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Abstract. An investigation into the use of an electronic nose to predict the class
and growth phase of two potentially pathogenic micro-organisms, Eschericha coli
(E. coli ) and Staphylococcus aureus (S. aureus), has been performed. In order to
do this we have developed an automated system to sample, with a high degree of
reproducibility, the head space of bacterial cultures grown in a standard nutrient
medium. Head spaces have been examined by using an array of six different metal
oxide semiconducting gas sensors and classified by a multi-layer perceptron (MLP)
with a back-propagation (BP) learning algorithm. The performance of 36 different
pre-processing algorithms has been studied on the basis of nine different sensor
parameters and four different normalization techniques. The best MLP was found
to classify successfully 100% of the unknown S. aureus samples and 92% of the
unknown E. coli samples, on the basis of a set of 360 training vectors and 360 test
vectors taken from the lag, log and stationary growth phases. The real growth
phase of the bacteria was determined from optical cell counts and was predicted
from the head space samples with an accuracy of 81%. We conclude that these
results show considerable promise in that the correct prediction of the type and
growth phase of pathogenic bacteria may help both in the more rapid treatment of
bacterial infections and in the more efficient testing of new anti-biotic drugs.

1. Introduction

The human body is constantly in contact with a variety
of micro-organisms, some of which are bacteria. Normal
microbial flora reside on the surface of the skin and
internally from a few days to weeks (transient flora)
or for years (resident flora) without normally causing a
disease. Bacterial infections are caused by the growth
of certain micro-organisms known as pathogens and the
most common infectious diseases tend to afflict our upper
respiratory system. Such diseases may be caused by a
micro-organism that was originally part of our normal flora,
such asStaphylococcus aureus, or a micro-organism that
is alien and parasitic, such asLegionella pneumophilia.
Clearly, there is a clinical need to identify the nature of
the pathogenic micro-organisms within a bacterial infection
as quickly as possible and then to apply the appropriate
anti-biotic. Current practice involves the wiping of the
infected area (for example throat or ears) with a sterile
cotton swab which is then sent to a laboratory for analysis.
The swab is then usually seeded onto a blood agar plate
which acts as a growth medium, which is incubated at
37◦C, visually examined, stained and examined under a

microscope. This laborious procedure can take many days,
during which the infected patient may be receiving the
wrong or no treatment and thus the disease may progress
unchecked. An earlier identification of the pathogen would
not only produce a more rapid treatment of the infection
but also reduce the misuse of antibiotics. The latter is,
unfortunately, more serious since the overuse of anti-biotics
is relatively common and leads to the early appearance of
resistant strains of bacteria.

Electronic nose instrumentation has advanced rapidly
during the past 10 years, the majority of applications
being within the foods and drinks industry (Gardner and
Bartlett 1992, Kress-Rogers 1997). Indeed, reports have
been written on the ability of an electronic nose to
detect the freshness of foods such as fish (Schweizer-
Berberich et al 1994) and meat (Winquistet al 1993).
A deterioration in food freshness is often associated with
microbial spoilage and this work suggests that there is
potential for the clinical application of electronic noses. We
believe that the first attempt to identify micro-organisms
with an electronic nose was made by Cravenet al (1994).
An array of four different commercial metal oxide gas
sensors (Figaro Engineering, Japan) was used to sample
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Figure 1. A cross section showing two of the three glass sample vials within the head-space sampler for bacterial specimens.

the head space of six pathogenic bacteria grown in blood
agar; namelyClostridia perfringens, Proteus, Haemophilus
influenzae, Bacteroides fragilis, Oxford staphylococcusand
Pseudomonas aeruginosa. A relatively small set of 49
response vectors was obtained with six being assigned as
training vectors and one as a test vector per micro-organism
(and blood agar). A multi-layer perceptron neural network
with a topology of 4× 4 × 7 was trained on the data
using a back-propagation algorithm. In this first test the
four-element electronic nose was able to classify correctly
only 62% of the pathogens. Although the leave-one-out
method of cross validation is an almost unbiased estimator
of the true error rate, its variance is often high when it is
applied to a small sample set such as that reported here.
A bootstrap estimator, such as e0, uses replacement and
may be preferable for small samples, but, ideally, larger
sample sets should be generated. More recently, Gibson
et al (1996) reported on the use of an array of 16 conducting
polymer resistive gas sensors to detect 12 different bacteria
(and yeast), again from cultures grown on agar plates.
The number of replicate samples varied from six to 48
samples, resulting in 244 input vectors. Their decision
to define seven parameters per sensor led to a network
architecture of 112×90×13. The network was then trained
using a back-propagation algorithm on the entire data-set.
Classification rates varied from 63.6% to 100% per micro-
organism which, at first sight, appears encouraging, but
finding over 10 000 adaptable weights of more than 100
active neurones, with only 244 training vectors and not
using cross validation, makes the accuracy debatable.

In a clinical application it is desirable both to identify
the micro-organism as rapidly as possible and to automate
the process. Current identification methods based upon
ribosomal RNA sequencing have revolutionized microbial
taxonomy and phylogeny; however, they simply show the
presence of the nucleic acid sequence rather than an intact,
or indeedviable microbial cell. So the use of nucleic
acid probes for identification purposes is valuable but does
not describe the physiologicalactivity of the microbe.
Here we report on an instrument designed to sample and
analyse automatically the head space of a micro-organism

at different stages of its growth cycle, namely, lag, log,
stationary and death. The greatest benefit will be obtained
if an electronic nose can identify its lag or log phase
and so we report on an instrument developed to recognize
both the type of bacterium and its growth phase during
its early life. We have chosen to study two model micro-
organisms,Eschericha coliand Staphylococcus aureus, as
examples of gram positive and gram negative pathogens.
These microbial organisms have a short incubation period
of about 24 h at body temperature and are often causes of
ear infection and sinusitis.

2. The experimental procedure

2.1. The automated head space sampler

An autosampler and sampling methodology have been
developed for the measurement of the head space of the
bacterial specimens. First, 20 ml of a multipurpose nutrient
broth was placed into three sterile 25 ml glass vials, one
representing a reference sample; secondly, a small number
of cells (0.1 ml of inoculum) was introduced into the other
two vials from master cultures. These vials were connected
to the autosampler via 2 mm internal diameter tubing and
maintained at 37± 0.1 ◦C by a Dri-BlocTM heater, see
figure 1.

The head space was sampled using air that had first
been drawn through a charcoal filter to remove organic
pollutants, then bubbled through water to equilibrate the
water vapour pressure and finally passed through a bio-
filter to remove air-borne micro-organisms, see figure 2.
The apparatus was cleaned using an ethanol–water solution
and 5% sodium hypochlorite solution between experimental
runs. The sampling procedure was controlled via a set
of miniature solenoid valves (Lee Products Ltd) interfaced
to the digital output lines from a data acquisition card
(National Instruments) operated under a virtual instrument
(VI) written in Labview (National Instruments). Full
experimental details have been published by Craven (1997).
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Figure 2. A schematic diagram of the automated head-space sampler showing the pipework and electrical wiring.

2.2. The electronic nose instrument

The sample from the head space was passed into a
rectangular sensor chamber with a dead volume of about
100 ml which contained six commercial metal oxide odour
sensors, a temperature i.c. sensor (LM35CZ) and a humidity
sensor (Mini-cap, Panametrics) to measure the properties of
the incoming gas, figure 3.

Although the temperature of the head-space gas
entering the sensor chamber was controlled to be 37±
0.1 ◦C, there was no direct control of the temperature
of the sensor chamber itself and it was found to vary
by several degrees with fluctuations in the ambient
room temperature. The six metal oxide odour sensors
(AlphaMOS, France) were chosen on the basis of the
knowledge that, as the micro-organisms grow, they convert
the primary metabolites in the nutrient (carbohydrates,
sugars, minerals and so on) into secondary metabolites
(hydrocarbons, alcohols, aldehydes, acids, ammonia and
so on). The target compounds for the six sensors were
as follows: hydrocarbons (P.10.1), alcohols (T.70.2),
aldehydes/heteroatoms (P.40.1), polar molecules (T.30.1,
P.A.2) and non-polar compounds (P.10.2). The electrical
signals from the six odour sensors were conditioned and
then fed into a 12-bit ADC and recorded by a virtual
instrument. The functioning of the head space sampler was
reproducible to within better than 1%. A subsequent re-
design of the sensor chamber to provide an axisymmetrical
structure with closed-loop temperature control has reduced
the temperature variation to less than 0.05◦C, the dead
volume to only 3.1 ml and the mixing time to less than 1 s

at a flow rate of 200 ml min−1. Further details of the design
and performance of the revised rapid sampling system have
been published elsewhere (Craven and Gardner 1997).

2.3. Cultures sampled and cell counting

A series of measurements was performed on cultures
of two bacteria: Eschericha coli and Staphylococcus
aureus. There were two separate experimental runs on each
bacterium, making a total set of four experiments. Each
experiment ran for a period of 12 h with a sampling cycle
lasting 8 min: reference sample (2 min), bacterial sample
A (2 min), reference sample (2 min) and bacterial sample
B (2 min). Thus each experiment was comprised of 180
sample vectors making a total of 720 vectors for the entire
set of experiments.

The activity of the micro-organism within the nutrient
was monitored by drawing a small volume (0.1 ml) into
a syringe at regular 1 h intervals and performing a viable
cell count using an optical densitometer. Figure 4 shows
a typical plot of the viable cell count (in terms of colony
forming units) against the elapsed time forE. coli. The first
three phases of cell growth are clearly visible, the lag phase
lasting about 1 h, followed by rapid cell growth during the
log (or exponential) phase lasting about 2.5 h and finally
a long stationary (or static) phase lasting about 8 h. The
experiment was stopped before the death phase was entered
because this was of little practical interest to us and can be
many days in duration.
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Figure 3. The design of the electronic nose system with the sensor chamber housing six commercial metal oxide odour
sensors, a temperature i.c. and a capacitive humidity sensor.

Figure 4. A typical plot showing the number of colony
forming units (cfus) in 0.1 ml of inoculum for E. coli over a
12 h period. The different phases of growth are indicated.

3. Data processing techniques

3.1. Pre-processing algorithms

The choice of the parameter used to define the response
of an odour sensor has been shown to influence strongly
the performance both of chemometric (Gardner 1991) and
of neural network (Gardneret al 1992, Endreset al 1995)

data processing techniques. Therefore we have evaluated
the performance of a number of different pre-processing
algorithms—referred to here as sensor (feature) models.
Table 1 lists nine different sensor modelsxi together with
the equation used to define them and their abbreviation,
whereV is the output voltage of the odour sensori and is
directly proportional to its electrical resistance.

In addition, it can be useful to normalize the sensor
response data and so we have also studied the effect
of sensor normalization (denoted by the letter s), vector
array normalization (v) and autoscaling (a). The three
normalized parametersyi are also defined in table 1.
Sensor normalization sets the sensor values so that they
all lie in the range of [0,+1] whereas autoscaling sets the
mean value to 0 and the variance to 1. Both techniques
give equal weighting to each sensor and thus compensate
for differences in the magnitudes of the signals. Array
normalization divides each sensor value by the norm of the
array vector. This, in effect, removes the concentration
dependence of the magnitude of the sensor output which is
useful when the intensity of the odour is irrelevant, namely
when the same micro-organism is sampled but there are
more cells present!

3.2. The pattern analysis

A back-propagation neural network was first applied to
the output of an electronic nose in 1990 (Gardneret al
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Table 1. Definitions of sensor models and normalization methods.

Model/method Equation Abbreviation

Difference xi = (V max
ref − V min

odour ) df

Relative xi =
V min

odour
V max

ref
rl

Fractional difference xi =
V max

ref −V min
odour

V max
ref

fd

Absolute final output V final
odour and V final

ref af
Minimum output V min

odour and V min
ref mn

Final relative xi =
V final

odour
V final

ref
fr

Modified difference xi = (V max
odour − V min

odour )− (V max
ref − V min

ref ) md

Modified fractional difference xi =
V max

ref −V min
odour

V max
ref −V min

ref
mf

Final fractional difference xi =
V final

odour−V final
ref

V final
ref

ff

No normalization n

Sensor normalization yi =
xi−xmin

i
xmax

i −xmin
i

s

Vector array normalization yi = xi
(x2

1 +x2
2 +...+x2

n )
1/2 v

Autoscaling yi = xi−x̄i
σi

a

Table 2. The effect of the pre-processing algorithm (sensor model) on the ability of a back-propagation neural network to
predict a bacterial class. The performance is defined by the network sum of squares error (SSE) and the percentage of test
vectors assigned to each class (abbreviations defined in table 1). Confidence levels are indicated by the standard deviation,
and models ranked in order.

SSE Correct (%) Incorrect (%) Unknown (%)

Model Mean σ Mean σ Mean σ Mean σ

df 346.94 128.53 77.22 9.19 10.28 4.30 12.50 6.73
md 685.88 250.56 61.35 13.93 21.08 9.04 17.57 12.34
af 388.86 164.16 61.11 14.36 7.22 6.42 31.67 13.28
mn 417.96 177.99 60.14 24.86 9.86 6.90 30.00 24.67
ff 595.86 264.34 44.69 32.56 10.24 7.71 45.07 34.81
fd 543.13 125.22 43.54 22.97 10.17 4.07 46.28 24.75
rl 547.24 124.13 40.00 25.68 8.99 7.07 51.01 30.37
fr 558.73 223.16 36.01 39.92 6.74 8.95 57.26 45.69
mf 705.44 188.79 23.89 26.69 8.54 4.98 67.57 29.37

1990) and since then it has not only been reported widely
by other researchers but also offered as a pattern analysis
technique by most of the manufacturers of commercial
instruments. In our experiments we have employed the
commonly used multi-layer perceptron (MLP) trained by
the back-propagation algorithm. The MLP analyses were
carried out using a software package called SNNS (Stuttgart
Neural Network Simulator), version 4.1. The MLPs were
designed using a graphical interface, then trained and
tested on data using an internal processing language (which
also allowed automated systematic training and testing of
MLPs). The performance of the MLPs was then analysed
using built-in analysis software.

4. Results

4.1. The classification of bacteria types

The combined data sets from experiments 1 and 3 on
E. coli and S. aureuswere first used to train a back-
propagation network with momentum. The performances

of the networks were then evaluated using split-sample
validation from the data gathered from experiments 2 and
4. Clearly this is a much more challenging task than
using one experimental runboth to train and to test the
network because it includes culture-to-culture variation.
The nine sensor parameters,xi , and three normalization
methods,yi , listed in table 1 were evaluated together with
no normalization and so there were 36 different training
sets(9× 4) and 36 different test sets; each one containing
360 vectors (180 samples per micro-organism). In the first
instance, the target vectors were defined to have a value of
either 1 or 0 because the class membership ofE. coli or
S. aureuswas knowna priori and the age of the micro-
organism was ignored.

A network was chosen with a single hidden layer
because this reduces the number of processing neurones
and thus the number of training vectors required to obtain a
reliable answer. This choice was based on previous work in
which it had been shown that the use of two or more hidden
layers has a marginal effect on the network performance
(Holmberget al 1995). Our default network topology was
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6×20×2 (with 12×20×2 for the absolute and minimum
models, af and mn, respectively). The output layer was
designed to follow the standard encoding of unordered
categories (that is, classes) which is one output neurone
per micro-organism. A tanh function was used for the
transfer function of the processing elements in the hidden
and output layers because some inputs have negative values
(for example in the autoscaled data).

We decided to have ten nodes per bacteria class in the
hidden layer, namely 20 hidden neurones in the network
used to analyse theE. coli andS. aureussamples. The large
number of neurones in the hidden layer was considered
necessary because an early-stopping training technique
was employed. Early stopping is a technique commonly
used to improve the ability of a network to generalize.
(Generalization is the ability of the ANN to classify
correctly input vectors which have not been used for
training.) The number of hidden neurones has a significant
influence on the ability of an MLP to generalize (Bishop
1995). To date no reliable method for determining the
optimum number of hidden neurones has been discovered,
although some attempts have been made (Hineset al 1993,
Fekaduet al 1993).

Training of the output of the neural network was carried
out using the ‘402040’ technique (unlike Gibsonet al
(1996) who employed the ‘5050’ approach). This superior
technique defines the lower target output band as occurring
in the range [−1,−0.5] and the upper target output band
was defined as occurring in the range [+0.5,+1]. An input
vector was deemedcorrectly classified when exactly one
output was in the upper band, all the other outputs (in this
case just one) were in the lower band, and the highest target
output corresponded to the highest output. Conversely, a
vector wasincorrectly classified when exactly one output
was in the upper band, all other outputs were in the lower
band and the highest target output did not correspond to the
highest output. An input vector was classified as unknown
when it was neither correctly classified nor incorrectly
classified. Classifying output vectors in this way allowed
for unknown feature vectors to be more readily detected.
A commonly adopted rule of ‘winner-takes-all’ forces
all vectors to be classified and thus artificially increases
the number of true and false classifications. (Although
the winner-takes-all method may give a more impressive
figure for the number of correct classifications, it does not
necessarily increase the difference between the numbers of
correct classifications and incorrect classifications, which
is a more important measure.) The network training
parameters were set throughout to values of learning rate
η = 0.001, momentum coefficientα = 5.0, flat-spot
elimination constantc = 0.1 and maximum tolerance of
error per outputdmax = 0.1. The relatively low value of
η and high value ofα helped to reduce the effect of local
minima, which is necessary for a MLP with a large number
of hidden neurones, such as that adopted here. The input
vectors in the training set were randomized for each training
cycle to improve generalization. Each set of training/testing
vectors was used to train ten MLPs, so that, if an individual
MLP did not train well due to the initial random weights,
the overall result would not be significantly affected. The

Figure 5. A bar chart showing the effect of the choice of
the sensor model on the ability of the MLP to predict the
head space of E. coli and S. aureus bacteria correctly. The
error bars indicate the standard deviation of the result over
different experimental runs.

weights were assigned randomly in the region [−0.5,+0.5].
The sum of squared errors (SSE) parameter was computed
over the entire testing feature set. Further to the initial
training/testing data-set combination, it was decided to
repeat the same neural network analysis but transposing the
training and testing feature sets. Consequently, the MLPs
were also tested with feature sets from experiments 1 and
3 and tested with data from experiments 2 and 4. MLPs
trained and tested with such a combination were denoted
using ‘24–13’ instead of the ‘13–24’ combination used
above.

Table 2 summarizes the performance of the MLP in
classifying the bacteria correctly for each of the nine sensor
pre-processing algorithms defined in table 1. The results
have been ranked in table 2 according to the difference
between the average percentages of correct, and incorrect
plus unknown, classifications. Under this ranking criterion,
the difference sensor parameter df does best and the
modified fractional difference model mf worst of all.

Figure 5 shows a plot of only the percentage correctly
classified for each of the nine sensor models, from which it
appears that the difference sensor model df is better than the
others at classifying the odour type. Similarly, the effect of
the choice of normalization method has been investigated
and figure 6 shows a plot of the percentage correctly
classified for each of the three normalization methods (and
none) defined in table 1, averaged over all of the sensor
models. A ranking of the normalization algorithms was
also made using the same criteria as before and was as
follows (highest first): autoscaling a, sensor normalization
s, no normalization n, and array normalization v.

The best performance of the MLP was actually found
to occur when the minimum output sensor (compare with
the previous best df) model was combined with sensor
normalization mn/s since this resulted in 96.1% of all
the test vectors being correctly classified; 2.2% were
incorrectly classified and 1.7% unknown. In this case
the SSE was only 74.21 and the data-set combination was
13–24.
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Figure 6. A bar chart showing the effect of the choice of
the normalization method on the ability of the MLP to
predict the head space of E. coli and S. aureus bacteria
correctly. The error bars indicate the standard deviation of
the result over different experimental runs.

Table 3. The confusion matrix showing the best
performance of bacterial classification using a mn/s model.
The accuracy of the classification is defined as
(166 + 180)/(180 + 180), namely 96.1%.

True class

Predicted class E. coli (180) S. aureus (180)

E. coli (166) 166 0
S. aureus (188) 8 180
Unknown (6) 6 0

The overall performance of a predictive classifier can be
quickly appreciated through the use of a confusion matrix,
which is shown in table 3 for the best MLP (mn/s). The
overall accuracy was, as stated above, 96.1%, but more
meaningful statements are thatS. aureuswas correctly
classified 100% of the time whereasE. coli was only
correctly classified 92.2% of the time. Thus, the prediction
of E. coli is less accurate than is that ofS. aureusdue to
there being a greater variance in the response vectors, but
it is still a respectable figure.

4.2. The classification of the bacterial growth phase

The MLP design, topology, training methods and testing
methods employed to predict the growth phase were
identical to those used for the classification of the bacteria
type—with the exception of the number of neurones in the
output layer. Three neurones were used to represent the
first three growth phases, lag, log and stationary. The true
phases were obtained by inspecting the growth curves (such
as figure 4) and locating the changes in the slope against
time.

Another consideration was the natural occurrence of
different numbers of training vectors for each growth phase.
This can cause a problem because the network learns the
vectors associated with the largest class more forcefully;
however, the problem was avoided by selecting the training
vectors for each class an identical number of times.

Table 4. The confusion matrix showing the optimal
performance of bacterial phase classification using an af/a
model. The accuracy of the classification is defined as
(2 + 154 + 133)/(14 + 162 + 182), namely 80.7%.

True class of growth phase

Predicted class Lag (14) Log (162) Static (182)

Lag phase (4) 2 2 0
Log phase (198) 12 154 32
Static phase (134) 0 1 133
Unknown (22) 0 5 17

Once again the performance of each sensor model
was investigated and ranked according to the difference
in percentages stated above. However, in this case the
minimum output sensor model (mn) did not perform best
but was third with significantly better performances by
the absolute final difference model (af) and the difference
model (df). Similarly, the performance of the three
different normalization techniques (and no normalization)
were investigated and in this case the autoscaling (a) again
ranked highest, followed by sensor normalization (s), no
normalization (n) and array normalization (v). This result
is not surprising because the intensity of the odour will be
stronger during the log and stationary phases than it will
during the lag (initial) phase and so array normalization
weakens the classification.

The best performance overall was obtained using the
absolute final output sensor model and autoscaling (af/a)
when 80.7% of all test vectors were correctly classified,
10.3% were incorrectly classified and 6.2% were unknown.
The value of the network error SSE was 423.4 and the
data sets 24–13 were employed. The confusion matrix
for the classification of the growth phase is shown in
table 4. The imbalance in the class representation within
the test sets is clear with only 14 test vectors for the
short lag phase. Classification of the lag phase was,
not surprisingly, the most difficult, only 14.3% being
correctly classified, but it was more often mistaken for
the log phase rather than unknown, which is encouraging.
The other classes performed much better, the log phase
being correctly classified 95.1% and the static phase being
correctly classified 73.1% of the time. An important result
to note here for clinical applications is that the lag and log
phases were correctly predicted in 87% of all cases, since
these earlier growth phases are of greater practical value.

5. Conclusions

An analytical instrument has been developed for the
automated head-space analysis of bacteria cultures. The
instrument has been used to collect large numbers of
samples (360 per bacterium) forE. coli and S. aureus.
Results show that the type of bacterium can be correctly
predicted for 96% of all samples taken during a 12 h
incubation period. In fact 100% of theS. aureus
samples were correctly predicted, including the 14 samples
taken during the first hour of incubation and in the
lag phase! Moreover, the recent development of
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an axisymmetrical temperature-controlled sensor chamber
(Craven and Gardner 1997) should yield even better results.
The rapid and fully automated identification of a bacterium
could prove to be an important clinical application of an
electronic nose in, for example, an ear, nose and throat
department of a hospital.

The growth phase of the bacteria was correctly
predicted for 81% of all unknown samples. This lower
value may have been due to the way in which the growth
phase was found by the visual inspection of the cell
count curves. There is considerable scope for error at
the interfaces between the lag and log phases and log
and stationary phases which may be reduced in the future
through the development of fuzzy membership functions.
Nevertheless, an instrument that can automatically monitor
the growth of bacteria should find application in testing the
performance of new anti-biotic drugs on known pathogens.
Furthermore, the accurate prediction of bacteria type within
a time scale of minutes should help to optimize and
therefore speed up the treatment of unknown bacterial
infections.

This work demonstrates the potential application of
an electronic nose in clinical medicine. (In related work
by Wang et al (1997), it may be possible to diagnose
diabetes with a five-element nose detecting elevated levels
of acetone on the breath.) Field trials, testing cultures
grown from swabs taken directly from patients, are now
required. These studies should include the analysis of
multi-cultured samples and the effect of the choice of
growth medium, for we abandoned blood/brain fusion due
to significant batch-to-batch variation, so further work is
needed.

Acknowledgments

We are grateful to the Engineering and Physical Science
Research Council and Mr David Morgan (Garfield

Engineering) for the financial support of a studentship
(Mark Craven) and to AlphaMOS (France) for the donation
of the odour sensors.

References

Bishop C J 1995Neural Networks for Pattern Recognition
(Oxford: Oxford University Press)

Craven M 1997PhD ThesisDepartment of Engineering,
Warwick University

Craven M and Gardner J W 1997Meas. Control.at press
Craven M A, Hines E L, Gardner J W, Horgan P, Morgan D and

Ene I A 1994Neural Networks and Expert Systems in
Medicine and Healthcareed E C Ifeachor and K G Rosen
(Plymouth: University of Plymouth) pp 226–34

Fekadu A A, Hines E L and Gardner J W 1993Artificial Neural
Networks and Genetic Algorithmsed R F Albrechtet al
(New York: Springer) pp 691–8

Gardner J W 1991Sensors ActuatorsB 4 109–16
Gardner J W and Bartlett P N (eds) 1992Sensors and Sensory

Systems for an Electronic Nose(Dordrecht: Kluwer)
Gardner J W, Hines E L and Tang H C 1992Sensors Actuators

B 9 9–15
Gardner J W, Hines E L and Wilkinson M 1990Meas. Sci.

Technol.1 446–51
Gibson T D, Prosser O, Hulbert J N, Marshall R W, Corcoran P,

Lowery P and Ruck-Keene E A 1996Proc. Eurosensors X,
Leuven, Belgium, 8–11 September 1996ed S Middelhoek
(Amsterdam: Elsevier) pp 1341–4

Hines E L, Gianna C C and Gardner J W 1993Neural
Networks: Techniques and Applicationsed P J Lisboa and
M J Taylor (New York: Ellis-Harwood) ch 8

Holmberg M, Winquist F, Lundstrom I, Gardner J W and
Hines E L 1995Sensors ActuatorsB 26–27246–9

Kress-Rogers E (ed) 1997Handbook of Biosensors and
Electronic Noses(Boca Raton, FL: CRC)

Schweizer-Berberich M, Vaihinger S and Gopel W 1994Sensors
ActuatorsB 18–19282–90

Wang P, Tan Y, Xie H and Shen FBiosensors Biolectron.
at press

Winquist F, Hornsten E G, Sundgren H and Lundstrom I 1993
Meas. Sci. Technol.4 1493–500

127


