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Abstract – Here we describe the component subsystems 
which comprise the first silicon-based olfactory system, each 
implemented in analog VLSI/MEMS. These include a bio-
logically constrained neuronal model, chemical micro-sensor 
array and associated interface circuitry. We present a spiking 
olfactory bulb model, a reduced 70 element broadly-tuned 
chemosensor array (25 different chemsensor tunings), along-
side details of their silicon implementation. Our results show 
that the olfactory bulb model is capable of pattern classifica-
tion and that the odour delivery, uptake and sensor circuitry, 
as well as the fundamental units of the neuromorphic model 
(spike-driven synapse and spiking soma), are all functional. 
Work will continue towards completing a fully-integrated 
and scalable silicon implementation of the olfactory system. 
 
 
 Index Terms – neuromorphic aVLSI, chemosensor array, ma-
chine olfaction, olfactory bulb. 
 
 

I.   INTRODUCTION 

To date, neuromorphic silicon analog VLSI (aVLSI) im-
plementations of auditory and visual sensory pathways have 
been undertaken, which are at varying stages of advancement 
[1-3]. Due to the significant technical challenges involved in 
complex odor detection and discrimination, there have been no 
reports of equivalent implementations of the olfactory path-
way.  

Although electronic nose technologies exist that have paral-
lels with the biological olfactory pathway (such as exploiting 
population coding of sensory stimuli), these are in all cases far 
away from the neuromorphic approach of deploying biologi-
cally derived analogue circuitry (in particular spiking neuronal 
systems) in silicon [4].  

Before building such an ambitious system, a key question 
we should ask is what should such an integrated neuromorphic 
olfactory system be capable of? Most animals rely on olfactory 
cues far more than humans - olfaction is fundamental to many 
animal behaviors, for example, foraging, conspecific mate 
location, predator avoidance and crypsis (through chemical 
camouflage). These behaviors rely upon common olfactory 
detection tasks, which are regularly performed in complex, 
nonstationary and unpredictable environments. These include:   

1. Discrimination between learnt odors, both single and 
multiple compound (simple and complex), 

2. identification of specific learnt odors in a background 
of undefined interfering, and possibly time varying, chemical 
compounds, 

3. separation of odor sources into Gestalts which can be 
segmented simultaneously, similar to its counterpart in vi-
sion – related to the binding hypothesis[5], and audition – the 
so-called cocktail party problem [6].  

While portable chemosensor detectors are able to routinely 
perform the first of these olfactory detection tasks (subject to 
suitably high chemical concentrations), they cannot reach the 
performance of an animal; inasmuch as the last two detection 
problems have not yet been solved technologically. For this 
reason we aim to exploit what is known about the neuronal 
architecture of the early olfactory pathway in order to improve 
technologies for, as well as understand more about biology’s 
solution to, complex chemical detection. 

Here we describe the subsystems upon which our silicon ol-
factory pathway implementation is based; including a spiking 
neuronal model of the olfactory bulb, broadly-tuned chemo-
sensor array with associated interface circuitry, and 
neuromorphic aVLSI circuitry. 

  



II.   COMBINED RECEPTOR INPUT AND OLFACTORY BULB 
NEURONAL MODEL 

In vertebrates, a large number of olfactory receptor neurons 
(ORNs) constitute the front-end of the olfactory system, being 
responsible for detecting airborne molecules. Cilia of ORNs 
protrude into the olfactory mucosa, where they come in con-
tact with molecules that are transported by the nasal air flow. 
On the surface of the cilia, odorant receptors (ORs) bind odor-
ant molecules with a broadly tuned affinity. When an OR 
binds with an odorant molecule, it triggers in its ORN a bio-
chemical cascade that eventually causes the membrane 
potential of the ORN to change, potentially leading to the gen-
eration of spikes. Each ORN only expresses one type of 
odorant receptor, while each type of receptor is usually ex-
pressed by a large number of ORNs; for example, in mice 
around 1,000 types of ORs are expressed by millions of ORNs 
[7].  

ORNs project their axons to the olfactory bulb, terminating 
at spherical neuropil called glomeruli (GLOM), where they 
synapse onto the dendrites of mitral and tufted (M/T) cells, 
which act as principal output neurons (PNs). Experimental 
data indicates that each glomerulus receives axons from only 
ORNs expressing the same type of OR, while a single PN 
sends its apical dendrite to a single glomerulus. Inhibitory neu-
rons of the olfactory bulb (granule cells [GRAN]) make 
reciprocal contacts with many PNs, forming together a com-
plex network constituting the first stage of olfactory 
information processing. The output of PNs are relayed to 
higher brain areas for further processing [7]. 

The neural network model described here is inspired by the 
olfactory system of vertebrates.  The only external signals that 
the network receives come from the chemosensors (see Sec-
tion 3), which are responsible for transforming the molecular 
information of an odorant into signals suitable to constitute 

neural input. About 25 types of chemosensors, broadly tuned 
to different chemicals, are expected to be available for the final 
silicon implementation.  

Fig. 1a shows part of the network, only depicting two types 
of sensors for the sake of clarity. The diagram has been drawn 
representing every computational element with an individual 
device, rather than adopting a biologically realistic representa-
tion. The chemosensors are represented by irregular polygons 
at the top of the diagram; polygons of the same shape repre-
sent sensors of the same type.  

There are two classes of neurons, Receptor Neurons (RNs) 
and Principal Neurons (PNs); the smaller and the larger trian-
gles in Fig. 1a represent ORNs and M/T cells, respectively. A 
single RN receives input from only one chemosensor, and 
likewise a single chemosensor only projects to one RN. The 
outputs of the RNs feed into their respective RN-PN synapses 
(circles). The outputs of the synapses that receive input from 
RNs fed by sensors of the same type converge onto a summa-
tion component (ellipse), where they are summed linearly. The 
output of any summation component feeds to one respective 
PN. Every PN projects to every other PN through one of the 
PN-PN synapses (circles). Because the signals from sensors of 
the same type are fed forward through neural elements to one 
and one only PN, the network forms a distinct modular struc-
ture, reminiscent of the glomerular organization of the 
olfactory bulb [7].  

The soma of each neuron element is modeled as a leaky in-
tegrate-and-fire (IF) unit. Below some threshold, Vθ, the 
dynamics of the “membrane” potential, V(t), of the IF neuron 
are defined by the equation 
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Fig. 1 a) A schematic diagram of the olfactory bulb neuronal model architecture, showing receptor and principal neurons (triangles) and synapses (cir-
cles), and b) model response in the learnt (red) and naïve (green) stimulus conditions. OR – olfactory receptors, RN - receptor neurons, GLOM – 

glomeruli, GRAN – granule cell interaction,  and PN – principal neurons.  
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where t is time, R and C are, respectively, the membrane resis-
tance and capacitance, and I(t) is the total input current to the 
neuron. The membrane rest potential is conventionally set 
equal to 0 V. The membrane time-constant is defined as          
τm = RC. The terms contributing to I(t) are due to sensor re-
sponses if the neuron is a RN, and to RNs and lateral 
interactions if the neuron is a PN. If the potential V(t) reaches 
the threshold value Vθ, it is immediately reset to the after-
hyperpolarization value Vahp and a spike (action potential) is 
produced as output of the neuron. The emission of any spike is 
followed by a refractory time, τrefr, during which the neuron 
cannot fire but still integrates the input currents. 

When a spike reaches a synapse, it induces a dendritic cur-
rent that is fed into the post-synaptic neuron which decays 
exponentially with a characteristic time-constant, starting from 
a peak value determined by the synaptic weight. The sign of 
the current is formally included into the synaptic weight, posi-
tive or negative according to whether the interaction is, 
respectively, excitatory or inhibitory. The currents induced by 
several pre-synaptic spikes add up linearly at the soma. If a 
neuron receives the outputs of several synapses, the respective 
contributions to the total post-synaptic current sum linearly. 
The total post-synaptic current constitutes the term I(t) in      
Eq. 1, which drives the membrane potential of the respective 
neuron. 

The weights of the PN-PN synapses are defined so as to en-
dow the network with associative properties (cf., e.g, [8] for 
general definitions), though it is not known whether the bio-
logical counterpart performs this kind of processing. The 
network learns odorants by modifying the weights of the PN-
PN synapses according to a one-shot Hebbian learning rule, 
during a training stage. Given any learnt odorant, a function 
of the firing rates of the PNs is defined (indicator function) 
that indicates whether the network output is currently repre-
senting that odorant; if a learnt odorant is delivered, then the 
corresponding indicator function should assume a relatively 
large positive value. As an example, Fig. 1b shows the behav-
ior of the indicator function over time in a simulation of the 
neuronal model with 25 sensor types that has already learnt 
one odorant. The odor stimulus is currently delivered simulta-
neously to all sensors as a step-function of time, starting at 
zero  (time is in units of the PN time-constant, while the y-axis 
is in arbitrary units); in one case, (a), the odorant present in the 
stimulus is the one previously learnt, while in the other case, 
(b), an unknown odorant is delivered. It is clearly possible to 
dis-criminate between recognition and non-recognition cases. 

The small size of the repertoire of sensor types presently 
available, however, can cause the behavior of the network to 
vary with different odorants to an extent that normally depends 
on the complexity of the olfactory task. 

 
III.   CHEMOSENSOR ARRAY 

Input to our olfactory bulb model is provided by a combined 
chemFET/resistive sensor array fabricated using an AMS       
0.6 µm CUP CMOS process, employing carbon black (CB) 
composite sensing materials, with integrated signal processing 

circuitry. The sensing materials are a combination of an insu-
lating polymer and conducting carbon. The authors believe the 
sensor technology differs from previous work in a number of 
ways. Firstly, it is the first resistive CMOS compatible sensor 
array integrating different CB polymers into the same array. In 
addition, it is the largest capacitively coupled FET sensor array 
using CB materials. Lastly, it is the first time both a chemore-
sistor and chemFET have been combined with integrated 
signal processing electronics.  
 
A.  Combined sensor concept  

The resistive sensor component is formed by depositing CB 
polymer material between two sensor electrodes. The FET 
section is based on a floating gate concept, were the sensing 
material is capacitively coupled to the floating gate of a FET. 
As the gate is floating, any potential created through the inter-
action of the sensing material with the target gas or odor 
appears, due to this coupling, on the gate of the FET. It has 
previously been reported [10] that this is due to a change in 
workfunction within the sensing material. The floating gate 
will have an absolute potential subject to variations in the fab-
rication process. A biasing plate is added underneath the 
sensing plate and biased to ensure the transistor is turned-on. 
The capacitive plate is placed in-between the two resistive 
electrode elements, hence the same sensing material is used for 
both resistive and FET measurements.  
 
B.  Sensor Interfacing Circuitry   

Included with each sensor is circuitry to drive and process 
any response. Each resistive/chemFET sensor is driven by a 
constant current source which can have three different values 
(1 µA, 10 µA and 100 µA). This is used to compensate for 
variations in resistance with different coatings. To remove the 
DC baseline value of the sensor, an offset cancellation circuit 
has been added to the design. The circuit allows high gain val-
ues to be used without saturating the output. In our design, the 
DC offset cancellation circuitry uses a ramping DAC with a 
comparator. The 10-bit DAC ramps to estimate the offset volt-
age and the value maintained in an internal counter register. 
The ±1 bit error is 5 mV and takes 512 µs (based on 2 MHz 
clock) to perform a cycle of scanning the offset voltage as all 
cells are performed in parallel. This baseline removal can be 
done either before exposure to an odor or in-situ. Hence, any 
long term drift of the sensor or changes in environmental con-
ditions that alter the DC baseline can be compensated for. 
Once the baseline has been removed the signal is amplified 
with gains of 1, 10, 50, 100 or 1,000. These values are pro-
grammed externally and can be altered whilst a test is running. 
Lastly, the signal is conditioned with a low pass filter set at a 
corner frequency of 1 kHz. The output voltage is at present 
measured externally using a data acquisition card. The control 
bits for each cell are contained within 4 D-type flip-flops and 
are loaded from an external source. A simplified schematic of 
the offset removal circuitry is given in Fig. 2b.  



Fig. 2 a) Footprint of the chemosensor array implementation,  b) offset cancellation circuitry, and c) representative chemosensor responses, (reproduced 
from Covington et al., 2004 [9]). 

a) 

b) 

c) 

The sensor array was designed and implemented in the 
AMS 0.6 µm CUP process and has been tiled across the whole 
chip. Fig. 2a shows the footprint of one cell of the fabricated 
chip, whilst a close-up of the combined resistor/FET compo-
nent is shown in Fig. 2b. Before CB polymer deposition, the 
aluminium electrodes have been gold plated. This is to ensure 
a stable contact between the CB polymer and the aluminium. 
Five different CB polymers were used as given in Table 1.  

 
The sensitivity to ethanol vapor, for example of the PSB 

sensor material, is about 0.00012 %/ppm and 0.00644 %/ppm 
to toluene vapor. We have also tested other sensors with dif-
ferent coatings to ethanol vapor in air and the results are 
shown in Fig. 2c. Here the sensor array is exposed to a 5 s 
ethanol vapor pulse at a flow rate of 25 ml min-1. The results 
show that different types of polymer films provide different 
response profiles over time, thus providing added discrimina-
tory information.  

 
IV. NEURONAL MODEL SILICON IMPLEMENTATION 

The analogue circuit implementation of the synapse corre-
sponding to the circle elements in Fig. 1a is shown in Fig. 3a 
(top). The input spike Vspike triggers the injection of a current 
iwt into the capacitor CSYN.  The output of the synapse is an ex-

ponentially decaying current given by isyn. The time constant 
during the discharge phase is controlled by varying IBIASSYN. 
The weights are stored as a charge on capacitor CWT and are 
updated using a combination of shift registers and switches 
(not shown in the figure). 

The analogue VLSI implementation of the spiking neuron 
has the following functional blocks. They are, a) leaky integra-
tor, b) comparator and spike conditioner, and c) reset and 
refractory timer. The analog circuit implementation of the in-
tegrate and fire block is shown in Fig. 3a (bottom). The leaky 
integrator is designed using a operational transconductance 
amplifier-capacitor (OTA-C) configuration. The output of the 
integrator is fed to a spike generator circuit. The spike genera-
tor circuit consists of a two stage comparator with hysteresis 
followed by inverters. The reset and refractory period timers 
are implemented using separate OTA-C circuits (not shown in 
the figure).  Vreset and Vrefrt signals are the output control sig-
nals of the reset and refractory period circuits, respectively.  

Initially the Vreset and Vrefrt signals are at a low state. The 
output of the comparator Vspike goes high when the integrator 
response is above the threshold voltage Vth= Vθ.. The output of 
the comparator is fed to a reset timer circuit. The reset timer 
output Vreset goes high after a finite interval of time, which in 
turn resets the integrating capacitor Cint. The time delay of the 
reset timer circuit determines the pulse width of the neuron 
spike output Vspike and is externally programmable. The trailing 
edge of the pulse triggers the refractory timer Vrefrt to a high 
state. The Vrefrt signal switches the comparator threshold to a 
large voltage Vbrefrt thereby inhibiting the neuron from firing. 
However, the leaky integrator continues to integrate during the 
refractory period.  



The analogue VLSI implementation of the neuromorphic 
chip has also been fabricated using an AMS 0.6 µm CUP 
process. The chip contains 3 spiking neural network models 
with each model having 3 RNs, 27 synapses and 1 PN, as per 
the architecture described in Section 2, and is shown in Fig. 
3b. The architecture of the chip is designed such that a scalable 
spiking network can be contructed by interconnecting multiple 
chips. The spiking neurons have programmable time constant, 
refractory period, threshold and spike width. The synaptic cir-
cuits have individually programmable weights which are 
stored on chip. The die area of the chip is 31.5 mm2. 

The synapse circuit was tested by exciting it with a spike in-
put of 1 ms duration. The response of the synapse programmed 
for a weight input of -0.5V and time constant of 75 ms is 
shown in Fig. 4a. Since the sign of the weight is negative with 
respect to the baseline, the synapse exhibits an inhibitory re-
sponse. The response is matched against the synaptic model 
described in Section 2. It is seen that the chip response closely 
matches the simulated model.  

The response of the synapse to consecutive input spikes is 
shown in Fig. 4b. A series of 10 consecutive spikes of 1 ms 
duration are fired with a time interval of 75 ms. During this 
test, the synaptic weight input was set at -0.5V and the time 
constant is 75 ms. 

The neuron testing was carried out by characterizing the re-
sponse of the leaky integrator separately followed by testing 
the full spiking neuron circuit. The step response of the leaky 
integrator on chip is shown in Fig. 4c. The response was again 
matched against the simulated response of the model described 
in Section 2. To evaluate the working of the whole spiking 
neuron circuit, a  receptor neuron on the 3-27-1 spiking neural 

network was tested using a square wave input with an ampli-
tude of 0.2 V and period of 1 s. For this, the comparator 
threshold Vth was set at +0.18 V with reference to the baseline 
output of the leaky integrator. Fig. 4d shows the neuron firing 
for a time constant of 150 ms. 

V.  CONCLUSIONS & OUTLOOK 

We have presented details of the component subsystems of 
the first aVLSI implementation of the olfactory pathway. 
These components appear to function correctly, independently 
of one another and so work will continue to test their com-
bined behaviour in olfactory detection tasks, such as those 
outlined in the introduction. 

 One of the key challenges we face in creating a fully inte-
grated solution is the role of time in the system – which is also 
one of the most interesting aspects of this endeavour. While 
chemosensors typically operate on the hundreds of ms scale, 
aVLSI is naturally suited to far higher bandwidths, and so 
there is great potential for mismatch in the dynamics of the 
sensor and neuronal model. Large time constants in the aVLSI 
typically mean large capacitances requiring significant space 
on the silicon. Solutions exist in the form of multiplexing or 
buffering between the front-end of the system and the neuronal 
model, deploying ultra-fast sensors or slowing down the sili-
con. Time also plays a critical role in terms of the performance 
of the system. Indeed, a key question we have been addressing 
is how can the neuronal model we have implemented exploit 
temporal information in the sensor responses in order to im-
prove detection performance. 

 

  

Fig. 3 a) Neuromorphic synapse and soma circuit, and b) footprint of the neuromorphic circuit implementation. 

b) 

a) 
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Fig. 4. Representative circuit behaviour of a) single spike synapse response, b) multiple spike synapse response, and c) soma. 
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