle (40 min) = glycerol (10 min) 

                                  5% v/v citral solution in glycerol (10 min) 

                                  glycerol (10 min) 

                                  1% v/v β-cyclocitral solution in glycerol (10 min) 

 

Another series of experiments was carried out to discriminate the nature of 

two similar chemical standard samples, 1% v/v gerianol solution in glycerol and 1% 

v/v nerol solution in glycerol (Figure 3.25). 
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Fig. 3.25  Plot of the responses from standard chemicals, glycerol, gerianol, glycerol 

and nerol with cycles. 
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  One cycle (40 min) = glycerol (10 min) 

                                                 1% v/v gerianol solution in glycerol (10 min) 

                                                 glycerol (10 min) 

                                                 1% v/v nerol solution in glycerol (10 min)  

 

Analysing the two plots, Figure 3.24 and Figure 3.25, shows that the variance 

in the signals between the gas sensors was significant. The temperature fluctuation of 

the main chamber was around ±0.1 °C during the test. The output of the humidity 

sensor was affected by the ambient temperature, and thus was not as significant a 

source of noise as temperature. There was significant fluctuation of reference sample, 

glycerol, through two previous experiments. The output voltages in Figure 3.24 are 

lower than those in Figure 3.25, even using the same reference chemical, glycerol. 

Therefore a base-line correction would be required for the discrimination processing. 

Hence the activity difference between the reference and the standard chemical can be 

used to make a base-line correction. PCA analysis of the standard chemicals is 

summarised in section 4.1.1. 

 

3.7 Conclusion  

A measurement system has been developed for the testing of cyanobacteria in 

water and consists of three main stages: the odour sampling system, an electronic 

nose and a Cellfacts instrument that analyses liquid samples. The software was 

structured with a main Virtual Instrument (VI) capable of calling and dismissing the 

sub VIs. During the initial test stage, air leaks, pump condition, solenoid valve and 

temperature control were checked with the LabVIEW system program. The 
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temperature fluctuation of the main chamber was around ±0.1 °C during the test and it 

seemed satisfactory for performing the biological experiment. 

Several sensing materials based on MOS (metal oxide semiconductor) and 

conducting polymer have been focused on for use in an application of the electronic 

nose. Thick film tin oxide sensors (Alpha MOS), SRL125/MOS thin film sensor, 

micromachined IDC device, and CP sensors were explored for the application of 

water samples. Two prototype silicon devices, SRL 125/MOS and IDC 10 sensors, 

were characterised and tested for the detection of CO. Each device showed low-power 

consumptions, 75 mW and 60 mW at 300 °C, respectively.  

Finally a set of data gathering experiments was performed on standard 

chemicals before the cyanobacteria experiments commenced. Experimental methods 

for data collection were developed under the LabVIEW environment. The variance in 

the signals from six thick film sensors were significant and required some pre-

processing such as a base-line correction for the classification of samples.   
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Chapter 4 

 

Data Processing and Classification 

 

 The objectives of this chapter are to describe the results from data processing 

and classification using a MATLAB toolbox and the NeuralWorks Professional 

II/Plus (NeuralWare Inc., USA) software. MATLAB is an interactive mathematical 

analysis program to help with scientific and engineering problems. Its basic data 

element is a matrix. NeuralWorks is a complete and comprehensive multi-paradigm 

prototyping and development system. It can be applied to design, build, train, test and 

deploy neural networks to solve complex, real-world problems. 

Various pre-processing and pattern recognition techniques have been used in 

the field of electronic nose systems (Chapter 2). Here, principal components analysis 

(PCA) was chosen to explore models using difference, fractional difference and 

normalisation algorithms, for the classification of standard chemicals and 

cyanobacteria by neural networks. Also nonlinear PARC techniques called Artificial 

Neural Networks (ANNs) have been applied for feature classification. Three 

supervised classifiers, MLP, LVQ and the Fuzzy ARTMAP were applied to the 

cyanobacteria data. 
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4.1 Principal Components Analysis (PCA) 

PCA is a useful classical pattern recognition technique showing clearly the 

visualisation of data-sets on a dimensionless PCA plot. In PCA, a set of linearly 

correlated variables ( ) is transformed into a set of uncorrelated variables 

(principal components, ) whereby the first few components explain most 

of the variance in the data-set. If a principal components analysis starts with data on  

p variables for n individuals, as indicated in equation (2.1), then the ith principal 

component is, 

pXXX ,...,, 21

ZZ , 21

pip Xa

pZ,...,

 
                              iii XaXaZ +++= ...2211                                     (4.1) 

 

The variances of the principal components are the eigenvalues 

( 0...21 ≥≥≥≥ pλλλ ) of the covariance matrix. Var( )iZ iλ=  and the constants 

1 are the elements of the corresponding eigenvector, scaled so that: ipii aaa ,...,, 21

 

                                                                               (4.2) 12
21 =+ ipii a

1

1... 2
1

2
12

2
11 =+++ paaa

2Z

...22 ++ aa

The data-set is autoscaled to avoid one or more variable having an undue 

influence on the PCA result, then it sets the means of variables to zero and variances 

to one.  The first principal component Z  has a set of coefficients  that  maximises the  

 
 1The constants are called the loadings which determine the correlations and prevalence of data. 

variance which is as large as possible given the constraint ( ) on 

the constants . The second principal component is such that the variance is as ja1
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large as possible subject to the constraint ( ). Therefore PCA 

produces p PCs which are uncorrelated. The PCs are plots on two dimensional PCA 

coordinates which represent a proportion of the variance within the data-set. With a 

correlated set of odour sensors, it is not uncommon to observe over 90% of the 

variance in the first two components.   

1... 2
2 =+ pa2

22
2
21 ++ aa

 

4.1.1  PCA Analysis of  the Standard Chemicals 

PCA, one of the widely used classical statistical methods, was employed for 

the classification of the standard chemicals analysed, i.e. glycerol, 5% v/v citral 

solution in glycerol, 1% v/v β-cyclocitral solution in glycerol, 1% v/v gerianol 

solution in glycerol   and   1%  v/v  nerol  solution  in  glycerol.   Before   PCA   can   

be  applied, preprocessing, as described in Chapter 2, was carried out in order to 

improve the classification process. In this case, the difference model, fractional 

difference model, and normalisation were employed.  Each test was based on 4 stages 

(reference sample, target sample 1, reference sample, target sample 2) which are 

tested during several cycles where one cycle was programmed to be 40 min in length. 

In order to reduce the number of values, average values per cycle and per stage were 

created using a MATLAB program. Data from each experiment were combined to 

form one large feature-set on which PCA was applied. Sensor chamber temperature, 

humidity and gas flow-rate were not considered in the PCA because these parameters 

were practically constant over each experiment. 



86                                                                                    Chapter 4. Data processing and Classification  

The PCA, of the difference signal algorithm and the fractional difference 

algorithm (Chapter 2), were applied to the data-set, after normalisation was used to 

remove experimental error in the odour concentrations. Figure 4.1 shows the results 

of a PCA on the first two ranked PCs, on five chemical samples based on glycerol, 

taken from the electronic nose. 

Fig. 4.1 PCA plot of the difference model on a data-set of standard chemicals, υ: 5% 

v/v citral solution in glycerol, σ: glycerol, ν:1% v/v β-cyclocitral solution in glycerol,   

λ: 1%  v/v  gerianol solution  in  glycerol, υ: 1% v/v nerol solution in glycerol. (For 

six-element metal oxide nose) 
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Different captions indicate each chemical class. In this PCA plot several 

clusterings can be observed and there is overlap between 1% v/v β-cyclocitral 

solution  in  glycerol, 1% v/v nerol solution in glycerol and pure glycerol. The sensor 

parameter was the voltage difference (voltage of reference sample – voltage of target 

sample) of sensor responses. Figure 4.2 also shows a PCA plot of an auto-scaled 
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difference model for the same chemical samples. In auto-scaling the set of scaled 

feature vectors is calculated such that the vector components have a mean value of 

zero and unity variance. The first two PCs showed 93.64% of the total variance of the 

feature-set. Again, in this PCA plot several clustering and overlap zones can be 

observed. Generally, it is expected that feature-sets exhibiting less overlap would give 

good classification performances.   
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Fig. 4.2 PCA plot of the auto-scaled difference model on a data-set of standard 

chemicals, υ: 5% v/v citral solution in glycerol, σ: glycerol, ν: 1% v/v β-cyclocitral 

solution in glycerol, λ: 1% v/v gerianol solution in glycerol, υ: 1% v/v nerol solution 

in glycerol. (For six-element metal oxide nose) 

 

 

Normalisation of the data-sets has also been used to improve the classification 

performance.  The  normalisation  preprocessing  algorithm  used  for  each sensor i 

is, 
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(4.3) 

 

 similar non-zero values 

dicate strong collinearity. The first principal component is 

 

where the normalised array parameter norm
ix  lies in the range of [0, +1]. It gives equal 

weighting to each sensor and thus compensates for differences in the magnitudes of 

the signals. Table 4.1 shows the eigenvalues, the variances of the principal 

components, and % of the total variances for a normalised difference model. The 

eigenvectors, the coefficients of the principal components, are important indices 

because values close to zero show unimportant variables and

in

Z 6543211 3896.04076.04088.04900.04067.03309.0 XXXXXX +++++=        (4.4) 

r 1.14% which shows 

that the first component is far more important than the others.    

model of standard chemicals by 

anking the P s in order o  the 

 

PC No. Ei e % Tot. Var 

Eigenvect  of t pal

     

 

where 1X  to 6X are standardised variables (n = 6). The eigenvalue for a principal 

component indicates the variance that it accounts for out of the total variances. Thus 

the first principal component accounts for 97.6%, the second fo

 

Table 4.1  The eigenvalues and eigenvectors of the correlation matrix for the 

application of PCA to the normalised difference 

r C f % of total variance. 

 

genvalu

 or, coefficient he princi  components 

      X1                X2               X3               X4               X5              X6 

1 2.5814 97.6000 0.3309 0.4067 0.4900 0.4088 0.4076 0.3896 

2 0.0303 98.7444 -0.6903 -0.1339 -0.2027 0.5322 0.4251 -0.0221 

3 0.0144 99.2886 0.0287 -0.3853 0.6074 -0.1088 0.3197 -0.6064 

4 0.0115 99.7233 0.5601 -0.1991 -0.5732 0.0154 0.5472 -0.1354 
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5 0.0052 99.9211 0.3084 -0.1738 -0.0255 0.7332 -0.4993 -0.2954 

6 0.0021 100.0000 -0.0657 0.7736 -0.1435 -0.0083 0.0472 -0.61 

Figure 4.3 shows the PCA plot of a normalised difference model.  The 

classification performance was slightly improved through the use of a normalisation 

technique, this reduced the overlap between 1% v/v β-cyclocitral solution in glycerol 

and 1% v/v nerol solution in glycerol. This was an encouraging result. 

  

 in glycerol, υ: 1% v/v nerol solution 

in glycerol. (For six-element metal oxide nose) 

       

as indices of gas 

responses. The fractional difference algorithm for each sensor i is, 
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Fig. 4.3 PCA plot of the normalised difference model on a data-set of standard  

chemicals, υ: 5% v/v citral solution in glycerol, σ: glycerol, ν: 1% v/v β-cyclocitral 

solution in glycerol, λ: 1% v/v gerianol solution

  

 

The performance of the fractional difference model was also evaluated when 

applied to the classification of five standard chemicals. The values of fractional 

difference are often called the “sensitivities” and widely used 
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where  is sensor signal output from a reference sample such as room air.  refx

Table 4.2 and figure 4.4 represent the PCA result of the normalised fractional 

difference model, which shows an unclear boundary between β-cyclocitral and nerol. 

 
Table 4.2 The eigenvalues and eigenvectors of the correlation matrix for the 

application of PCA to the normalised fractional difference model of standard 

chemicals by ranking the PCs in order of the % of total variance. 

 

PC No. 

 

Eigenvalue 

 

% Tot. Var 

Eigenvector, coefficient of the principal components 

      X1                X2                    X3               X4               X5              X6 

1 2.6467 97.8224 0.2232 0.3721 0.4770 0.4460 0.4444 0.4333 

2 0.0370 99.1916 -0.8311 -0.1679 -0.0710 0.3756 0.3539 -0.0990 

3 0.0095 99.5437 0.4014 -0.2993 -0.3059 -0.0872 0.7501 -0.2924 

4 0.0082 99.8463 -0.0116 -0.3790 0.8139 -0.1575 0.0084 -0.4110 

5 0.0034 99.9724 0.3106 -0.2457 -0.1068 0.7922 -0.3343 -0.3041 

6 0.0007 100.0000 -0.0415 0.7347 0.0017 0.0080 0.0539 -0.6749 
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Fig. 4.4 PCA plot of the normalised fractional difference model on a data-set of 

standard chemicals, υ: 5% v/v citral solution in glycerol, σ: glycerol, ν: 1% v/v β-
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cyclocitral solution in glycerol, λ: 1% v/v gerianol solution in glycerol, υ: 1% v/v 

nerol solution in glycerol. (For six-element metal oxide nose) 

The first principal component accounts for 97.8%, the second for 1.8%. PCA is a 

linear technique and so there is no difference between the choice of a relative or 

fractional difference but these models are better than the difference model because 

they compensate for the variation of sensor responses caused by change in room air 

quality and temperature.  

 

4.1.2 PCA analysis of  the cyanobacteria strain  

 Each measurement cycle was based on four elements (medium sample - toxic 

cyanobacteria – medium - non-toxic cyanobacteria) as described in Chapter 3.4.1. 

Similar to the preprocessing of the standard chemicals, the average values per cycle 

and per element were created to reduce the number of data points (480 per cycle) over 

400 cycles. Figure 4.5 shows the sensor responses from the initial stage of 

cyanobacteria samples.  
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Figure 4.5  Plot of the response from BG-11 medium, toxic cyanobacteria, BG-11 

medium and non-toxic cyanobacteria with cycles. 

 Under natural conditions, the life span of cyanobacteria is about 30 days, 

though these initial test were for 2 days. This was expected to give a general 

classification idea about the whole series of experiment. Reliable sampling is very 

important over the whole experimental period. Figure 4.6 shows the results of 

sampling test from three identical medium vessels (a) before and (b) after inoculation.  
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Figure 4.6  Plots of the response from medium, non-toxic cyanobacteria, medium and 

toxic cyanobacteria with cycles: (a) before and (b) after inoculation. 

 Sensor responses showed some variation with the room temperature and 

perhaps air humidity as shown in Figure 4.7. Temperature and humidity of the sensor 

chamber showed nearly constant values for every experiment, thus these values can 

be excluded from the data for the classification process as for the previous standard 

chemical experiment.   
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Figure 4.7 Sensor responses with significant fluctuation from medium, toxic 

cyanobacteria, medium and non-toxic cyanobacteria with cycles. Only the output 

from gas sensor 2 was used to draw this plot for the sake of clarity.  

 

 Before the PCA analysis, the correlation between gas sensors was calculated 

and plotted as shown in Figure 4.8, to show the sensor interdependencies about the 

cyanobacteria sample. If sensors are highly correlated, then the static responses from 

the correlated sensors can be omitted at the analysis stage. In Figure 4.8, there was 

correlation between sensor 2 and 6 but this was not significant. Therefore all six 
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sensors were used to characterise the cyanobacteria samples in water. Figure 4.9 is the 

first result of PCA analysis on the cyanobacteria samples.  
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Fig. 4.8 Plots showing interdependencies of the six gas sensor array. They indicate 

that sensors 2 and 6 have relatively high co-linearity but might still need six gas 

sensor array for the characterisation of cyanobacteria samples in water. 
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Fig. 4.9 Results of PCA on cyanobacteria samples, PCC 7806 (toxic) and PCC 7941 

(non-toxic). The original data are transformed by the normalised difference model (a) 

and the normalised fractional difference model (b), which produced two distinct 

clusters of the toxic and non-toxic cyanobacteria.  
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 The feature-set employed used the normalised difference model and the 

normalised fractional difference model which showed good results in the 

classification of the standard chemicals (Chapter 4.1.1). Similar to the former 

experiments, two PCAs of the normalised processing algorithms were performed to 

discriminate cyanobacteria types such as PCC 7806 (toxic) and PCC 7941 (non-

toxic). Figure 4.9 shows PCA plots of the first 2 ranked PCs. The target classes are 

indicated by different captions.  Figure 4.9 (a) shows that PCA was unable to separate 

out the two cyanobacteria types. This was dramatically improved through the use of a 

normalised fractional difference algorithm, which was able to produce two distinct 

clusters of the toxic and non-toxic cyanobacteria (Figure 4.9 (b)). The stretched 

clusters   indicate   that   sensor   drift   occurred   over   time  and  was  mainly  in  

the   
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 Fig. 4.10 Results of PCA plot of second and third principal components on 

cyanobacteria samples, PCC 7806 (toxic) and PCC 7941 (non-toxic). The original 

data are transformed by the normalised fractional difference model. 
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first component.  Despite the sensor drift, the PCA of the normalised fractional 

difference algorithm exhibited good classification performance without any overlap 

between the two clusters. Figure 4.10 shows the PCA plot of second and third 

principal components of figure 4.9 (b), which displays two distinct groups of 

cyanobacteria without sensor drift. Also PCA will be used to classify cyanobacteria 

growth phase at the next stage of the experiment. 

 

 
4.2 Artificial Neural Network  

 Artificial neural networks (ANNs) have been widely used in the application of 

electronic nose systems. This technique, applied here, especially MLP ANNs trained 

using back-propagation (BP) has been highlighted by many researchers in this field 

(see chapter 2).  ANNs which mimic the architecture of the biological olfactory 

system do not require an explicit description of how the problem is to be solved. They 

learn from the data and normally configure themselves during a training period. Also, 

they can cope with highly nonlinear data and so, unlike PCA, can be made to cope 

with noisy or drifting sensor data.  

 

4.2.1 Neurone model 

 Figure 4.11 shows a schematic diagram of a typical artificial neurone with R 

inputs. It provides a functional description of the various elements that constitutes the 

model of an artificial neurone. The neurone has a bias b, which is summed with the 

weighted inputs to form the net input n.  
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Fig. 4.11 Schematic diagram of multiple input neurone. 

 

 

The neurone output can be written as  

  

                                              )(nfa =                                                          (4.7) 

 

Therefore the actual output depends on the particular transfer function f that is chosen.  

Each input has an associated adjustable coefficient called a weight w, which gives the 

strength of each input connected to the neurone. The bias b is much like a weight, 

except that it has a constant input, such as 1. The bias gives the network an extra 

variable, and so the network with biases would be more powerful than those without. 

It has the effect of lowering the net input of the transfer function1, though the bias can 

be omitted in a particular neurone. 
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 A particular transfer function is chosen to satisfy some specification of the 

problem  that  the  neurone  is  attempting  to  solve. It may be a linear or a nonlinear 

function of the net input n. Different transfer functions can be used for different 

purposes [2]. For example, the log-sigmoid transfer function is commonly used in 

multilayer networks, when trained using the backpropagation algorithm. It sets the 

output into the range 0 to 1 and is defined as a strictly increasing function that 

exhibits smoothness and asymptotic properties. This can be defined by: 

 

                                                    ne−
a

+
=

1
1                                               (4.8)           

 

where n is the net input of the neurone. Hard limit, linear, hyperbolic tangent sigmoid 

and competitive transfer functions are also commonly used for particular problem. 

The hyperbolic tangent sigmoid function, which is similar to the log-sigmoid 

function, squashes the output into the range –1 to 1. The range of the output is 

important as it improves the training qualities of the neural network. The expression 

for the hyperbolic tangent sigmoid can be written as 
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 1The bias is the negative of the threshold and the net input of the transfer function may be 

increased by employing a bias term rather than a threshold. The transfer function often referred to as 

the activation function. 

A single neurone has a very limited capability, as a device for solving 

problems. Commonly processing elements can be combined to make a layer of node’s 

and be interconnected. Therefore an artificial neural network is able to solve more 
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complicated problems, which require more intricate decision regions to group data. A 

single layer of neurones can be set to a different transfer function by combining 

neural networks in parallel. 

 

4.2.2  Multiple layer perceptron (MLP) 

 Multilayer networks are more powerful than single-layer networks. The MLP 

network is one of the most popular neural network architectures and is suited to a 

wide range of applications. It consists of a set of sensory units that constitute the input 

layer, one, or more hidden layers, and an output layer as introduced in Chapter 2.  

Figure 4.12 shows one example of the fully connected three layer MLP network with 

33 weights to train. For brevity the network of Figure 4.12 is referred to as a 6-4-1 

network. Inputs and output were considered as layers which alternatively constitute 

the network architecture. All the outputs from the previous layer are input to the next 

layer. Each layer has its own weight, its own bias, a net input and output. By adding 

one or more hidden layers, the network is able to extract higher-order statistics, by 

virtue of the extra set of synaptic connections and the extra dimension of neural 

interactions. Having more than one hidden layer can cause local minima and make 

networks more complicated in practice. 

 There are many algorithms for training a neural network. One of the most 

powerful techniques is supervised training where for each input vector, the target 

output  vector is known.  In this process,  changes in weights and biases are due to the 

 



101                                                                                    Chapter 4. Data processing and Classification  

Input layer
  (6 units)

Hidden layer
    (4 units)

Output layer
 (1 unit)

Bias

Bias  
 

Fig. 4.12 Schematic diagram of fully connected three layer MLP network with 6 

input, 4 hidden neurones and 1 output 

 

intervention of any external assign which provides the output target. BP is a 

commonly used supervised training algorithm and MLPs are usually trained using BP. 

BP performs a gradient descent within the solution’s vector space toward a global 

minimum along the steepest vector of the error space. The global minimum is that 

theoretical solution with the lowest possible error. In most problems, the solution 

space is quite irregular which may cause the network to settle down in a local 

minimum and not the best global solution. Figure 4.13 illustrates the possibility of 

converging to a local minimum in weight space. If a local minimum z1 is reached, the 

error at the network outputs may still be unacceptably high. The BP algorithm 

employs a method of gradient descent, where the neural network is initialised and its 
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error can be visualised at a random coordinates on the error surface as shown in 

Figure 4.13. The error signal ( pkδ ) at the output of kth at the nth training vector is 

defined by 

                                             pkopkpk y −=δ                                                  (4.10) 

 

where  is the target value and  is the actual output from the kth output unit.  pky pko
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The sum of the squared errors for all output units can be written as: 
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Fig. 4.13 Hypothetical surface in weight space. The point, zmin, is called the global 

minimum and the other minimum point, z1, is called a local minimum. 

 

The objective of BP training is to minimise the difference between the actual 

network output and the target output on the error space and find an appropriate set of 
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weights. The weights should be initialised to small, random values, often in the range 

of ±0.5. The gradient descent vector is calculated such that the steepest negative 

gradient of  is the path followed by the network error. Then the values of the 

weights are adjusted so as to reduce the total error. From the derivatives of Eq. (4.11) 

with respect to the weights, , the weights on the output layer are updated 

according to 

pE

kjw

pt

 

                                                   kjkj wtw Δη−=+ )(

pΔ kjw

)1(                                  (4.12) 

 

where  is the gradient descent vector component for weight and the factor η is 

called the learning-rate parameter which determines the magnitude of the change in 

the weightings [3]. Also is the weight value between the hidden perceptron k 

and the output perceptron j at time t. The process is continually repeated for the 

number of iterations until the final error between the target values and actual values is 

acceptably low. The error that this process minimises is 

)(twkj
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where P is the number of patterns in the training set. 

 

4.3 The Classification of Cyanobacteria Strain  

 Three supervised classifiers (Chapter 2), MLP, LVQ and Fuzzy ARTMAP, 

were used to classify the cyanobacteria strain in water. 
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MLP ANNs were modelled using a software program, NeuralWorks 

Professional II/Plus [10], to classify cyanobacteria type. NeuralWorks Professional 

II/Plus software provides a comprehensive framework for rapidly implementing MLP 

neural networks, training methods, and flexibility of building new functions. 

Therefore it includes a comprehensive set of network architecture, learning rules, and 

training rules for the design of the network that best fits an application.  

 The training technique used is the back-propagation learning rule. The back-

propagation command provides a dialog box with numerous choices that allow to 

construct thousands of variations of networks. Figure 4.14 shows the schematic 

representation of back propagation, especially its training phase. The training phase 

involves the adjustment of learning system parameters according to the learning rule 

adopted, until the error signal reduces to a predefined tolerance limit and the weights 

of the NN are trained to implement the desired classifier. The NN classifies the test 

samples using the static knowledge base, through the training output file created 

during the learning session. The architecture of the neural network used was a three-

layer MLP network with 6 inputs, 4 units in the hidden layer and one output. The 

number of hidden units can be decided from a general rule of thumb, but the best way 

seems to be to vary the number of hidden processing elements (units) up or down to 

improve performance. There is no reliable method for estimating the optimum number 

of hidden units so far. The neural network was trained using an output data set from 

preprocessing, such as the difference model and fractional difference model. A 

hyperbolic tangent sigmoid function was used for the transfer function in the network 

because some input  vector  components had negative values.  The  target values were 

set to provide binary output, i.e. 1 for toxic bacteria and –1 for non-toxic bacteria. 
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Fig. 4.14  Schematic representation of the back propagation system 

 

 

The training sets were selected at random without replacement. The network training 

parameters were set throughout to values of learning rate η = 0.3 and the number of 

epochs was set to 16. An epoch is the number of sets of training data presented to the 

network (learning cycles) between weight updates. The best MLP set was found to 

classify correctly 97.1 % of the unknown non-toxic bacteria samples and 100 % of the 

unknown toxic bacteria samples on the basis of a set of 378 training vectors and 202 

test vectors as shown in Figure 4.15.  
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Fig. 4.15 A bar chart showing the MLP classification probabilty (%) of correctly and 

incorrectly classified toxic and non-toxic bacteria for 6 pre-processing algorithms;                 

1: Difference, 2: Difference autoscaling, 3: Difference normalisation, 4: Fractional 

difference, 5: Fractional difference autoscaling, 6: Fractional difference 

normalisation. 

 
 

LVQ is an improved supervised learning technique with a self-organising 

feature map as discussed previously in Chapter 2. Figure 4.16 shows the schematic 

representation of LVQ. The hidden layer in this network is a Kohonen layer, and it 

carries out the learning and classifying. The LVQ scheme has three phases within its 

algorithm. LVQ1 is the basic LVQ learning algorithm that helps all PEs to take an 

active part in the  learning.  LVQ2  is  a  fine-tuning  mechanism,  which  refines  

class  boundaries.  
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Fig. 4.16 Schematic diagram of a LVQ with a Kohonen layer. 

 

Therefore the output from LVQ2 is the final encoded version of the original input 

signal applied to LVQ1. The target values were set to provide 1 for toxic bacteria and 

0 for non-toxic bacteria. The same training and test sets used for the MLP were 

applied. The best classification results were found at the number of training iterations: 

17,000 for the difference normalisation algorithm and only 100 for the fractional 

difference normalisation algorithm. The best LVQ set was found to classify correctly 

100% of the unknown non-toxic bacteria samples and 100% of the unknown toxic 

bacteria samples on the basis of a set of 378 training vectors and 202 test vectors as 

shown in Figure 4.18.  

Fuzzy ARTMAP was applied to cyanobacteria input patterns generated by a 

6-MOS gas sensor array as for the MLP and LVQ algorithms. Fuzzy ARTMAP is a 
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supervised learning technique and also, self-organising, self-stabilising and suitable 

for incremental learning. Therefore it has an advantage since it can perform on-line 

learning without off-line training as for MLP. A Fuzzy ARTMAP network was 

trained with the first cyanobacteria dataset and slowly recoded during new learning 

without forgetting the patterns in the first one. Figure 4.17 shows the schematic 

architecture of a Fuzzy ARTMAP neural network. The orienting subsystem and the 

gain control are the two major subsystems. The orienting subsystem is responsible for 

generating a reset signal and the gain control sums the input signal. 

 

Associative 
   MemoryART a ART b b (Training)

Gain Control

Orienting Subsystem

 

a (Input)

Fig. 4.17  Architecture of a Fuzzy ARTMAP neural network. 

 

 

The baseline vigilance and the recode rate were set to 0 and 0.5, respectively.  

Fuzzy ARTMAP was able to correctly classify 100% of the cyanobacteria type.  

Futhermore, while the back-propagation MLP required typically 30,000 training 

cycles to obtain optimal results, the Fuzzy ARTMAP required only 300 training 

iterations. During the training process 25 nodes were committed. All results from 

MLP, LVQ and Fuzzy ARTMAP are summarised in Figure 4.18. 
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Fig. 4.18 A bar chart showing the MLP, LVQ and Fuzzy ARTMAP classification 

probabilty (%) of correctly and incorrectly classified toxic and non-toxic bacteria for 

2 representative processing algorithms; 1: Difference normalisation, 2: Fractional 

difference normalisation. 

 

 

4.4 The Prediction of Culture Growth Phase 

CellFacts instrument (Microbial System Ltd.) was used to estimate the growth 

phase of the cyanobacteria cultures being measured. The CellFacts instrument uses 

electrical flow impedance determination to count and size particles and cells in water 

samples quickly and easily by using real-time on-line sampling techniques as 

described in Chapter 3. Every cell in a population can be gathered and automatically 

down-loaded to a computer at intervals of four hours. Figures 4.19 and 4.20 show the 

profiles of the analysis of the medium sample and the toxic cyanobacteria sample 

according to the number of cells and size, respectively. Each ‘EXP’ profile was 

produced every four hours. 
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Fig. 4.19 Plot of the number of cell against cell size in 1 ml of medium sample. 
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Fig. 4.20 Plot of the number cells against cell size in 1 ml of toxic cyanobacteria 

sample.  

In order to interpret the growth phase of the cyanobacteria cultures, indicated by plots 

from the Cellfacts Instrument; Dr Dow in the Biological Sciences Department was 
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consulted to identify the boundaries between growth phases. All analysis profiles can 

be plotted again according to the elapsed time and analysed for growth phases. The 

growth boundaries are not clear cut and are only an indication of the progress of 

growth. 

The design, topology, training methods and testing methods of each neural 

network employed to predict the growth phase were identical to those used for the 

classification of the cyanobacteria strains. The PCA and three supervised classifiers, 

MLP, LVQ and Fuzzy ARTMAP were used to predict the cyanobacteria in the 

observed four growth phases. Once again the normalised fractional difference model, 

which showed good results for the classification of cyanobateria strains, was used. 

A series of measurements was performed on toxic cyanobacteria cultures. 

There were three separate experimental runs on each cyanobateria culture. Figures 

4.21, 4.22 and 4.23 show the growth phase curve from the Cellfacts instrument and 

the corresponding PCA results from the output of the electronic nose system to four 

different growth phases of three cyanobacteria cultures. The growth curves show the 

cell counts and sizes against the elapsed time. The true phases, lag, growth, stationary 

and late stationary (labelled I to IV) were obtained by inspecting the growth curves 

and locating the changes in the slope against elapsed time. The growth curves and the 

PCA plots in Figure 4.22 and Figure 4.23 show very similar results compared to the 

results in Figure 4.21. This can be explained by the size of cells taken from the master 

culture  because  the initial cell size of cyanobacteria culture in Figure 4.21 was 2.2 

μm  whereas  the  others  were 3 μm.   There is some overlap of  the response  vectors  
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Fig. 4.21  (a) A growth phase plot of Cellfacts instrument showing the number of cells 

and cell size for cyanobacteria over a 700 h period  (b) PCA results of the response of 

a six-element gas sensor based electronic nose to the headspace of cyanobacteria. The 

four growth phases are lag, growth, stationary and late stationary (labelled I to IV). 
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Fig. 4.22  (a) A growth phase plot of Cellfacts instrument showing the number of cells 

and cell size for cyanobacteria over a 800 h period  (b) PCA results of the response of 

a six-element gas sensor based electronic nose to the headspace of cyanobacteria. The 

four growth phases are lag, growth, stationary and late stationary (labelled I to IV). 
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Fig. 4.23  (a) A growth phase plot of Cellfacts instrument showing the number of cells 

and cell size for cyanobacteria over a 800 h period  (b) PCA results of the response of 

a six-element gas sensor based electronic nose to the headspace of cyanobacteria. The 

four growth phases are lag, growth, stationary and late stationary (labelled I to IV). 

in each PCA plot, corresponding to the transition periods of the cyanobacteria 

cultures. Figure 4.24 shows the PCA plot of a six-element gas sensor based electronic 

nose to the headspace of cyanobacteria where point 1 and point 180 represent t = 0 

and t = 9000 hours, respectively. Each point is a representation of the responses from 

all of the six sensor arrays after preprocessing using the normalised fractional 

difference, with a time interval of 50 min. The data points move from phase III into 

phase IV, hence result in a transition of the response pattern. 
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Fig. 4.24 PCA results of the response of a six-element MOS gas sensor based 

electronic nose to the headspace of cyanobacteria. The two growth phases are 
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stationary and late stationary (labelled III to IV). The response data were 

preprocessed by the normalised fractional difference model. 

 

The cyanobacteria data-set was divided into 3 test folds containing 48 

measurements each (12 measurements per phase category) and three neural networks 

were trained using 144 vectors for each fold. Test vectors were selected at random 

from each phase without replacement. The network has 6 inputs and 4 outputs since a 

1-of-4 code was used to code the 4 different phases. The confusion matrix for the 

classification of the growth phases is shown in Table 4.3. The classification rates of 

MLP, LVQ and Fuzzy ARTMAP were similar (92.3%, 95.1% and 92.4%, 

respectively) but Fuzzy ARTMAP was the fastest to learn and judged to perform best 

because it self-organises and selects its own “hidden neurons”. 

 

Table 4.3 Confusion matrix showing the best performance of phase classification of 

cyanobacteria using a normalised fractional difference model with MLP, [LVQ] and 

(Fuzzy ARTMAP). 

                                               Actual phase 

Predicted Lag Growth Stationary Late stationary 

Lag  140 [136] (140) 8 [16] (20) 0 4 [4] (16) 
     
Growth [4] 136 [128] (120) 0 0 
     
Stationary 4 [4] (4) 0 144 [144] (144) 0 
     
Late stationary 0 (4) 0 140 [140] (128) 

 

In order to evaluate generalisation, the MLP, LVQ and Fuzzy ARTMAP were 

used for the prediction of unknown growth phases. The patterns in sets 1 (Figure 

4.21) and 3 (Figure 4.23) were used for training and the patterns in set 2 (Figure 4.22) 

were used to test the network. This led to a performance of 70% in the classification 
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of the test patterns for LVQ and Fuzzy ARTMAP. The MLP and LVQ network 

required typically 25,000 and 2,000 training cycles respectively but Fuzzy ARTMAP 

required only 150 training iterations, thus it was faster to learn than the others. 

Table 4.4 shows the results of the generalisation tests. It was difficult to 

recognise the growth phase of an unknown culture which had a different trend from 

other cultures used for training. It was found that the majority of errors in the second 

generalisation test occurred in the boundaries between the different growth phases, 

this was due to the implementation of a hard boundary. Although a fuzzy ARTMAP 

provides a set for the boundary, which is not sharp, but has similar error in the phase 

boundaries. 

  

Table 4.4 Results of the generalisation test of MLP, [LVQ] and (Fuzzy ARTMAP) 

network in growth phase classification, in terms of patterns correctly 

classified/numbers of patterns. 

 Growth phase Classification 
Training/tested sets lag growth stationary late stationary rate (%) 

 
1, 3/2 

 

0/50 
[3/50] 

(20/50) 

50/50 
[45/50] 
(48/50) 

2/50 
[45/50] 
(47/50) 

44/50 
[45/50] 
(44/50) 

48 
70 
70 

 

 

4.5 Summary 

This study shows the potential application of an electronic nose to potable 

water quality analysis. A six-element metal oxide based e-nose has been used for the 

continuous monitoring of the growth of cyanobacteria over a period of 40 days. 

Several pre-processing techniques were explored in order to remove the noise factor 

associated with running the electronic nose in ambient air, and the normalised 

fractional difference method gave the best PCA results. Three supervised neural 
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networks, multi-layer perceptron (MLP), learning vector quantization (LVQ) and 

Fuzzy ARTMAP were used and compared for the classification of both two strains 

and four different growth phases of cyanobacteria (lag, growth, stationary and late 

stationary). The best results show that the toxin strain of cyanobacteria was correctly 

predicted with an accuracy of 100%, and that the growth phase of the toxic 

cyanobacteria was correctly predicted for 70 % of all unknown samples using LVQ 

and Fuzzy ARTMAP. The training iterations of Fuzzy ARTMAP were found to be 

typically more than an order of magnitude less than those for the MLP and the LVQ 

network. Therefore Fuzzy ARTMAP was chosen to be the best algorithm overall.   

 The majority of the classification error is associated with the different growth 

trends of the cyanobacteria culture, and so it could be reduced significantly if the 

neural network was trained on-line. Even so the error occurring in the boundaries 

between the different growth phases is difficult to reduce, even in the case of Fuzzy 

ARTMAP, so further work is needed on boundary identification. 
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Chapter 5 

 

Design of New Sensor Chamber  

and Instrumentation 
 

This chapter describes the design and construction of a new sensor chamber as 

well as other parts of the electronic nose system. The further modification of 

electronic nose system was performed for more useful data collection experiments.  

Although a mono-type sensor array based on MOS gas sensors makes for a simple 

electronic nose system, it may limit the resolving power of the electronic nose. 

Therefore there could be some advantage to making a hybrid nose out of different 

types of sensor, such as MOS, conducting polymers, SAW devices, and MOSFETs 

etc. [1]. Here, an array of conducting polymer resistive sensors has been combined 

with the complementary MOS sensor array to make a hybrid resistive e-nose.     

 

5.1 Design of New Sensor Chamber 

The new sensor chamber was designed to replace and improve upon a sensor 

chamber designed earlier by Craven [2]. It should enhance on the existing electronic 

nose’s performance, because of the use of more sensors and better dynamic response  

through  a reduction in dead-volume.  Figure 5.1 shows the schematic design of the 
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thin film sensor chamber. The precise dimensions of the chamber can be seen in 

Appendix D. 

 

Thermofoil heater
  (MINCO Inc.)

Heat exchanger (Aluminum)Top layer (PTFE) Sensor Mounting (Aluminum) Bottom layer (PTFE)

 

Fig. 5.1 Design of the new sensor chamber. 

 

 

The combination of PTFE and aluminium was chosen for the materials for the 

new sensor chamber. Aluminium is cheap, easy to machine and has a lower specific 

heat capacity. Latter versions will be made of stainless steel. PTFE can also be easily 

machined and has a good thermal stability and low specific heat capacity ( ≈ 0.25 ). 

PTFE is inert from chemical attack by most substances and so excellent as an inner 

material. 

The sensor chamber comprises of four layers and a thermofoil heater (MINCO 

Inc.). The gas enters through a hole in the top layer and passes down into the heat 

exchanger. The centre layer is the heat exchanger layer, on which the machined spiral 

channel can be seen. An efficient way of heating the gas was to feed it through the 

spiral channel maintained at the required temperature. The gas flows along the spiral 

winding before entering into a sensor mounting layer through a hole in the centre. 

Therefore heating of the gas is achieved by passing the gas through a heat exchanger 

prior to entry in the sensor mounting layer.  

The main aluminium sensor chamber contains six CP gas sensors, a 

commercial temperature sensor (LM35CZ) and a commercial humidity sensor 



122                                                               Chapter 5.  Design of Sensor Chamber and Instrumentation 

(MiniCap 2). To ensure that gas sensors are exposed to the target gas simultaneously 

a radial sensor configuration is the best solution with the gas flow entering at the 

centre of the chamber. The target gas is exposed to the sensors before being drawn out 

of the chamber by the eight equally spaced exit holes (4 mm) around the sensor 

mounting. There are eight holes (8 mm) to ensure that the gas flows evenly across all 

of the eight sensors. The symmetry of the gas flow can give the same condition to 

each gas sensor. Each layer was sealed using an O-ring. The air gap around the holes 

in bottom layer was sealed using Araldite glue. PCBs were designed and made to link 

all of the sensor outputs to the computer control system and also to mount the new 

sensor chamber in the main electronic nose. The single-sided PCBs were designed 

using a software package, EasyPC, and produced within the School of Engineering at 

the University of Warwick.   

Figure 5.2  shows  the  photographs of  four layers of the new sensor chamber  

before being assembled. The top one on the left is the PTFE top layer with thermofoil 

heater. The other top layer on the right is the aluminium heat exchanger, on which the 

spiral channels can be seen. The thermofoil heater was glued on a thin (1 mm) 

aluminium plate for the thermal conduction to the aluminium heat exchanger. The 

bottom layers on the right and left are the sensor mounting layer and the PTFE bottom 

layer respectively. 
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Fig. 5.2  The four layers of the new sensor chamber before assembly. 

 

5.2 Further Development of Electronic Nose 

Figure 5.3 shows the modified FOX 2000 incorporating the new sensor 

chamber and sub-system. A new sensor chamber is placed in parallel with the 

previous main chamber. The previous main chamber contained a temperature sensor 

(LM35CZ) and 6 thick-film MOS sensor array that was used in the original sensor 

array. The new sensor chamber contained the 6 thin film CP gas sensors, a 

temperature sensor (LM35CZ) and a relative humidity sensor (MiniCap 2). Two more 

gas volumetric flow-rate sensors were placed between the gas input and two sensor 

chambers, respectively. An additional interface circuit and a LPM-16 PnP I/O card 

were added to the new sensor chamber in the electronic nose system.  
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Figure 5.4 shows a photograph of the modified electronic nose system which 

has two sensor chambers, three flow-rate sensors, new interface cards and an internal 

power supply.  
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Fig. 5.3 A modified electronic nose system for the second set of measurements.  
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Power supply 

     Interface card 
for  CP sensor array 

Additional interface card 
for the interface of flow 
sensors, CP interface card 
and LPM 16 card 

Fig. 5.4 Photograph of the final Warwick electronic nose system. 

 

Before this modification, there were the original Fox 2,000 circuits, the 

analogue interface circuits modified by Craven and a LPM-16 I/O card. The LPM-16 

I/O card has 8 digital outputs and 16 analogue inputs. The 8 digital outputs (6 

solenoid valves + 2 heaters) and 10 analogue channels (6 gas sensor + 2 temperature 

sensor + 1 humidity sensor + 1 gas flow sensor) have been used. Therefore one more 

DAQ card, LPM-16 I/O, was required for 8 analogue inputs of the 6 CP gas sensor 
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array in the new sensor chamber and 2 gas flow sensors. The pre-sensor chamber and 

pre-heater chamber in the previous system were removed and a temperature sensor 

and a humidity sensor of the pre-sensor chamber were used in the new sensor 

chamber. 

 

5.2.1 Computer and LPM-16 I/O cards 

The computer which was central to the electronic nose system was upgraded 

from an Intel 80486DX33 CPU to an Intel 80486DX2/66 CPU (model: Gateway 

2,000). Two LPM-16 I/O cards running 3 LabVIEW programs simultaneously were 

used for the control and data gathering in the whole system and these pushed the 

limits of the personal computer. An additional LabVIEW program was designed for 

the new sensor array and the flow sensors. All programs were written to run within 

the Microsoft Windows 95 environment. The LPM-16 PnP card and the LPM-16 card 

were assigned to the channels 1 and 2, respectively. If the LPM-16 base I/O address is 

changed, corresponding change should be followed. Therefore board configurations 

and switch settings were changed. The PC-LPM-16 and PC-LPM-16PnP are versatile, 

cost-effective boards for testing, measurement, and control. These boards contain a 

12-bit, successive-approximation, self-calibrating ADC with 16 analogue inputs, 8 

lines of TTL-compatible digital input, and 8 lines of digital output. The PC-LPM-

16PnP was built without jumpers or switches, for use with Plug and Play operating 

system such as Windows 95.  It also contains two 16-bit counter/timer channels for 

timing I/O. 

5.2.2 Heater 

Both sensor chambers possess a commercial thermofoil heater. These 

thermofoil heaters are thin, flexible heating elements consisting of an etched-foil 
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resistive element laminated between layers of flexible insulation. The insulation 

material was Kapton. The first heater (model: HK5393R8.9L12E) was attached to the 

external circumference of the previous main sensor chamber. It had a resistance of 8.9 

Ω, therefore when supplied with 12 V, had a power rating of 16.2 W. The second 

thermofoil heater (model:HK5547R47.4L12A) was attached in top layer of new 

sensor chamber as shown in figure 5.2. It had a resistance of 47.4 Ω, therefore when 

supplied with 12 V, had a power rating of 3 W. The temperature was controlled by an 

on-off controller using LPM-16. 

 

5.2.3 Interface Cards   

The conducting polymer interface card was originally designed by Pearce [3]. 

It converts the DC-based resistance of each polymer film into a voltage compatible 

with the ADC input stage of the LPM-16 card. An Ohmic response of CP films was 

found at low operating voltages between ±0.15V, however at voltages greater than ± 

0.5 V the polymers can become non-linear [4, 5]. Therefore a voltage range was 

chosen that shows a linear I-V characteristic for the interface card. The circuit 

consists of a constant current source with the voltage across the polymer monitored 

being directly proportional to the electrical resistance of the polymer film.  

A simplified interface circuit diagram is shown in Figure 5.5. The sensor 

voltage output set to 2.5 V and the first op-amp circuit drives a constant current 

through the sensor because of the action of the precision reference diode (Dz). The 

magnitude of the constant current is then defined by the size of the scaling resistor 

and its value given by equation 5.1. 
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scaleR

V5.2
=polymerI

polymerR

polymer

                          (5.1) 

 

The resistance of the device,  can be given by, 

 

                                     V polymerpolymer IR ×=  

 

                                                 
Scale

polymer R
R V5.2

×=

polymer

                         (5.2)  

 
where V  is the voltage dropped across the device. 
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- ~
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Ipolymer

Rscale
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ymerVpol

 
 

Fig. 5.5 Simplified CP interface circuit diagram. The output, Vo, is amplified by a 

second stage op-amp circuit, compensating offset and providing gain. 

The scale settings therefore correspond to full scale readings of the CP sensor 

resistances up to 100 Ω, 1 kΩ, 10 kΩ and 100 kΩ, with Rscale being 2.5 kΩ, 25 kΩ, 

250 kΩ and 2.5 MΩ, respectively. Table 5.1 shows the dip switch values depending 
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on polymer resistance. It was possible to change resistors if the resistance of the CP 

sensor is out of range. The resistor socket related to the red coloured dip switch was 

produced for this purpose. The second stage of the circuit amplifies the full scale 

sensor signal,  to 5 V at the output V . The details of the circuit design are 

provided in [3].  

polymerV o

( )(

 

Table 5.1 Dip switch values of CP interface circuit 

 
Dip Switch 

 
)Ω

polymerImaxR  
 

   

 

ΩpolymerR
 

Calibration 
resistor for low 
gain ( )Ω  

Calibration 
resistor for high 
gain (  )Ω

Red 100 1 mA < 100 10 1 
      
Orange 1 k 0.1 mA 100-1 k 100 10 
      
Yellow 10 k 10 μA 1 k-10 k 1 k 100 
      
Brown 100 k 100 μA 10 k-100 k 10 k 1 k 
 
 

 

The another additional interface card was produced for the interface of the 

flow sensors and the CP interface card with a LPM-16 card. The details of the circuit 

diagram and layout are as shown in Appendix B.  
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5.2.4 Power supply  

Two external power supplies (Farnell, type E30/1) previously used to power 

the heaters were replaced by a high efficiency power supply made within the School 

of Engineering and mounted in the electronic nose system. It supplies 12 V and 3 A 

for two thermofoil heaters and ±15 V and 1 A for the CP interface card, and therefore 

has a maximum power of 66 W. It was sufficient to drive two thermofoil heaters and 

the interface card.  

 

5.2.5 Valve circuit 

The valve circuit was originally designed by Craven as a part of his PhD work 

[2] but the circuit board was relatively big and connected with an external power 

supply. Therefore it was replaced by a new simple sub-circuit, which was based on a 

design recommended by the manufacturer (Lee Components). Each valve was driven 

at 12 V from a internal power supply consuming 1 W maximum. Six LEDs were 

connected to give a visual indication of the status of the sub-circuits just like the 

original design [2]. The LED was lit for valve on and the LED was not lit for valve 

off according to digital output from the LPM-16 I/O card. It was mounted in the 

electronic nose system with an internal power supply. 

 

5.2.6 CP gas sensor 

CP gas sensors were fabricated at Southampton University by the electro-

polymerisation (section 3.3.3) of polymer across the 10 μm gap between gold 

electrodes in the device SRL127/110. Six different CPs (Table 5.2) were chosen as 

the  hybrid sensor array materials in the new sensor cell. PPy/PSA, PPy/HpSA, 
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PPy/DSA in H2O and PAN/PSA, PAN/HpSA, PAN/DSA in 2M H2SO4 were chosen 

as candidate sensing materials. 

 
 
Table 5.2 Electrochemical deposition conditions of conducting polymer sensors 

Conducting Polymer/ 

Counter Ion 
Deposition Conditions 

PAN/PSA 
0.2 M aniline, 0.5 M alkyl sulfonate, and 2 M H2SO4 
+0.9 V vs. SCE for tstep1 followed by +0.78 V vs. SCE for 
tstep2 

  

PAN/HpSA 
0.4 M aniline, 0.5 M alkyl sulfonate, and 2 M H2SO4 
+0.9 V vs. SCE for tstep1 followed by +0.78 V vs. SCE for 
tstep2 

  

PAN/DSA 
0.4 M aniline, 0.5 M alkyl sulfonate, and 2 M H2SO4 
+0.9 V vs. SCE for tstep1 followed by +0.78 V vs. SCE for 
tstep2 

  

PPy/PSA 0.1 M pyrrole, 0.1 M alkyl sulfonate, and H2O 
+0.85 V vs. SCE for tstep  

  

PPy/HpSA 0.1 M pyrrole, 0.1 M alkyl sulfonate, and H2O 
+0.85 V vs. SCE for tstep  

  

PPy/DSA 0.1 M pyrrole, 0.1 M alkyl sulfonate, and H2O 
+0.85 V vs. SCE for tstep  

 
 
 
 
 
5.2.7 LabVIEW 

A software package ‘LabVIEW (ver.4) has been used to gather data from the 

new CP sensor chamber and the two flow sensors. All data were simultaneously 

monitored on a front panel and saved in a spreadsheet file automatically. The block 

diagram, shown below, is the VI’s source code, constructed in LabVIEW’s graphical 

programing language, G. Figure 5.6 shows the CP control2.VI to create a signal array 
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from 8 channels. A sub-VI, AI Config, configures an analogue input operation for a 

specified set of channels. 

 Figure 5.7 shows the block diagram of the main CP control2.VI and sub-VI 

called output.VI.  This  sub-VI  is  concerned  with  the  returning  one  scan  of  data   

 
 
 
 
 

 
 

Fig. 5.6  Block diagram of CP control2.VI creating an array from 6 CP sensors and 2 

flow sensors. 
 
 
 
from a previously configured group of channels. Every voltage output from the CP 

sensor array is  saved  as  a text file  and  the  voltage outputs  from flow sensors 

return to the real flow-rate (ml/min) through the formula node that calculates an 

equation inside the resizable box. Text file VI converts a 2D or 1D array of single-

precision (SGL) numbers to a text string and writes the string to a new byte stream 

file or appends the string to an existing file. These VI were run with the valve control 

VI, the temperature control VI and the MOS sensor array control VI together. 
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Fig. 5.7  Block diagram of main CP control2.VI and sub-VI called output.VI. 
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5.3 Testing of the Sensor Array Module 

The pre-heater chamber was thought to reduce the temperature fluctuation of the 

target gas in the sensor chamber but it was possible to get certain accurate control 

(±0.1 °C) of the gas temperature without pre-heating (Figure 5.8). Temperatures were 

set to 40 ˚C for the MOS sensor chamber and 35 ˚C for the CP sensor chamber as 

target temperatures at first. It is essential to control accurately the temperature of gas 

within the sensor chambers for reliability of sensor output. The temperatures, 45 ˚C 

for MOS chamber and 35 ˚C for CP chamber are optimum temperatures to control, 

respectively. It was found [6] that the largest response of the conducting polymer 

sensors occurred at low humidity and low operating temperature and the temperature 

of the CP chamber was set to a reasonably low value, 35 ˚C. 
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Fig. 5.8 Plot showing the temperature in the MOS and CP sensor chambers after 

power on. Temperatures were set to 40 ˚C for the MOS chamber and 35 ˚C for the CP 

chamber. 
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The MOS chamber contains six thick film sensors, each has about 1 W, hence 

the temperature, 45 ˚C, was the optimum temperature controllable in the MOS 

chamber.  From start-up, test results have shown that thermal equilibrium was reached 

in approximately 650 seconds. The thermal characteristics of the two chambers were 

similar (temperature variation ≈ ± 0.1 ˚C) and the new CP sensor chamber showed 

consistent and reliable features at the operating temperature, i.e. once equilibrium was 

reached a steady base-line was achieved.  

 

5.4 Cyanobacteria Experiments with Gas Sensor Array Module 

A small number of cells (contained in 100 ml of inoculum) from the same 

reference storage (master culture) were inoculated into the medium every week. 

Liquid samples were extracted and analysed by the commercial CellFacts instrument 

and gas samples from each headspace were introduced to the electronic nose system 

after 5 weeks. Therefore six different growth stages of cyanobacteria cultures were 

prepared for the classification of growth phases. After these experiments, the same 

samples were used for analysis using a HP 4440 chemical sensor, which will be 

discussed in Chapter 6. The sampling system was operated in a cyclic fashion, 

whereby a set sequence of timed valve activation was repeated for a pre-determined 

number of times (section 3.4.1). The system consists of sampling the headspace of the 

sample vial and room air. The room air, when selected, allowed the sensor array to 

stabilise its response for recovery. The sequence of valve activations that was adopted 

in the LabVIEW program for each cycle was; valve 1 & 3 first for the air and valve 2 

for odour sample. The valves 1 and 3 were activated together for the fast recovery 

after sampling from the headspace of the sample vial. If valves 1 and 3 were open, gas 

flow-rates of the two chambers were approximately 250 ml/min for MOS chamber 
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and 230 ml for CP chamber. If only valve 2 was open, gas flow rates were 95 ml/min 

and 100 ml/min, respectively. The difference between flow-rates was caused by the 

different design between two sensor chambers. 

There were six separate experimental runs performed on each cyanobateria 

culture. The CellFacts instrument (Microbial System Ltd.) was used once again to 

estimate the growth phase of the cyanobacteria cultures being measured. Figures 5.9 

shows the profiles of the analysis of the toxic cyanobacteria samples according to the 

number of cell and size.  Each culture was measured twice as shown in Fig. 5.9,  

hence two profiles per sample were produced. A label, master, means the master 

culture for inoculation and numbered captions represent the dates of inoculation from 

the master culture. The initial cell size of the master culture was about 2.82 μm. The 

growth curves can be drawn again from Figure 5.9. The true phases, lag, stationary 

and late stationary were obtained by inspecting the growth curves as shown in Figure 

5.10. There was no lag phase among these samples. It was not possible to get real 

changes in the slope against elapsed time because of the intermittent sampling. 

However every culture was identified by its growth phase in the same way that was 

used for the continuous measurement (Chapter 4).  
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Fig. 5.9 Plot of the number cells against cell size in 1 ml of toxic cyanobacteria 

sample. 
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 Each measurement cycle of the electronic nose system is based on two 

elements (room air - toxic cyanobacteria) and 1 cycle was set to 10 min. Figures 5.11 

– 5.16 show the raw sensor responses from the six different stages of cyanobacteria 

samples in water. During the experiment, the temperatures of the MOS sensor 

chamber and the CP sensor chamber were 45 ºC and 35 ºC, respectively.  

Unexpectedly, the sensitivity of the early growth phase was the strongest 

among six different cyanobacteria cultures. Output voltages of three PPy conducting 

polymer sensors were decreased when these were exposed to odour samples. 

Characterisation of discrete PPy sensors has been previously investigated by Ingleby 

[6]. Response data from 6 MOS and 6 CP sensors were very stable and reliable over 

the experimental periods with cycles. 
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Fig. 5.11 Plot of the response from room air and toxic cyanobacteria inoculated on 

28th June 1999. 
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Fig. 5.12 Plot of the response from room air and toxic cyanobacteria inoculated on 

24th June 1999. 
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Fig. 5.13 Plot of the response from room air and toxic cyanobacteria inoculated on 

17th June 1999. 
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Fig. 5.14 Plot of the response from room air and toxic cyanobacteria inoculated on 

10th June 1999. 
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Fig. 5.15 Plot of the response from room air and toxic cyanobacteria inoculated on 3rd 

June 1999. 
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Fig. 5.16 Plot of the response from room air and toxic cyanobacteria inoculated on 

27th May 1999. 

 

 

Similar to the preprocessing of the standard chemicals, the average values per 

cycle and per element were created to reduce the number of data points. A PCA was 

used to see if the cyanobacteria fell into three distinct clusters of growth phase. Once 

again the normalised fractional difference model, which showed good results for the 

classification of cyanobateria strains and growth phases, was used. Figure 5.17 shows 

the PCA results of the response of a six-element MOS gas sensor based electronic 

nose to the headspace of cyanobacteria. Point 1 and point 60 represent the 1st cycle of 

the first cyanobacteria sample and the 10th cycle of the last cyanobacteria sample, 

respectively. Despite the sensor signal variance over the last stationary phases, the 

PCA of the normalised fractional difference algorithm exhibited good classification 

performance without overlap between the three phases. The stationary phase and late 

stationary phases have two and three different growth stages of cyanobacteria culture 

which have different inoculation dates (weekly base), respectively. A full separation 
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of these two growth stages in the stationary phase was not possible by using only one 

type of sensor, MOS.  
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Fig. 5.17 PCA results of the response of a six-element (MOS) gas sensor based 

electronic nose to the headspace of cyanobacteria. The three growth phases are 

growth, stationary and late stationary. The response data were pre-processed by the 

normalised fractional difference model. 

 

Figure 5.18 shows the corresponding PCA results of the response of a twelve-

element (6 MOS + 6 CP) gas sensor based electronic nose to the headspace of 

cyanobacteria. Values of the MOS and CP sensor response signals are not 

comparable, hence standardisation and pre-processing are necessary. All six growth 

stages as well as the three growth phases are separated from each other. Interestingly, 

many of the first sample in each sequence, for example, No. 1, 11, 21, 31 in Figure 
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5.17 and Figure 5.18, showed discrepancies when compared with the others. This was 

also observed for commercial electronic noses and the HP 4440 chemical sensor 

(Chapter 6). 
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Fig. 5.18 PCA results of the response of a twelve-element (6 MOS + 6 CP) gas sensor 

based electronic nose to the headspace of cyanobacteria. The three growth phases are 

growth, stationary and late stationary. The response data were pre-processed by the 

normalised fractional difference model. 

 

 The first principal component accounts for 49.36%, the second for 41.89%, 

which shows that the first and second components are far more than the others. Table 

5.3 shows the loadings that determine the correlation and prevalence of data. The 

same type of sensors exhibited relatively similar loading values compared to the 

others from different types of sensors. Following indications from Table 5.3 the 
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signals from 12 sensors can be reduced to seven or eight from a combination of MOS 

and CP sensors because similar non-zero values indicate strong collinearity. 

 

Table 5.3 The eigenvectors of the correlation for the application of PCA to the 

normalised fractional difference model of cyanobacteria cultures. The variances in the 

principal components 1, 2 and 3 are 49.36%, 41.89%, and 7.21%, respectively.  

Eigenvector, coefficient of 

the principal components 
Principal  component 1 Principal  component 2 

X1 0.4064 -0.0413 

X2 0.4083 -0.0464 

X3 0.4037 -0.0769 

X4 0.4034 0.0315 

X5 0.4080 -0.0483 

X6 0.4086 -0.0335 

X7 -0.0325 -0.4261 

X8 -0.0280 -0.4246 

X9 -0.0698 -0.4270 

X10 0.0302 0.4182 

X11 0.0317 0.4345 

X12 0.0197 0.2793 

 

 

5.5 Summary 

 The final modification of the electronic nose system was performed to produce 

a hybrid e-nose system. Using the newly modified system, data were gathered on six 

different cyanobacteria cultures for the classification of growth phase. All sensors 

including solenoid valves, gas sensors, temperature sensors, humidity sensor, and 

flow sensors were controlled satisfactorily using the computer software, LabVIEW. 

Overall the experiments were very reliable and the PCA showed excellent results. 
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Although a mono-type MOS sensor array was good for the simplicity of the electronic 

nose system (Chapter 4) it had the limitation of signal output for the broad spectrum 

of application.  

The hybrid resistive nose based on 6 MOS and 6 CP sensors showed high 

resolving power to discriminate six growth stages as well as three growth phases. 

Thus it is expected that this further development of the electronic nose system will be 

applicable to a large number of environmental monitoring systems more effectively. It 

leads to greater flexibility with the general aim of improving the analytical 

performance of the total electronic nose system. 
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Chapter 6 

 

Analysis of Odorous Headspace by  

Mass Spectroscopy 

 
The hybrid sensor system [1, 2], comprising of a MOS sensor array and a CP 

sensor array, has lead to a system with larger flexibility (Chapter 5). This chapter 

describes the use of the Hewlett-Packard (HP) 4440 chemical sensor, including a 

modified HP 7694 automated headspace sampler, for the discrimination of various 

samples. These experiments were performed to help characterise the composition of 

the odorant headspace and relate its nature to the sensor data.  

 

6.1 HP 4440 Chemical Sensor 

 Classical gas chromatography (GC)/mass spectroscopy (MS) techniques 

separate, quantify and identify individual volatile chemicals. The direct combination 

of high resolution gas chromatography with the mass spectrometer has become 

routine in chemical analysis and is usually PC driven with both the chromatograph 

and the mass spectrometer controlled from the keyboard [3, 4]. These systems are 

typically based on a simple quadrupole or ion trap analysers. They are fitted with 

modern turbo pumps or diffusion pumps, which can easily handle the flows from 
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conventional capillary columns without the need for any further interface device. 

Mass spectrometry [5, 6] is based upon the ionisation of solute molecules in an ion 

source, and the separation of the ions is generated on the basis of their mass/charge 

ratio by an analyser unit. Ions are detected by a dynode electron multiplier. Although 

gas chromatography (GC) is among the most important and powerful techniques in 

analytical chemistry with a wide range of applications, it requires a long time for 

precise data acquisition and analysis. For example, the flavour complexity of a larger 

required a run-time of 225 minutes, resulting in a total of 159 separately identifiable 

peaks [7]. The HP 4440 chemical sensor has no GC but it is a simple, fast and reliable 

sample screener, which comprises of a HP 7694 headspace autosampler, a HP 5973 

mass selective detector (MSD) and Pirouette chemometrics software by Infometrix 

(Figure 6.1) [8].  

 

 

HP 7694 Headspace Autosampler 

HP 5973 Mass Selective Detector (MSD) 

 
Fig. 6.1 Photograph of the HP 4440A Chemical Sensor. 

6.1.1 HP 7694 Headspace Autosampler 
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 The autosampler provides a constant heating time for each sample to assure 

good reproducibility. Samples are placed into 10 or 20 ml vials and sealed with a 

crimp cap and a PTFE-coated silicon rubber septum. When 10 ml vials are used, 

spacers must be placed in the sample tray and the headspace oven (in all six 

positions). At least 1.5 cm at the top of the vial must remain empty to leave room for 

the headspace autosampler needle. All kinds of odorant samples can be analysed, e.g., 

water, foods, gases, bacteria, and soil. These samples are heated for between 5 and 30 

minutes for the equilibrium at the range of oven temperature (40ºC–195ºC) depending 

on the samples. After equilibration, a needle pierces the septum, and the vial is 

pressurised with an inert gas, helium. The headspace vapour is then allowed vent back 

through the needle and a sampling loop.   

 

6.1.2 HP 5973 Mass Selective Detector (MSD) 

 The volatiles from the headspace autosampler pass through the mass selective 

detector in 10-15 seconds. The vapour phase molecules are ionised and fragmented, 

and the charged fragments are drawn into an ion detector. The quadrupole mass 

sensor scans and monitors the ion detector’s current, as a function of mass-to-charge 

ratio (m/z). Default mass sensor temperature settings are 150 °C for the quadrupole 

and 230 °C for the ion source. The mass sensor does not have a problem analysing 

samples with varying humidity levels, but autotuning of the mass sensor is required 

once a week to do a quality check on the responses of the mass sensor. The ionisation 

and fragmentation processes are reproducible to pinpoint certain ions. 

  

6.1.3 Pirouette Chemometrics Software 
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 When a set of samples has been analysed, the individual MS patterns are 

automatically appended to a single file with the extension .dat in preparation for 

multivariate data processing. The chemometrics software decides whether the 

sample’s MS patterns match or differ significantly from the patterns of previously 

analysed samples. The Pirouette contains comprehensive data analysis tools such as 

Exploratory Analysis, the PCA and SIMCA algorithms, outlier detection, and model 

optimisation and validation. Exploratory analysis is the computation and graphical 

display of patterns of association in multivariate data-sets. Once a data-set is 

determined to be suitable, a multivariate algorithm is employed to create a pattern 

recognition model.   

 

6.2 Experiments using HP 4440 Chemical Sensor 

 A HP 4440 chemical sensor was used to analyse various odorous samples. 

Table 6.1 lists the samples tested in the Sensors Research Laboratory (SRL).  

 
 
       Table 6.1 Sample types analysed by HP 4440 Chemical Sensor. 

Samples analysed No. of samples 

Ground coffees from Costa Rica, Columbia and Kenya  42 
  
Tap water, DI (de-ionised) water and BG-11 medium 9 
  
Ethanol, methanol and yeast 15 
  
Pure perforated compound (FC43) 6 
  
Polyethylene (PE) pellets with 3 different odour levels 33 
  
Cyanobacteria with different growth phases 35 

 

Each sample was placed into a 10 or 20ml vial and heated in an oven for 

reproducibility. Standard chemical sensor methods and experimental sequences were 
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set up. The headspace autosampler was configured from a keypad on the front. Table 

6.2 shows the autosampler parameters for coffee and cyanobacteria samples in water 

analysed.  

 
 
Table 6.2 Experimental parameters of the headspace autosampler.  

Set Value Parameter Range and Condition 
 

Coffee Liquid 
     
Temperatures Oven 

 
Loop 
 
Transfer line 

40 to 195 °C 
200 °C max;  
5-10 °C > oven 
220 °C max; 
5-10 °C > loop 

60 °C 
 
70 °C 
 
80 °C 

40 °C 
 
50 °C 
 
60 °C 

     
Pressure Carrier gas 

Vial   
4-8 psi 
12-18 psi 

2.5 
14 

4.5 
16 

    
Event times HS cycle time 

 
 
Vial eq. time 
 
 
Pressurisation time 
 
Loop fill time 
 
Solvent delay time 
 
 
Loop eq. time 
 
Inject time 

3-5 min; longer when vial 
equilibration time is long 
 
> 10 min for solids and 
liquid volumes > 1 ml 
 
0.10-0.50 min 
 
0.10-0.30 min 
 
Pressurisation time + 
Loop fill time 
 
0-0.10 min 
 
0.20-0.50 min 

4 min 
 
 
15 min 
 
 
0.30 min 
 
0.15 min 
 
0.45 min 
 
 
0.02 min 
 
0.30 min 

 

 

 

6.2.1 Coffee Samples 

For the first set of experiments, three kinds of ground coffee samples were 

placed into 10 ml headspace vials with a rubber septum. Each vial contained the same 
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weight (2 g) of coffee and underwent the same preconditioning steps. The vials were 

pressurised to 2.5 psi with the carrier gas for 0.3 minutes, and heated to 60°C for 15 

minutes, in the internal oven of the autosampler. The headspace was transferred from 

the sampler to the quadrupole mass sensor through a heated transfer line. It is known 

that coffee has over 670 different compounds, which play a role in determining the 

coffee flavour [9]. The typical mass responses taken from three kinds of coffee and a 

blank vial are shown in figure 6.2, with 18 significant peaks.  
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Fig. 6.2 Line plots of mass responses of 42 ground coffee samples and a blank vial. 

A low mass value for the mass sensor was set to 50 to avoid signals from 

water (M = 18), air (M =28 or 32) and CO2 (M = 44). From the mass responses, the 

graphical display patterns (Chapter 2) such as CA (cluster analysis) and PCA 

(principal components analysis) can be produced to explore and discriminate the 
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coffees. Figure 6.3 shows the analysis result of HCA (hierarchical cluster analysis) 

which facilitates the visual recognition of such categories.  
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Fig.6.3 HCA result (Euclidean metric) for the classification of three kinds of coffee 

from Costa Rica (CR1 – CR14), Columbia (CO1 – CO14) and Kenya (KE1 – 14). 

Complete method was used for linkage. The first measurement CR1 was 

misclassified. 

 

Each group of coffee is plotted in a different colour, emphasising category 

distinctions in the mass responses. The flavour complexity of the coffee was separated 

into single m/z (mass/charge) ratio’s. The proximity is represented by a similarity 

index, which normalises the values to lie between 0 and 1 and takes a value of zero 

for the vectors furthest apart and a value of unity for identical vectors. Similarity is 

expressed in terms of inter-sample distances. 
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                                                 Similarityab = 1 - 
max

ab

d
d

                                            (6.1) 

 

where dmax is the largest distance in the data set (1 = identical samples, 0 = the most 

dissimilar samples) and dab is the multivariate distance between two sample vectors, a 

and b. When distances between samples are relatively small, this implies that the 

samples are similar. A complete link method was used for the linkage of samples. It is 

the farthest neighbour linkage, which assigns a sample to the cluster, whose farthest 

neighbour is closest to that sample. The distance between a newly formed cluster A-B 

and a previously existing cluster C is calculated as follows. 

 

                               dAB⇒C = 0.5dAC + 0.5dBC +0.5⏐dAC - dBC⏐                               (6.2) 

 

Three kinds of coffee could be discriminated successfully but every first 

sample of a run sequence showed a discrepancy compared with the others when the 

sample positions were randomised. An outlier, Costa Rica 1, was the first sample of 

the run sequence. For outlier diagnostics, a Mahalanobis distance (MD) is computed 

from a k factor score of each sample: 

 

                                   MDi = (ti – t)TSk
-1(ti – t)                                            (6.3) 

 

where S is the scores covariance matrix and t is the mean score vector. If the MD of a 

sample exceeds a critical value MDcrit then the sample may be an outlier. The MDcrit 

can be determined from a chi squared distribution with k degrees of freedom in the 
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software package, Piroutte [10]. Figure 6.4 shows the results of the outlier diagnostics 

with two samples, CR1 and blank, lie in beyond the threshold. 
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Fig. 6.4 Outlier diagnostics of Costa Rica (CR1 – CR14), Columbia (CO1 – CO14), 

Kenya (KE1 – 14) and a blank vial. The Mahalanobis distance (MD) was used as a 

diagnostic model. 

 

Table 6.3 and figure 6.5 represent the PCA results for the normalised responses 

of the coffee samples. It can be seen clearly the boundaries between clusters. The first 

principal component accounts for 77.06% and the second for 18.89%, this shows that 

the first and second components have far more significance than the others. 

 

Table 6.3 PCA results of the normalised responses of three different coffee samples; 

by ranking the PCs in order of the % of cumulative variance. 

PC No. Variance Percent (%) Cumulative percent (%) 

1 1621.193970 77.059288 77.059288 
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2 397.386780 18.888758 95.948044 

3 43.779938 2.080967 98.029007 

4 19.878923 0.944893 98.973900 

5 6.412197 0.304787 99.278687 

6 4.242783 0.201670 99.480354 
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Fig. 6.5 PCA plots of normalised mass responses of three different coffee samples 

from Kenya (KE), Columbia (CO) and Costa Rica (CR). 

 

Figure 6.6 plots the loadings that determine the correlation and prevalence of 

the coffee data. The 18 mass numbers which showed significant mass responses, in 

figure 6.2, have been distinguished from other mass numbers. 
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Fig. 6.6 Loading plot of normalised mass responses of three different coffee samples 

from Kenya (KE), Columbia (CO) and Costa Rica (CR) at the range of mass, 50 to 

170.  

 

This work was performed to ascertain a qualitative discrimination of different 

odour samples and to compare with the previous work using sensor arrays [11]. 

 

6.2.2 Water Samples 

This experiment was performed to discriminate between a number of non-

volatile water samples. Three water samples (5 ml each) of tap water, DI (de-ionised) 

water and BG-11 medium, were poured into 20 ml headspace vials, with a rubber 

septum. The vial pressure was set to 14 psi and the oven temperature 40°C. The 

headspace was finally transferred from the sampler to the quadrupole mass sensor 

through the heated transfer line.  

Figure 6.7 shows the 2D PCA results of the analysis. DI water and BG 11 

medium categories were mixed on the PCA plot. It was difficult more to discriminate 

these two water samples than the coffee samples because of non-volatile components 

in the water. The mass range for scanning was 45 to 200, thus the scanning rate was 

8.39 scans/sec. 
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Fig. 6.7 PCA plots of mass responses of three water samples, tap water, DI water and 

BG-11 medium. 

 

6.2.3 Ethanol, Methanol and Yeast Culture 

Mass spectroscopy was used to discriminate ethanol, methanol and yeast 

culture. A low mass number was set of 30 to get mass responses of pure ethanol (M = 

46) and methanol (M = 32). Figure 6.8 shows the line plot of mass responses and the 

PCA result. Each type of chemical sample was plotted in a different colour and 

grouped on a PCA plot.   
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Fig. 6.8 Results of mass responses and PCA analysis of ethanol, methanol and yeast 

culture. 

 

Pre-processing was set to the mean-centre, in the algorithm options and the 

raw mass responses were normalised. A mean-centre, , was produced with mean 

value, jx . 
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                                             jij xxmcijx −=)(                                                (6.4) 

 

Samples can be easily visualised by mean-centring. This process shifts the origin of 

data without altering relative inter-sample relations. The normalisation used is a 

vector length normalisation: 

 

                                                          ∑=
N

j
iji xf 2

if

                                                   (6.5) 

 

where  is the normalisation factor for the ith sample and N is the number of feature 

vectors. Raw mass responses were normalised so that a sample’s largest feature was 

equal to 100. The PCA results of these samples were extremely clear and reproducible 

here (see Fig. 6.8).  

 

6.2.4 Pure Perforated Compound (FC43) 

The analysis of the pure perforated compound (FC43) containing 10 μl of 

PFTBA, was performed over a two days period. These samples were provided by 

Alpha MOS (France) for reliability tests. The vials were pressurised to 3 psi of the 

carrier gas, for 0.3 minutes, the vials as components of the headspace autosampler 

reached stable conditions by heating the sample to 40 °C for 2 minutes. The 

headspace was finally transferred from the sampler to the quadrupole mass sensor 

through a heated transfer line. The low mass value for the mass sensor, was set to a 

higher value than 44, to avoid signals from water, air and CO2. The highest mass 
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value was 505, with a scanning rate of 3.18 scans/sec. Mass sensor responses (No. of 

ions) were converted into a spectral view, as shown in figure 6.9.  
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Fig. 6.9 Line plots of mass responses of 6 FC43 samples. (a) Line plot at mass range, 

45-350, (b) the magnified line plot at mass range, 110-120. 
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The overlying line plots are fairly homogeneous and do not show outliers. 

Figure 6.9(b) shows the line plots of the mass responses for 6 FC43 samples with 

good consistency at mass ranges, 110 to120.  

 

6.2.5 PE (polyethylene) Pellets with 3 Different Odour Levels 

These sets of experiments are designed to test the quality of polyethylene for 

the packaging industry. Many volatile additives in PE pellets are combined with 

polymer to give the material specific properties, which can impart unpleasant odours 

to the final product. Three kinds of PE pellet (2 g) were provided by Alpha MOS and 

were filled in 10 ml headspace vials with a rubber septum. Three kinds of samples 

were previously classified to three different odour levels by a sensory panel. The 

optimal temperatures of the oven, loop and transfer line were 100, 105 and 110°C, 

respectively. The mass range for scanning was 45-200 and the scanning rate was 8.39 

scans/sec. Sampling positions were randomised as for the previous experiments.  

Fig. 6.10 shows the abundance and PCA plots of mass responses of PE pellets, 

with 3 different odour levels. The line plot shows about 10 significant peaks of mass 

responses. The top 10 masses were 48, 55, 57, 64, 69, 71, 77, 83, 85 and 94. The PCA 

results showed a good repeatability and all samples were successfully grouped 

associated with different odour levels in PE pellets, as shown in Figure 6.10(b). It 

demonstrates that the HP 7694 headspace autosampler provides repeatable headspace 

conditions and the HP chemical sensor can be used to assess the quality of packaging 

material, polyethylene associated with odour levels.  
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Fig. 6.10 Abundance and PCA plots of mass responses of PE pellets with 3 different 

odour levels. (a) Line plot of mass range, 45-100 (b) PCA plot. 

 

 

 

6.2.6 Cyanobacteria with Different Growth Phases 
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The HP 4440 was used to discriminate cyanobacteria with different growth 

phases. The same cultures used in the electronic nose (Chapter 5) were used again 

hence have same profiles on analysis of the toxic cyanobacteria samples according to 

the number of cells and size as shown in fig. 6.11. Numbered captions represent the 

dates inoculated from the master culture. Phases a (27/5/99), b (3/6/99) and c 

(10/6/99) were late stationary phases. Phase d (17/6/99) and e (24/6/99) were 

stationary phases and phase f (28/6/99) was a growth phase. There was no lag phase 

among these samples because the cultures inoculated grew so quickly in early 

summer.  
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Fig. 6.11 Plot of the number of cells against cell size in 1 ml of toxic cyanobacteria 

sample. 
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First of all, pre-scanning of the cyanobacteria sample was performed at the 

range of mass number, 45-550 (Figure 6.12). Most of the big mass responses were 

detected at the range of mass values, 45-130. Low mass values ≥ 45 was to avoid 

signals from water (M = 18), air (M = 28 or 32) and CO2 (M = 44).  
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Fig. 6.12 Line plot of raw mass responses of cyanobacteria. 

 
 

Figure 6.13 shows the line plot of the raw mass responses from the 

cyanobacteria with 6 different cultures. Each growth culture of the cyanobacteria is 

plotted in a different colour, emphasising category distinctions in the mass responses 

as shown in Figure 6.13. From the line plot of the raw mass responses of the 

cyanobacteria, a 2D multiplot can be plotted to reveal correlations between variables. 

Figure 6.14 shows the 2D multiplot indicating many 2D bi-variable combinations of 

mass numbers (48, 50, 54, 57, 64, 68, 73). The Cyanobacteria cultures showed 

distinctive responses at these mass numbers throughout the experiments. Two 

subplots, 54 vs 64 and 64 vs 94, are highly correlated. 
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Fig. 6.13 Line plot of raw mass responses of cyanobacteria with 6 different cultures, a 

to f. 

 
 

48

94
73

68
64

57
54

50

50 54 57 64 68 73   
 

Fig. 6.14 Multiplot with correlated mass numbers in several subplots. 
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Figure 6.15 and Table 6.4 show the PCA results of the normalised mass data 

from analysis of the headspace of cyanobacteria. The number of samples per different 

culture was five. The first principal component explains 30.66% of the total variance 

and less than 60% of the variance is captured by the first 5 principal components. The 

PCA results after vector length normalisation exhibited good discrimination without 

overlap between three phases, growth phase, stationary phase, and late stationary 

phase but a full separation of two stationary phases, d (17/6/99) and e (24/6/99), was 

not clear as shown in Figure 6.15. These results were not so good compared the PCA 

results of the response of the sensor- based electronic nose (section 5.4).   
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Fig. 6.15 PCA plot of cyanobateria samples with 6 different cultures. 
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Table 6.4 PCA results of the normalised responses of six different cyanobacteria  

cultures by ranking the PCs in order of the % of cumulative variance. 

PC No. Variance Percent (%) Cumulative percent (%) 

1 5334.003906 30.657776 30.657776 

2 2552.285400 14.669542 45.327316 

3 1367.602539 7.860446 53.187763 

4 585.344788 3.364334 56.552097 

5 575.312927 3.306674 59.858772 

 

 

Figure 6.16 shows the results of the outlier diagnostics by Mahalanobis 

distance and the first sample a lies beyond the threshold. 
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Fig. 6.16 Outlier diagnostics of 6 different cyanobacteria cultures, a to f.. The 

Mahalanobis distance (MD) was used as a diagnostic model. 
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Figure 6.17 shows the 2D and 3D plots of the loadings of the cyanobacteria 

data. The 18 mass numbers were distinguished from the other mass numbers. These 

significant 18 masses were used to improve the PCA analysis for the discrimination of 

six different cyanobacteria cultures.   
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Fig. 6.17 (a) 2D and (b) 3D plots of loadings of cyanobacteria data. 
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Figure 6.18 and Table 6.5 show the PCA results of  six different cyanobacteria 

cultures using 18 masses (45, 46, 48, 50, 53, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 68, 

73, 94)  only. The first 5 principal components explained 84.14% of the total 

variance. The PCA results (fig. 6.18) were improved to discriminate six different 

growth stages due to the decrease of the noise level using 18 significant masses only.  
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Fig. 6.18 PCA plot of  6 different cyanobateria cultures using 18 masses only. 
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Table 6.5 PCA results of the normalised responses of six different cyanobacteria  

cultures using 18 masses by ranking the PCs in order of the % of cumulative variance. 

PC No. Variance Percent (%) Cumulative percent (%) 

1 2811.507080 35.027863 35.027863 

2 1989.381714 24.785210 59.813072 

3 1348.818970 16.804598 76.617668 

4 334.488953 4.167315 80.784981 

5 269.216675 3.354103 84.139084 
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Finally, the same six different cultures were used again in a mass analysis to 

see the repeatability after the first experiment. The cyanobacteria cultures in vials 

were changed in the oven (40ºC) after first run of mass analysis, therefore showed 

different mass responses during the second run of mass analysis as shown in figure 

6.19. Therefore it was not possible to classify different growth phases for the second 

test. All samples seemed to turn to the identical stage, the death phase, which shows 

only two main peaks at mass numbers 73 and 143. Therefore careful sample treatment 

and analysis are required for thermally sensitive samples such as cyanobacteria in 

water. 
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Fig. 6.19 Line plot of mass responses of cyanobacteria with 6 different cultures, a to f. 

This is the result from the second run of mass analysis with the same samples.           
 
 
6.3 Summary 
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In this chapter the HP 4440 chemical sensor was used to discriminate various 

samples and compare with the sensor-based electronic nose.  

The HP 4440 chemical sensor and the electronic nose use different sensing 

techniques but the PCA results for the mass sensor showed similar PCA results of the 

response of a six-element (MOS) gas sensor based electronic nose. The hybrid 

resistive nose based on 6 MOS and 6 CP sensors showed better resolving power to 

discriminate six growth stages as well as three growth phases compared to the HP 

4440 chemical sensor (section 5.4). These investigations highlight a relationship 

between cyanobacteria culture and odour, since the strain and growth phase of the 

cyanobacteria could be predicted from the headspace of culture in water. Whilst the 

mass analyser detects individual volatile chemicals accurately, it proves no indication 

of whether the volatile substance is an odour (section 2.2.1).  

The mass spectrometry-based sensor system is becoming a key approach to 

odour analysis. However, its use is highly dependent on application. The mass 

selective detector also needs regular autotuning to maintain optimal conditions and 

the photomultiplier voltage should be within set tolerance levels. Although this 

instrument-based analysis measures only one aspect of the quality of odour, it can 

improve and confirm the capability of the electronic nose system if it can be closely 

correlated to the odorant headspace.      
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Conclusions and Future Work 

 
 
7.1 Conclusions 

The main objective of this research was to develop a hybrid electronic nose 

system suitable for monitoring the quality of potable water. A special goal was the 

classification and early warning of toxic cyanobacteria in water. The approach taken 

to discriminate not only different strains, but also the growth phase, of cyanobacteria 

involved the investigation of both MOS and polymer sensor technology and neural 

network analysis. Previous work at Warwick had shown the potential of an electronic 

nose to detect micro-organisms based upon their gaseous headspace. This real-time 

analysis, including on-line monitoring, is of importance in the natural environment. 

This research highlights the potential importance of the electronic nose employing gas 

sensors for the monitoring of environmental problems such as water enrichment.  

A number of different gas sensor technologies, signal processing and PARC 

techniques were investigated. The response of two prototype research-based silicon 

devices, SRL 125/MOS and IDC 10, were characterised with an automated gas sensor 

test system. The results were encouraging, with respect to the detection of CO, and low-

power consumptions of micoheaters, 75 mW (SRL 125/MOS) and 60 mW (IDC 10) at 
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300 °C. The fast thermal response permits the use of a pulsed-mode operation and 

hence lower average power of ca. 1 mW. These silicon devices offer a low-cost option, 

due to the use of standard silicon fabrication techniques, and operation within a battery-

powered hand-held instrument. 

MOS thick-film gas sensors have very good sensitivity, stability and are 

relatively easy to make. CP gas sensors are readily grown by electrochemical 

polymerisation and operate at room temperature with fast reversible change in 

conductivity. MOS and CP sensors were employed in the hybrid sensor system, 

because of their attractive characteristics. Pre-processing techniques were able to 

reduce the sampling errors and base-line drift of the sensors, and so optimised the 

classification process. Autoscaling and array normalisation were employed to give 

equal weighting to each sensor and thus compensated for the absolute differences in 

the magnitudes of the signals. PCA was chosen to explore clusters within the data. It 

is a most effective classical statistical method to show the visualisation of pattern 

recognition before neural networks. The artificial neural network was biologically 

inspired from studies of neural organisation in the brain. Three supervised classifiers, 

MLP, LVQ and Fuzzy ARTMAP neural networks were used and compared in the 

classification of both the strain and growth phase of the cyanobacteria grown in water. 

The desire to monitor on-line the growth phase of cyanobacteria culture led to 

the construction of an automated measurement system. It consists of three main 

stages: the odour sampling system, an electronic nose and a Cellfacts instrument that 

analyses liquid samples. The temperature of the main chamber varied by around ±0.1 

°C during the test and it was found to have a negligible effect on the classification 

results. All sensors including solenoid valves, gas sensors, temperature sensors, the 

humidity sensor, and flow sensors were controlled using a commercial computer 
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software package, LabVIEW (National Instrument Inc.). The software was structured 

with a main Virtual Instrument (VI) capable of calling and dismissing the sub VIs. 

Finally, a HP 4440 chemical sensor (Hewlett-Packard) was used to validate the 

electronic nose results. The main results of cyanobacteria experiments are as follows.  

 

7.1.1 A Six-element Metal Oxide based E-nose  

 The Warwick e-nose has been used for the continuous monitoring of the 

growth of cyanobacteria over a period of 40 days. The normalised fractional 

difference method gave the best PCA result. Three supervised neural networks, multi-

layer perceptron (MLP), learning vector quantization (LVQ) and Fuzzy ARTMAP 

were used to classify both strain and different growth phases of cyanobacteria (i.e. 

lag, growth, stationary and late stationary). Conventional water analysis takes several 

days to classify toxic and non-toxic strains of cyanobacteria but the electronic nose 

was able to classify two different strains in a few hours. The best results show that the 

toxin strain of cyanobacteria was correctly predicted with an accuracy of 100%, and 

that the accuracy of MLP, LVQ and Fuzzy ARTMAP algorithms with 4 different 

growth phases of toxic cyanobacteria was 92.3 %, 95.1 % and 92.3 %, respectively. 

The number of training iterations of Fuzzy ARTMAP was found to be typically more 

than an order of magnitude less than those for the MLP and the LVQ networks. 

Therefore Fuzzy ARTMAP gave the best performance overall. Unfortunately, the 

performance of the generalisation was not so good and the classification rate for LVQ 

and Fuzzy ARTMAP was 70%. It was difficult to recognise the growth phase of an 

unknown culture that had a different trend from other cultures used for training. The 

majority of the classification error is associated with the different growth trend of the 



177                                                                                            Chapter 7.  Conclusions and Future Work 

cyanobacteria culture, and so it could be reduced significantly if the neural network 

was trained on-line.  

 

7.1.2 A Hybrid E-nose based on 6 MOS and 6 CP  

Although a mono-type MOS sensor array was found to perform well, it does 

have limitations of signal output for the broad spectrum of applications. Therefore a 

mixed or hybrid array comprising different types of sensor, 6 MOS and 6 CP, was 

also investigated. The final modification of the Warwick electronic nose system was 

performed to produce a hybrid e-nose system. Using the newly modified system, data 

were gathered on six different cyanobacteria cultures, for the classification of growth 

phase. Overall the experiments were very reliable and the PCA showed excellent 

separation. The hybrid resistive nose based on 6 MOS and 6 CP showed high 

resolving power to discriminate six growth stages as well as three growth phases. 

Even though time did not permit many series of the continuous monitoring, because 

of the relatively long life span (30–40 days) of cyanobacteria, improved results 

proposed the use of a multi-sensor array rather than MOS sensor array only. It would 

be expected that this hybrid e-nose should be applicable to a large number of 

environmental monitoring more effectively and leading to a larger flexibility in the 

determination of independent sensor responses of the total electronic nose system.  

A HP 4440 chemical sensor was also used for the discrimination of six 

different cyanobacteria samples and the comparison with the electronic nose was 

made. The results showed some ability to classify the cyanobacteria cultures. The 

PCA results from the mass spectra were very similar to the results obtained from a 

six-element (MOS) gas sensor based electronic nose. The hybrid resistive nose based 

on 6 MOS and 6 CP sensors showed the better resolving power to discriminate six 
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growth stages as well as three growth phases rather than the HP 4440 chemical 

sensor.  

 This work reports the first major study of the use of an e-nose to monitor 

water enrichment. The main research objectives have been achieved successfully. 

These investigations highlight a clear relationship between a cyanobacteria culture 

and its headspace, since the strain and growth phase of the cyanobacteria could be 

predicted from a headspace analysis. The HP 4440 chemical sensor confirmed the 

capability of the Warwick hybrid e-nose for a broad spectrum of applications in the 

water industry. It can be concluded that e-nose technology can be applied to analysing 

potable water quality. 

 

7.2 Future Work 

This work can be extended in the following manner: 

 
• A hybrid e-nose for the continuous monitoring of microbial situations: The 

improved hybrid e-nose could be used for the continuous monitoring of human 

pathogens such as Staphylococcus as well as toxic cyanobacteria. The HP 4440 

chemical sensor could be used to collect useful data and confirm the results of the 

hybrid e-nose.   

 

• Development of an intelligent portable e-nose using thin film sensor arrays: A low-

power interface ASIC chip and thin film sensor array could provide the development 

of an intelligent portable e-nose. This would need MOS and CP silicon sensors.  
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• Portable e-nose for the detection of real samples in lakes or water reservoirs: 

Portable e-nose should be applied for the detection of real samples in their natural 

environment.   

 

• Development of novel neural network algorithms to improve the boundary 

identification and growth change: Other neural network algorithms such as recurrent 

networks could be considered and tested to reduce errors in the phase boundaries. 

Fuzzy one-of-N codes or Gradient one-of-N codes methods could be used for 

monitoring the characteristic transition of cyanobacteria.  

 

• Application of dynamical signal processing: Dynamical models could be applied to 

the raw data for the analysis of transient sensor responses, which can improve the 

overall classification rate. Preliminary results in this area look promising [1].   
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Appendix A 

 

Hybrid E-nose with  

Virtual Instrumentation Programs 

 

 
The Warwick hybrid e-nose consists of a MOS chamber, a CP sensor chamber, a 

sampler, interface boards and power supply units. Following sections show operation 

procedures with VI program details.  

 

A.1 Main System 

Switch on the e-nose units including a diaphragm pump and set the MOS sensor 

heater switches to the appropriate positions. The heater voltages can be selected as 4 V, 5 

V or 6 V (sensor cleaning voltage). Allow 30 minutes for the MOS sensor chamber to 

reach thermal stability. 

 

A.2 Labview Programs 

Originally, Craven (Chapter 3) developed the VI programs for the operation of the 

Warwick e-nose but the modified Warwick hybrid e-nose required more advanced 

additional VI design. There were three library files, Shin2, Bargraph, Tempsys, to run the 
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hybrid e-nose. The main library file, Shin2, has four control VIs, LPM Port Test, 

Temperature System 0.1, CP control2, Advanced V1.93.   

 

A.2.1 LPM Port Test.vi 

This program checks the digital output lines from the LPM-16 I/O card before running 

whole experiment. Each switch corresponds to a pair of digital output and it is necessary 

to open solenoid valve 1 before running of main control VI, Advanced V1.93 as shown in 

Figure A.1.     

 

Fig. A.1 LPM Port Test.vi and its block diagram. 

 

A.2.2 Temperature System 0.1.vi 

The temperature control vi was updated to the temperature system 0.1vi because the 

second thermofoil heater (model:HK5547R47.4L12A) was attached in top layer of new 

CP sensor chamber. The temperatures of MOS and CP chambers were controlled by a on-
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off controller using LPM-16 as previous design. Figure A.2 shows the design of the 

temperature system 0.1.vi. It is necessary to control the target temperature for each 

chamber using ‘Target Temps’. Set to the nominal temperature and run by clicking on 

running button. This program runs as a background task all the time. The values of offset 

and ratio are for the conversion of temperature sensor output voltage into degrees 

centigrade. 

 

A.2.3 CP control2.vi 

Figure A.3 shows the program design and block diagram of main CP control2.vi, which 

was designed as a sub VI of Advanced V1.93.vi. The voltage output from each CP sensor 

was saved as within a text file and the voltage outputs from flow sensors return to the real 

flow-rate (ml/min) through the formula node that calculates a equation inside the 

resizable box. Text file VI converts a 2D or 1D array of single-precision (SGL) numbers 

to a text string and writes the string to a new byte stream file or appends the string to an 

existing file. This VI was run with the valve control VI, the temperature control VI and 

MOS sensor array control VI together. 

 

A.2.4 Advanced V1.93.vi 

Select the main vi for the valve control and data collection. If it is activated, then a 

dialogue box is opened and asks for a configuration file. It simply creates new file or 

overwrites old file and changes configuration. Figure 3.21 shows the sampling cycle 

example of configuration. For the flexibility of data collection, sampling rate is 

changeable using a cycle division mode. Start the system control program and leave it for 



183                                                           Appendix A  Hybrid E-nose with Virtual Instrumentation Programs 

a duration of particular time span. If there is an error or problem, then simply activate the 

exit button to stop running program. 

 
 

Fig. A.2 Temperature System 0.1.vi and its block diagram. 
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Fig. A.3 CP Control2.vi and its block diagram. 
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Fig. A.4 Advanced V1.93.vi and its block diagram. 
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A.3 Calibration of Sensor Resistance 

 Each MOS sensor should be calibrated before the experiment commenced. The 

channel is selected with a channel switch, then set the resistance switch to the desired 

position. Then adjust the potentiometer for that channel to give 5 V on its LED display. 

Return the channel select switch to its off position to switch the MOS sensor back into 

circuit. In CP sensor, coloured dip switches and variable resistors were used to change the 

resistance range of CP, then output voltage. Optimum output voltage range of sensors 

were 5 V to 7.5 V, otherwise results may not be accurate.  

 
 

 

Potentiometer knob LED display (voltage value) 

Variable resistor 

Coloured dip switch 

 Channel select switch 
 

Resistance switch 

Fig. A.5 Photograph of the Warwick hybrid electronic nose system. 
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Appendix B 

 

Interface Circuit Diagram of  

CP Sensor Array 

 

The additional interface card was produced for the interface of flow sensors and 

the CP interface card with a LPM-16 card (section 5.2.3). The details of circuit diagram 

and layout are as follow.  
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Appendix C 

 

PTFE Holder for Silicon Wafer  

Backside Etching 

 
Mechanical protection of the backside can be achieved with a holder. The holder 

was made from PTFE, which is inert with respect to the anisotropic etchants. The 3 inch 

wafer is fixed between teflen-coated O-rings, which are carefully aligned in order to 

avoid mechanical stress in the wafer by the mount (section 3.3.2). The details of design 

are as follow.  
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Appendix D 

 

Design of CP Sensor Chamber 
 

The new CP sensor chamber was designed to enhance the existing electronic 

nose’s performance, because of more sensors and better dynamic response  through  a 

reduction in dead-volume (section 5.1). The precise dimensions of the chamber can be 

seen as follows.  
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	Table 5.2 Electrochemical deposition conditions of conducting polymer sensors
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	Fig. 5.6  Block diagram of CP control2.VI creating an array from 6 CP sensors and 2 flow sensors.
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	Chapter 7
	Conclusions and Future Work
	7.1 Conclusions
	The main objective of this research was to develop a hybrid electronic nose system suitable for monitoring the quality of potable water. A special goal was the classification and early warning of toxic cyanobacteria in water. The approach taken to discriminate not only different strains, but also the growth phase, of cyanobacteria involved the investigation of both MOS and polymer sensor technology and neural network analysis. Previous work at Warwick had shown the potential of an electronic nose to detect micro-organisms based upon their gaseous headspace. This real-time analysis, including on-line monitoring, is of importance in the natural environment. This research highlights the potential importance of the electronic nose employing gas sensors for the monitoring of environmental problems such as water enrichment. 
	MOS thick-film gas sensors have very good sensitivity, stability and are relatively easy to make. CP gas sensors are readily grown by electrochemical polymerisation and operate at room temperature with fast reversible change in conductivity. MOS and CP sensors were employed in the hybrid sensor system, because of their attractive characteristics. Pre-processing techniques were able to reduce the sampling errors and base-line drift of the sensors, and so optimised the classification process. Autoscaling and array normalisation were employed to give equal weighting to each sensor and thus compensated for the absolute differences in the magnitudes of the signals. PCA was chosen to explore clusters within the data. It is a most effective classical statistical method to show the visualisation of pattern recognition before neural networks. The artificial neural network was biologically inspired from studies of neural organisation in the brain. Three supervised classifiers, MLP, LVQ and Fuzzy ARTMAP neural networks were used and compared in the classification of both the strain and growth phase of the cyanobacteria grown in water.
	The desire to monitor on-line the growth phase of cyanobacteria culture led to the construction of an automated measurement system. It consists of three main stages: the odour sampling system, an electronic nose and a Cellfacts instrument that analyses liquid samples. The temperature of the main chamber varied by around (0.1 (C during the test and it was found to have a negligible effect on the classification results. All sensors including solenoid valves, gas sensors, temperature sensors, the humidity sensor, and flow sensors were controlled using a commercial computer software package, LabVIEW (National Instrument Inc.). The software was structured with a main Virtual Instrument (VI) capable of calling and dismissing the sub VIs. Finally, a HP 4440 chemical sensor (Hewlett-Packard) was used to validate the electronic nose results. The main results of cyanobacteria experiments are as follows. 
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