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Abstract

In this paper we have used a metal oxide sensor (MOS) based electronic nose (EN) to analyze five tea samples with different qualities,

namely, drier month, drier month again over-fired, well fermented normal fired in oven, well fermented overfired in oven, and under

fermented normal fired in oven. The flavour of tea is determined mainly by its taste and smell, which is generated by hundreds of Volatile

Organic Compounds (VOCs) and Non-Volatile Organic Compounds present in tea. These VOCs are present in different ratios and determine

the quality of the tea. For example Assamica (Sri Lanka and Assam Tea) and Assamica Sinesis (Darjeeling and Japanese Tea) are two

different species of tea giving different flavour notes. Tea flavour is traditionally measured through the use of a combination of conventional

analytical instrumentation and human or ganoleptic profiling panels. These methods are expensive in terms of time and labour and also

inaccurate because of a lack of either sensitivity or quantitative information. In this paper an investigation has been made to determine the

flavours of different tea samples using an EN and to explore the possibility of replacing existing analytical and profiling panel methods. The

technique uses an array of 4 MOSs, each of, which has an electrical resistance that has partial sensitivity to the headspace of tea. The signals

from the sensor array are then conditioned by suitable interface circuitry. The data were processed using Principal Components Analysis

(PCA), Fuzzy C Means algorithm (FCM). We also explored the use of a Self-Organizing Map (SOM) method along with a Radial Basis

Function network (RBF) and a Probabilistic Neural Network classifier. Using FCM and SOM feature extraction techniques along with RBF

neural network we achieved 100% correct classification for the five different tea samples with different qualities. These results prove that our

EN is capable of discriminating between the flavours of teas manufactured under different processing conditions, viz. over-fermented, over-

fired, under fermented, etc.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Olfactory system and chemical senses

To humans, the sensation of flavour is due to three main

chemoreceptor systems. These are gustation (sense of taste

by tongue), olfaction (sense of smell by nose) and trigeminal

(sense of irritation). Taste is used to detect non-volatile

chemicals, which enter the mouth while the sense of smell is

used to detect volatile compounds. Receptors for the

trigeminal sense are located in mucous membranes and in

the skin, they also respond to many volatile chemicals and it

is thought to be especially important in the detection of

irritants and chemically reactive species. In the perception

of flavour all three chemoreceptor systems are involved but

olfaction plays by far the greatest role with other two senses

contributing much less to the overall perception (Dutta,

Hines, Gardner, Udrea, & Boilot, 2003).

The smell sensation is a chemical and neural process

wherein odorant molecules stimulate the olfactory receptor

cells that are located high up in the nose in the olfactory

epithelium. Odours are of two types, simple and complex.

Nature of stimulus and not the quality of sensation

distinguish these. A simple odour is one which consists of

only one type of odorant molecule whereas a complex odour

is a mixture of many, different types of odorant molecules.

All naturally occurring odours are complex mixtures.

Odorants are typically small hydrophobic, organic mol-

ecules containing one or two functional groups. The size,

shape and polar properties of the molecules determine its

odour properties.

Broad patterns of response are shown by the mammalian

olfactory system consisting of a large number of non-

specific receptors—with about 300 different olfactory

binding proteins having been identified—in a total of

about 50 million. These cells send their signals to secondary

nodes and then cells located in the olfactory bulb. There is a

marked convergence at this stage with between 1000 and
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20,000 primary receptor cells connecting to each secondary

cell followed by limited divergence (Pearce, Gardner, Friel,

Bartlett, & Blair, 1993). This suggests that the secondary

cells be involved in the integration of information, i.e.

impulses simultaneously from many input cells. The nature

of the primary cells is non-specific in their responses

whereas the secondary cells respond to distinct categories of

odours. Secondary cells interact with each other and with

higher cells as well. Thus the system is a complex non-linear

one with both and excitation and local inhibition helping to

produce a high degree of sensitivity (ppb or better) and

specificity.

The sensors employed here in the electronic nose (EN)

are metal oxide films coated across the gap between two thin

gold electrodes to form a chemoresistor. Conducting metal

chemoresistors respond to a variety of Volatile Organic

Compounds present in tea (Dutta et al., 2003; Pearce et al.,

1993).

1.2. Tea processing and its flavour

Due to large number of organic compounds present in

tea, it is difficult to process tea to an absolute standard. The

volatile compounds present in tea determine its quality.

Table 1 (Bhuyan & Borah, 2001) describes different volatile

compounds present in black tea. In conventional tasting, it is

very difficult to keep a consistency in the standard of tea

quality from batch to batch during a production process. The

quality is ensured by a human taste panel, which may vary

due to different factors.

The aroma and flavour are two quality factors of tea,

which depend upon the number of volatile compounds

present and their ratios. Human panel tasting is inaccurate,

laborious and time consuming due to adaptation, fatigue,

infection and state of mind. An EN can be a better

alternative to conventional methods for tea tasting and

quality monitoring during production process. An EN is an

increasingly fast, reliable and robust technology. Tea

industries all over the world presently use certain standard

terminology of tea flavour, however, there is no mention

about a quantitative description or score on these flavour

terms. The Tocklai Tea Research Association, Assam,

(India) has adopted standard terminology but some of them

overlap. Twenty-five non-overlapping flavour terms have

been identified (Bhuyan & Borah, 2001) (Fig. 1) out of

about 40 generally used flavour notes. An EN may provide

amore objective platform to augment the conventional

methods for tea tasting and quality monitoring during

production process.

1.3. Purpose of electronic nose

As stated above, an attractive and alternative strategy for

monitoring the quality of tea samples manufactured under

different processing conditions potentially can be achieved

by sensing the organic aromatic volatiles emitted by tea

samples, using EN systems (Benady, Simon, & Miles, 1995;

Simon, Hetzroni, Bordelon, Miles, & Charles, 1996). EN

systems appear to be very promising for a number of

reasons. The main ones are that EN systems are based on

inexpensive, non-specific solid-state sensors, which are

sensitive to the gases that are emitted by tea samples.

Furthermore, once an EN has been ‘trained’, it does not

require a skilled operator and can potentially obtain the

results in the order of few tens of seconds. In the EN system,

a pattern recognition engine enables the system to perform

Table 1

Ratios of main volatile compounds to total volatile compound in black tea

Compound Sri Lanka India Japan

Rtb Uva Var. Assamica Hybrid of Assamicap Sinesis Beniho mare

Assam Dimbula Darjeeling

(1) (2) (1) (2)

t-2-Hexenal 0.40 3.10 2.60 4.90 3.10 0.70 0.30 1.50

cis-3-Hexenal 0.53 2.80 4.30 0.20 3.80 1.40 0.10 6.10

t-2-Hexenyl formate 0.65 9.50 11.80 11.9 5.00 5.70 3.10 5.20

Linalool oxide (furanoid-cis) 0.77 3.40 3.20 3.50 3.60 8.20 4.70 3.80

Linalool oxide (furanoid-trans) 0.83 10.30 8.80 8.00 12.0 16.7 12.0 12.0

Linalool 1.00 24.00 15.50 18.3 32.8 15.6 13.7 9.30

Phenylacetaldehyde 1.20 0.20 0.50 4.00 5.00 1.10 1.80 1.00

Linalool oxide 1.40 0.30 0.40 0.40 trace trace 1.00 6.00

Pyranoid-cis 1.50 18.60 18.80 9.00 13.2 9.80 5.30 4.90

Methysalcylate 1.67 1.3 2.20 3.30 1.60 7.30 15.9 21.7

Geraniol 1.71 1.00 1.90 4.30 1.00 1.70 2.00 2.60

Benzylalcohol 2-phenylethanol 1.78 0.20 0.90 4.30 1.00 2.00 6.70 7.50

cis-Jasmone þ b-ionone 1.83 0.20 0.10 7.4 1.50 0.50 4.40 0.30
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complex aroma analysis of the sensor signals. Artificial

neural networks (ANNs) have been extensively used to

perform this pattern recognition, and good results have been

reported previously in the classification of foodstuffs, such

as eggs (Dutta et al., 2003), beverages (Gardner, Hines, &

Tang, 1992), coffees (Gardner, Shurmer, & Tan, 1992), fish

and meat (Schweizer-Berberich, Vaihinger, & Göpel, 1994;

Winquist, Hornsten, Sundgren, & Lündstrom, 1993). The

back propagation trained Multilayer Perceptron (MLP)

paradigm is the most popular pattern recognition method

in aroma analysis today. Other promising techniques

include Learning Vector Quantization (LVQ), Probabilistic

Neural Network (PNN) and Radial Basis Function (RBF). In

this paper, we report on the use of an EN, employing an

array of four tin oxide sensors, in combination with different

pattern recognition engines (MLP, LVQ, PNN and RBF) to

predict the quality of tea. This paper includes sections

concerned with experimental procedure, data analysis,

comparative evaluation of results and conclusions.

2. Experimental description

2.1. Materials

We had received five tea samples manufactured under

different processing conditions from Assam, India. These

five different tea samples with different qualities are as

follows, (1) Drier month tea sample; (2) Drier month again

over-fired tea sample; (3) Well fermented normal fired in

oven tea sample; (4) Well fermented over-fired in oven tea

sample; (5) Under fermented normal fired in oven tea

sample. Each sample, without any additional manipulation,

was placed over the period of the experiments. Monitoring

is the important issue here because we wished to keep the

experiment as simple as possible. We recorded temperature

and humidity so that we could attempt to ‘correct’ for their

effects if necessary.

2.2. Test procedure and data acquisition

The sensor system comprises four tin oxide odour

sensors from the same manufacturer (Table 2) housed in a

sensor chamber (Dutta et al., 2003). The sensors were

chosen on the basis of sensitivity of the sensors to different

gases; the selected sensors are designed to respond to gases

such as the cooking vapours, ammonia, hydrogen sulphide,

alcohol, toluene, xylene, etc. as specified by the manufac-

turer. The electrical conductance of the sensors varies in the

presence of reducing/oxidizing gases. A thin plastic tube

was connected from the input to the sensor chamber to one

of the two holes in the cover of both plastic vessels (tea

vessel and reference vessel). A diaphragm pump (Vacuum

Pump Manufacturing Co. Ltd, UK) was used to facilitate

sampling of the headspace of the vessels (Fig. 2) (Dutta

et al., 2003). The headspace of the vessel containing the tea

samples (5 tea samples with 5 different qualities were used

for experiment) and the reference vessel were sampled in

sequence as follows:

† Tea vessel. A sample measurement typically took 5 min

to complete. The flow rate was 2 l/min. The air removed

from the vessel by the pump was replaced by air from the

room (Fig. 2).

† Reference vessel. Here, the tube from the input to the

sensor chamber was connected to a plastic vessel which

was full of pure water. Air from the room was pumped

into the sensor chamber through this vessel. In this way

the sensors were allowed to return to their baseline level

over a period of some 20 min after sampling the

headspace of the tea vessel. This was to make sure that

the EN system was responding to the tea aromas rather

than to any residual smell of the plastic vessel or only to

the different environment in the reference plastic vessels

(5 l). Fig. 2 shows the experimental set-up. The vessels

had two small holes in their covers, to allow the

headspace to be analyzed with the EN equipment.

The ambient conditions (temperature and humidity) of

the room in which the tea samples were kept were

Fig. 1. Flavour wheel used to illustrate the international flavour terminology

for tea. There are about 40 flavour terms out of which only 24 non-

overlapping terms have been used.

Table 2

Summary details of commercially available metal oxide sensors used in our

EN system

Sensor Manufacturer Sensitivity to

TGS 880 Figaro Engineering Inc. Cooking vapours

TGS 826 Figaro Engineering Inc. Toxic gases (ammonia (NH3))

TGS 825 Figaro Engineering Inc. Toxic gases (hydrogen sulphide

(H2S))

TGS 822 Figaro Engineering Inc. Organic solvents (alcohol, toluene,

xylene, etc.)

R. Dutta et al. / Neural Networks 16 (2003) 847–853 849



monitored for the duration of the experiments. The

temperature and humidity variations in the laboratory

were typically 25 ^ 1 8C and 30 ^ 1%, over the period

of the experiments.

One measurement comprises taking, alternatively, a

headspace sample from the tea vessel followed by the

reference vessel. During the process of the measurements, a

sample of each sensor’s resistance was taken every 5 s and

stored in a data file for subsequent processing (Fig. 2). This

process was repeated for each of the 5 tea samples in turn.

2.3. Interface electronics

The data acquisition and storage system was controlled

usingLabVIEWq software (National Instruments Inc.)

(National Instruments Corporation, 1998). A PC-LPM-16

PnP Data acquisition card was used for online data

gathering (National Instruments Corporation, 1998).

2.4. Experimental data

In summary five different data-sets were gathered

chronologically as follows:

† Data-set 1 (for ‘under fermented normal fired in oven’

sample)

† Data-set 2 (for ‘well fermented over-fired in oven’

sample)

† Data-set 3 (for ‘well fermented normal fired in oven’

sample)

† Data-set 4 (for ‘drier month again over-fired’ sample)

† Data-set 5 (for ‘drier month’ sample)

For each class of tea, 150 data vectors were gathered over

a period of 10 consecutive days from 150 data gathering

cycles. The number of days and samples were limited by

practical circumstances though data collection continued

24 h per day, seven days per week, using our online EN data

logger system.

3. Data processing

3.1. Signal pre-processing

The choice of the data pre-processing algorithm has been

shown elsewhere to affect the performance of the pattern

recognition stage (Dutta et al., 2003). In this case a

difference model (i.e. static change in sensor resistance)

was used: dR ¼ Rair 2 Rodour: The complete tea data-set was

then normalized, by dividing each dR by the maximum

value, to set their range to [0, 1].

3.2. Data clustering

The use of Principal Components Analysis (PCA), Self-

Organizing Map (SOM) and Fuzzy C Means (FCM) cluster

analysis (Dutta et al., 2003; www.mathwork.com) to

explore clustering within the data-sets is now discussed.

Different ‘cluster classification’ methods were applied to

verify that the categories established by each method were

not arbitrary.

3.3. PCA analysis

PCA is a linear method that has been shown to be

effective for discriminating the response of an EN to simple

and complex odours (Dutta et al., 2003; Gardner, 1991;

www.mathwork.com). The results of PCA, using the

normalized data as described in the previous sub-section,

are shown in Fig. 3. Three principal components were kept,

which accounted for 99.8556% of the variance in the data-

set (PC #1, PC #2 and PC#3 accounted for 97.9693, 1.0708

and 0.8155% of the variance, respectively, where PC #4

accounted for 0.14444%). Five qualities appear to be

evident. It is also clearly evident that the sensors are

linearly correlated. Since a reasonable correlation exists

between categories, it can be assumed that the categories

established by PCA are consistent with the five different

qualities of the five tea samples (Fig. 3). The multivariate

data analysis suggests there is considerable spread in the

data. This spread may be due to a drifting in the sensors’

responses.

Fig. 2. Set-up for the Warwick MOS based electronic nose system for tea

experiment.
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3.4. Combined SOM, FCM and 3D-Scatter plot analysis:

a new approach

An innovative data clustering approach was investigated

for these tea data by combining the 3D-Scatter plot, FCM

and SOM network (Gardner & Persaud, 2000; Jang, Sun, &

Mizutani, 1997; Kohonen, 1989). It is depicted in Fig. 4. In

multisensor space, normalized data-sets were represented

using 3D-Scatter plots. From the FCM approach, a cluster

center is found for each group by minimizing a dissimilarity

function (Gardner, 1991; Kohonen, 1989). These cluster

centers were plotted in multisensor space. So combining

the 3D-Scatters plot and FCM, cluster centers were properly

located in multisensor space and also within the data (Dutta

et al., 2003). Thereafter a [5x1] SOM network was trained

with the whole data-sets. After 500 epochs it was clear that

the five nodes were approaching to the five cluster centers

(estimated using FCM), which is more clearly evident from

Fig. 4. So, using these three data clustering algorithms

simultaneously, better ‘classification’ of data into different

clusters was achieved (Fig. 4).

4. Comparative evaluation of neural network

classification performance

4.1. Neural networks

The data-sets were analyzed using four supervised ANN

classifiers, namely the MLP, LVQ, PNN and RBF paradigms

(Dutta et al., 2003; Mao, 2002; www.mathwork.com).

Training of the neural networks was performed with 50%

of the whole data-set. The remaining 50% of the whole data

was used for testing the neural networks. The aim of this

comparative study was to identify the most appropriate ANN

paradigm, which can be trained with best accuracy, to predict

the ‘Quality of tea samples’. Table 3, summarizes the

architectures of the neural networks, which we used for our

experimental training and testing for tea quality

determination.

4.2. Dynamic drift correction using additional network

training

Drift is a dynamic process, caused by physical changes in

the sensors and the chemical background, which gives an

unstable signal over the time (Distante, Artursson, Siciliano,

Holmberg, & Lundström, 2000). EN data are usually

affected by several disturbances in part due to the non-

idealities of sensors and in part due to the effects of the

environment as far as the composition of the gaseous sample

is concerned. In some practical applications, the sample

cannot be completely insulated from the surrounding

environment and its drift (due to temperature and relative

humidity changes) may be so large to completely obscure

the intrinsic resolution of the sensor array. The problem

could be solved at data analysis level making some

assumptions on the nature of the disturbances (Natale,

Martinelli, & D’Amico, 2002). Most gas sensors do not give

stable responses over a long period of time. So sensor drift is

addressed as one of the most serious impairments affecting

chemical and biochemical sensors. One possible solution to

this problem is to view sensor array as time-varying

dynamic systems, whose variation have to be tracked by

adaptive estimation algorithm (Holmberg, Davide, Natale,

D’Amico, Winquist, & Lundström, 1997).

In this paper we have considered the two major drift

effects from environmental temperature and humidityFig. 4. Combined 3D-Scatter, FCM and SOM plot for tea sample data.

Fig. 3. PCA plot for the tea sample data.
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variations. Variations of temperature and humidity were

monitored and stored throughout the experiment periods. To

consider these temperature and humidity drifts effects on the

original gathered data sensors’ responses, we added two

extra input nodes to our neural network. As these

environmental parameters were stored along with the four

sensors’ responses it was appropriate to input them together

into the neural network. ANNs trained with temperature and

humidity were thus able to adjust their weights using

information about environmental effects along with sensors’

responses. With these additional network inputs, tea

samples were better classified and we achieved up to

100% accuracy (see later sections).

4.3. MLP net

A MLP network (with learning rate equal to 0.3 and a

momentum term equal to 0.4) with 6 inputs, 5 hidden and 5

output neurons was able to reach a success rate 88% in

classification.

4.4. LVQ net

The networks had 6 input and 5 output neurons and a

variable number of nodes in the competitive layer. Two

main stages were followed:

† Initially the network was trained with a learning rate

equal to 0.01 and the conscience factor was set equal to 1.

† In this next stage, once a ‘relatively good’ solution has

been found by modifying the boundaries between zones

where misclassifications occur, the solution is further

refined. The learning rate was set to 0.0129. The LVQ

algorithm was able to correctly classify 89% of the

response vectors.

4.5. RBF and PNN

Neurons are added to the network until the sum-squared

error falls beneath an error goal (0.000001) or a maximum

number (150) of internal neurons was reached. It is

important that the spread parameter is large enough so

that the radial basis neurons respond to overlapping regions

of the input space, but not so large that all the neurons

respond in essentially the same manner (Mao, 2002;

www.mathwork.com). For both the networks the spread

parameter was set to value of 1.0. The PNN was able to

classify correctly 94% of the response vectors whereas the

RBF network’s level of correct classification was up to

100%.

5. Conclusion

In this paper an effort has been made to discriminate

between the flavours of different tea samples using an EN

and hence explore the possibility of replacing existing

analytical and profiling panel methods. Odour patterns from

five different sets of tea samples were gathered with an EN

instrument. Five different tea categories were identified with

the help of PCA, FCM and SOM of the sensor responses

(Dutta et al., 2003; Mao, 2002). From this result it is evident

that our metal oxide sensor based Warwick EN was capable

of discriminating between the flavours of teas manufactured

under different processing conditions, viz. over-fermented,

over-fired, under fermented, etc. along with linear data

processing techniques like PCA. Then MLP, LVQ, RBF and

PNN neural networks were applied to the classification of

the state of the tea samples. An accuracy of 100% was

reached in the classification using RBF network compared

with 94% using a PNN (Gardner & Persaud, 2000;

www.mathwork.com). It was found that these performances

compared favourably with those achieved with trained MLP

(88%) and LVQ (89%). Finally, the training time of RBF

and PNN were found to be faster than MLP and LVQ. In this

paper we have considered the two major drift effects from

environmental temperature and humidity variations. Vari-

ations of temperature and humidity were monitored and

stored throughout the experiment periods. To consider these

temperature and humidity drifts effects on the original

gathered data sensors’ responses, we added two extra input

nodes to our neural network. As these environmental

Table 3

Architecture of different neural networks and results obtained in terms of ‘percentage correct classification’

Neural networks Architecture Classification (%)

Learning Vector Quantization 3 hidden neurons were used for this network. Output class percentage was

[0.2 0.2 0.2 0.2 0.2] and learning rate was 0.0125. (www.mathwork.com)

89

Multilayer Perceptron For this network transfer function was HARDLIM and learning function

was LEARNP (www.mathwork.com)

88

Probabilistic Neural Network It was very similar to RBF network with a competitive output layer and

SPREAD constant was set as 1.0 (www.mathwork.com)

94

Radial Basis Function network Radial basis networks consist of two layers: a hidden radial basis layer and

an output linear layer. For this network SPREAD constant was set as 1.0

(www.mathwork.com)

100
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parameters were stored along with the four sensors’

responses it was appropriate to input them together into

the neural network. The ANN trained with temperature and

humidity was able to adjust its weights and hence

compensate for changes in the ambient conditions. For

example, tea samples were better classified and achieved up

to an accuracy of 100% with a RBF network (Dutta et al.,

2003).

In conclusion, we believe that a RBF networked based

Warwick Metal Oxide EN provides an attractive means of

discriminating among the flavours of teas manufactured

under different processing conditions, viz. namely drier

month, drier month again over-fired, well fermented normal

fired in oven, well fermented over-fired in oven and under

fermented normal fired in oven.
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