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Abstract: Levels of carbon monoxide and nitrogen dioxide in air are currently monitored using 
two different thick-film resistive gas sensors. The resultant high power consumption of thick-film- 
based gas sensors is problematic for portable multi-gas monitors. The use of a single low-power 
thermally-modulated resistive gas sensor to monitor simultaneously both gases is reported. The 
silicon micromachined substrate not only reduces the DC power consumption to 100 mW at 300°C 
but also permits AC temperature modulation through a small thermal mass. Uniquely, a support 
vector machine is employed to classify the wavelet coefficients of the AC resistive signal. This 
simple method permits the rapid classification of CO/N02 gas mixtures with a high level of 
confidence (94% or better) using just one low-power gas microsensor. Thus demonstrating the 
potential application of a single low-power thermally-modulated resistive gas sensor in portable 
multi-gas monitors. 

1 Introduction 

Various signal processing methods for use with thermally- 
modulated sensors for gas sensing, have been reported in 
the literature [1-6]. For example in [3] a heating element was 
driven by a sinusoidal voltage and the resulting modulation 
in sensor resistance analysed by the fast Fourier transform 
(FFT) method. The amplitudes of the higher harmonics 
contain information relating to the analyte type and 
concentration. More recently, these Fourier coefficients 
were used to train a back-propagation neural network, 
which was then employed to predict the concentrations of 
CO and NOz in binary mixtures [6]. 

In 2001, we reported upon the use of a wavelet transform 
to predict the presence of CO and NOz gases in air (e.g. for 
an alarm) as well as predictions of the actual gas 
concentrations [7]. Here, we propose the use of a support 
vector machine (SVM) method to predict more efficiently 
the concentrations of CO and NO2 in air using a single 
thermally-modulated micromachmed metal oxide gas 
sensor. 

A SVM classifies into two different groups (classes) 
objects characterised by a vector (x) of its features. In this 
work, the feature vector is formed with the wavelet 
coefficients obtained from the sensor signal. An eight-order 
Daubechies filter is used to obtain these wavelet coefficients 
[SI. 

We now illustrate the simplest case: linear machmes 
trained on separable data. The training data are { x l ,  yl} i  = 
1, . . . , Nt (Nt is the number of training samples), x, E Rd- 
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(d is number of features in the vector) and yl E {-1, 1)  
(‘-1’ for one class and ‘1’ for the other). In the separable 
case, a hyperplane, w separates positive and negative 
samples. Those data A- that satisfy wx+ b = 0 lie on the 
hyperplane where w is normal to the hyperplane, b/liw!I is 
the perpendicular distance from the hyperplane to the ongin 
and 1 1  wI1 is the Euclidean norm of w. Samples from positive 
and negative training samples satisfy: 

The SVM creates the separating hyperplane with the largest 
margin between the hyperplane and any training data. 

N .  

w = Ccjyix; 
i= 1 

where the vectors xi with cxi= 0 are the support vectors and 
the decision function is defined as: 

N2 

f ( x )  = wx + b = C~;Y~XX: + b (3) 
i= 1 

where ui are the Lagrange multipliers from solving the 
optimisation. One class is assigned when the decision 
function is positive and the other when negative. A non- 
linear case can be performed by the transformation of 
x(x- > +(x) E H) where the mappings 4(.) are performed by 
a kernel function K ( .  . .) that defines an inner product in H, 
in this case (3) is modified as follows: 

(4) 
i= 1 

where only Ns terms must to be added (Ns is the number of 
support vectors). 

In a non-explicit transformation 4(.) the plane w is not 
available and the decision function is expressed in terms of 
the kernel K ( .  . .). The optimal hyperplane is obtained by 
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maximising the distance LD: 

(5) 
1 

L D  = ai - jc aiaj.Y,y,K(xj, x,) 
I =  I ‘ J  

under the constraints of: 

4 

I =  I 
C a , y l  = o and a, 2 o (6) 

As can be seen from (5), d(x) is not necessary, so in many 
cases a kernel K(. . .) is used without an explicit knowledge 
of +(x). A more detailed description of SVMs can be found 
in [9]. In Fig. 1, two classes have been classified with a linear 
SVM. The two classes are marked with either a ‘* ’  or a ‘-A-’ 
and the support vectors are circled. In this case the 
hyperplane (w,b) is just a straight (solid) line because of 
the two-dimensioned nature of the problem. 
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Our goal here is to predict the gas type (CO, NO:! or the 
mixed CO + NOz) and concentration from the response of a 
thermally-modulated resistive gas microsensor and i t  SVM. 
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With the SVM being applied to the wavelet decomposition 
of the periodic resistive signal [7]. We propose that a SVM 
can be efficiently applied to gas classification problems. 
Following training, independent test data are used and then 
assigned first to one of the two gas classes: C, and Cz (1 
or -1). In our implementation, xi is formed with the 
wavelet coefficients obtained from the sensor signal and y ,  is 
either ‘1’ for ‘CO or ‘-1’ for the other gases at the first 
stage and ‘1’ for NO2 and ‘- 1’ for the binary gas CO + NO2 
at the second stage. So two SVMs are applied to obtain the 
gas type. The extension of the classification scheme to gas 
concentrations is described in Section 4. 

2 Gas Testing Station 

Fig. 2 shows a schematic cross-section of the silicon 
micromachined resistive gas sensor [6]. The platinum 
resistive heating element Rheater driven by a sinusoidal AC 
voltage Klc with a DC bias Vdc. The resistance R, of a 
palladium doped tin oxide film lying on top of gold 
electrodes is measured using a constant current source Is. 
Fig. 2c shows a photograph of an array of three identical 
devices that were created by depositing the metal oxide film 
onto the silicon die that was then annealed at 600°C before 
being bonded onto a 16 pin PCB package. 

This gas testing station was controlled by Lab-View 
software running on a 600MHz PC with a National 
Instruments data acquisition card to drive/sense the sensor 
chip. Full details are presented in [lo]. 

3 Feature selection 

In many cases, a SVM uses a large number of features for 
each vector. The most important features must then be 
selected. In most supervised learning problems, feature 
selection is important for a variety of reasons: generalisation 
performance, running time requirements, and constraints 
and interpretational issues imposed by the problem itself. 
The feature selection problem addressed here is that of 
discriminating between finite point sets (i.e. the two classes 
C1 and Cz) in a d-dimensional feature Rd by a separating 
plane that utilises fewer features than d. 

-L 

b 

C 

Fig. 2 
a Cross-section of the silicon micromachmed resistive gas sensor, 
b Schematic representation of heater drive circuit and sensor measurement circuit 
c Photograph of the resistive device used for experimental work 
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From our experimental procedure, the initial feature 
vector has 102 features, namely the 102 wavelet coefficients 
from a four-stage decomposition. In the SVM algorithm, 
we assume that the mapping function $(x) is available. So, 
the algorithm can be considered to be modified in such a 
way that the new training set is {xi; y;} = {$(x;), vi} and 
a hyperplane obtained by its normal w which is used to 
classify x. Classification is performed by the following 
inequality: 

(7) 
if xi, w + b 2 0 + class 1 .{ if%;, w+b<O+class2 

The angle 9,  of every feature vector component with the 
normal of the hyperplane can be obtained. An orthogonal 
feature component to w implies an irrelevant feature. 

4 identification of gas type and concentration 

4.1 Gas type 
Fig. 3 shows the typical resistive response of the micro- 
sensor to a modulated heater voltage at two concentrations 
of CO in air. Here it is only necessary to use just one period 
of signal (unlike in FFT) to predict the gas type (or 
concentration). The computation is as follows: one period 
of the input signal is introduced into a wavelet decomposi- 
tion block. Four decompositions are performed over the 
low pass filter output. A single vector is produced 
concatenating the wavelet coefficients of the four decom- 
positions. The resulting vector for a single period input 
signal is illustrated in Fig. 4. From the previous decom- 
position, 102 wavelet coefficients are obtained in total. 
These 102 wavelet coefficients are used first for gas type 
classification and later for gas concentration prediction. 
However, 102 wavelet coefficients present a very high 
dimensionality and, clearly, many do not contribute 
significantly to the prediction process. So here, we have 
used the SVM both for classification and for feature 
selection. Out of the 102 wavelet coefficients, the coefficients 
with the most information about the gas are selected. From 
the SVM, a plane w that separates two classes is obtained. If 
the plane is orthogonal to a vector component, then th s  
component is irrelevant. Using this premise, we can 
eliminate all the components with a scalar product with w 
near to zero, i.e. the vector components of low value can be 
eliminated without reduction of the performance of the 
classification task. In Fig. 5 ,  the magnitude of the result 
from training w components are plotted. These components 
have been obtained with a reduced training set where one 
class corresponds to CO and the other class corresponds to 
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Fig. 3 Response oj device to the AC temperature wive (open 
yquares) in Sppm (Jolid Jquares) and 80ppm (circles) of CO in 
clean air ut 2S% rh. The temperature wave is only upproximately 
sinusoidd given a sinusoidal drive voltage 
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Fig. 5 Full set of 102 wuvelet components used in vector w 

CO+NO2 and NOz. The three classes CO, NO2 and the 
mixture are separated in two stages. First CO is one class 
whilst the NO2 and the mixture are the other class. For this 
second class another classification is performed to identify 
between pure NO2 and the mixture. As can be seen in 
Fig. 5 ,  there is a high correlation between adjacent 
coefficients. So, we have selected the maxima from Fig. 5 
in order to reduce the correlation between the selected 
coefficients to classify the gas. Next, the ten largest 
coefficients are taken from Fig. 5. The result is a reduction 
in the number of features, and these are selected as the 
features for the classification. Fig. 6 represents the magni- 
tude of the w components for the new training process. 
Using these selected components of the wavelet coefficient 
vector, tests have been performed on over 182 sets. The gas 
type classification results are presented in Table 1, and show 
that the gas type is predicted with an accuracy of over 94%. 

4.2 Gas concentration 
The SVM can also be used for regression and so predict the 
gas concentration, a detailed description of SVM regression 
can be found in [l 11. In this case the output y ,  is not binary; 
instead yl is the value of the regressed function for the given 
input x. A Gaussian kernel has been used for this part, and 
is given by 

(8) K ( x ,  x') e-+x'/2 
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Fig. 6 Reduced set of I O  wavelet components used in vector w 

Table 1: Actual classification percentages for the pure CO, 
pure NO2 and a mixture of both in air 

CO, % NOz, % CO+NOz, % 

100 100 94 

48 50 I 
44 461 

32 341 

3010 , - 8 I I I I I _L 

2 4 6 8 10 12 14 16 18 20 22 
testing samples 

Fig. 7 Concentration of CO in a binary gas mixture bused on the 
training data (labelled *) and predicted on test dutu (labelled 0). 
The nominal gas concentration is 40ppm, although there will be some 
small experimental error on this value 

where is selected by observation of several runs and x, x‘ 
are the input and support vectors respectively. Once the gas 
type is known a different SVM is applied to CO, NO2 and 
for the mixed gas. The number of support vectors obtained 
with the training set of the mixture are 42 for the CO and 33 
for the NOz. An example of the results is shown in Fig. 7 
and ths corresponds to a CO concentration of 40 ppm in 
air. The median results from four different data sets, where 
six samples have been taken are presented in Table 2, and 
show the gas concentration can also be predicted accuratly 
with errors of less than 5%. 

Table 2: Estimation (prediction) of gas concentration and 
the associated error 

~ 

Gas Real Estimated Error, Yo 
concentration, Concentration, 
PPmlPPm PPmlPPm 

CO/N02 20110 20.6/9.46 3.015.7 

CO/N02 40120 41.2119.22 3.014.1 

CO/N02 80140 79.0139.40 1.3l1.5 

CO/N02 130/60 123.3157.22 5.414.9 

5 Conclusions 

It has been shown that a single thermally-modulated 
resistive gas sensor can be employed to predict the presence 
and levels of CO and NOz in air. A simple SVM method 
can be used to classify the wavelet coefficients and predict 
unknown gas types and concentrations with a high level of 
confidence (94% or better). The SVM code can be 
implemented very efficiently using, for example, a low-cost 
8-bit microcontroller and 1 kByte of RAM. Moreover, the 
ability to detect two pollutant gases in air with one low- 
power sensor reduces the overall power consumption to a 
level suitable for commercial battery-powered, multi-gas 
monitors. 
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