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ABSTRACT 
In vibration serviceability checks of footbridges, a force induced by a single person walking is usually 
modelled as a harmonic force having a frequency that matches one of the footbridge natural 
frequencies. This approach assumes that, among the infinite number of harmonics a walking force is 
composed of, only a single harmonic is important for a vibration serviceability check. Another usual 
assumption is that the footbridge can be modelled as an SDOF system, implying that only vibration in 
a single mode is of interest. In addition, due to the deterministic nature of this approach, it cannot take 
into account inter- and intra-subject variabilities in the walking force that are now well documented in 
the literature. To account for these variabilities, a novel probabilistic approach to carry out a vibration 
serviceability check is developed in this paper. Factors such as the probability distribution of walking 
frequencies, step lengths and amplitude of walking force for its five lowest harmonics and 
subharmonics are taken into account. Using walking force time histories measured on a treadmill, the 
frequency content of the force was investigated, resulting in the formulation of a multi-harmonic force 
model. This model can be used to estimate the multi-mode response in footbridges. This was verified 
successfully on an as-built catenary footbridge structure. Although only the vibration response of 
footbridges was analysed in this paper, the force model proposed has the potential to be implemented 
in the estimation of floor vibration as well, where multi-mode response occurs more frequently. The 
model is easily programmable and as such could present a powerful tool for estimating efficiently the 
probability of various levels of vibration response due to single person walking. Therefore, the 
proposed probability-based methodology has the potential to revolutionise the philosophy of the 
current codes of practice dealing with vibration serviceability of structures under human-induced 
vibration. 
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1 Introduction 

Vibration serviceability checks for slender footbridges that are potentially lively in the vertical direction 
are usually based on the assumption that an average single pedestrian is crossing the bridge with a 
step frequency matching one of the structural natural frequencies. In these analyses, it is assumed 
that the human-induced walking force is a sinusoidal force and that a footbridge structure responds in 
a single vibration mode [1], [2], [3], [4], [5] and [6]. This practice can significantly overestimate the 
footbridge vibration response [7]. This occurs due to neglecting inter- and intra-subject variability in the 
walking force induced [8], [9], [10] and [11]. The former term implies that different pedestrians 
generate different dynamic forces, and the latter means that even a single pedestrian induces a 
walking force that differs with each step. Therefore, the walking force is not a sinusoidal force as 
assumed in the mathematical model used widely for the vibration serviceability check of footbridges. 
Rather, it is a considerably more complex narrow band random process, as demonstrated by 
Brownjohn et al. [10]. 

Variability in the walking force can be taken into account via probability-based modelling [12]. In this 
approach, variables that describe the human-induced force can be defined via their probability density 
functions. These can be defined for the parameters characterising both inter-subject variability (such 
as the walking frequency, step length and force amplitude) and intra-subject variability, for example 
the inability of people to repeat the same force in each step. As a logical consequence of this 
probabilistic approach, the estimate of the vibration response can be expressed as a probability that a 
certain level of vibration, considered to be a limiting value for a vibration serviceability check, will not 
be exceeded. Rather than ending up with a single number and a binary pass or fail outcome, the 
novelty of the proposed approach is that a range of possible vibration responses and the probability of 
their occurrence is produced. An assessment of these is a much more logical way of judging vibration 
serviceability. 

The previously defined probability-based model [12] was developed for the case when a single force 
harmonic and the corresponding single mode response were sufficient for the vibration serviceability 
check. However, there are footbridge and other structures, even with very simple configurations, such 
as catenary footbridges (as will be shown in this study), that respond to pedestrian-induced excitation 
in several vibration modes simultaneously, with more than one of them being important. These modes 
often can be excited by energy around different force harmonics. Therefore, it is necessary to take into 
account all relevant harmonics of the walking force. By doing this, and knowing the modal properties of 
the relevant vibration modes, the multi-mode response of the structure can be found via the mode 
superposition principle [13]. 

This paper aims to formulate a multi-harmonic force model for calculation of the multi-mode structural 
response to a single person walking across a footbridge. This will be done using a probability-based 
framework developed in the previous stage of the research [12]. Therefore, a single harmonic force 
model will be extended to a multi-harmonic force model. This new model will contain not only the main 
harmonics usually dealt with in the literature, but also subharmonics that appear between main 
harmonics in the force spectrum [11]. 

In the first part of the paper, the appearance of the subharmonics in the force spectrum is explained. 
After this, probability density functions describing inter-subject variability in the walking force are 
defined. Then, the intra-subject variability, that is the imperfections in human-induced force, is 
analysed to formulate a time domain force model. This force model is then experimentally verified, 
leading to the main conclusions presented at the end of the paper. 

2 Subharmonics in walking force 

Human-induced walking force is not a periodic, but rather it is a narrow band random process [10]. 
This means that there is a leaking of energy around the main harmonics in the force spectrum. To 
illustrate this, 80 steps of a dynamic part of the walking force, measured on an instrumented treadmill 
[10] and shown in Fig. 1(a), are analysed. The average number of steps per second made by a test 
subject during this measurement was 1.96 steps/s, that is the walking frequency fs was 1.96 Hz. The 
force presented was transformed into the frequency domain. Fourier amplitudes and phases are 
shown in Fig. 1(b) and (c), respectively. The aforementioned leaking of energy around the main 
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harmonics can clearly be seen in Fig. 1(b). Here, the main harmonics are those present at frequencies 
equal to the average walking frequency (1.96 Hz) and its integer multiples. However, it can be seen 
that there are also some subharmonics appearing at frequencies between the main harmonics. This 
phenomenon has recently been reported in detail by Sahnaci and Kasperski [11]. The explanation for 
this lies in the fact that the fundamental period of the force time history is equal to the time required to 
make two successive steps, rather than one, as has been widely accepted in the literature. In this way, 
the fundamental period is actually approximately two times higher than when analysing one step only 
and consequently the fundamental frequency of the walking force is approximately two times lower 
than that for a single step. The reason for this is that the walking process for two legs can be 
described by slightly different parameters (walking frequency/period and step length) meaning that one 
leg is ‘stronger’ than another [11]. An illustration of this is the differences in the periods for the two feet 
that are presented in Fig. 1(d). Crosses represent the period for the left foot while circles represent the 
period for the right foot. It can be seen that time required for the left foot to make one step is 
consistently longer than that for the right foot.  
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Figure 1: (a) Dynamic part of a force induced by walking. (b) Amplitude of force Fourier spectrum. (c) 

Phase of force Fourier spectrum. (d) Period of each step. 
 

Based on this analysis, it would be more appropriate to call the harmonic appearing at a frequency of 
0.5fs (Fig. 1(b)) the fundamental harmonic. However, for the sake of consistency with the literature 
published in the last 40 years and bearing in mind the narrow-band nature of the walking force, the 
terminology used is as follows. The energy around peaks that appear at frequencies that are integer 
multiplies of the average step frequency will be called ‘harmonics’ (or ‘main harmonics’) of the walking 
force, while the energy corresponding to peaks between these will be called ‘subharmonics’. 

3 Inter-subject variability during walking 

Parameters that describe the variability in walking forces induced by different pedestrians are walking 
frequency, step length and magnitude of the walking force. These parameters all have a certain 
influence on the level of footbridge vibration response [12] and they are described in this section. 
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3.1 Walking frequency and step length 

Walking frequency fs and step length ls can be considered as two independent modelling parameters 
[12]. It is necessary to have information about them when doing force modelling. fs in fact defines the 
forcing fundamental frequency and together with ls is required for the calculation of time Tc required for 
footbridge crossing. This time can be obtained from: 

 c
s s

LT
f l

=  (1) 

where L is the length of the footbridge, and basically it defines the duration of the walking force. 
Therefore, it is useful to know the probability distributions of fs and ls. These were described by 
Živanović [12] as normal distributions and are shown in Fig. 2(a) and (b), respectively. The mean 
values of walking frequency and step length in Fig. 2(a) are denoted as 

sf
µ and 

sl
µ , respectively, 

while their standard deviations are denoted as 
sf

σ and 
sl

σ , respectively. Letters µ  and σ  will be 
used throughout the paper to describe the mean value and standard deviation of a variable whose 
name will be given as their subscript. 
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Figure 2: Probability density functions for: (a) walking frequency and (b) step length. 

3.2 Force magnitude 

The third parameter required for force description is the magnitude of the walking force. Since this 
force is composed of harmonics and subharmonics (Fig. 1(b)), it is necessary to define the amplitude 
of each of them. This is not a straightforward task because of energy spreading around the main 
harmonics and subharmonics. However, for each of them a sinusoidal force can be defined in such a 
way that its power is equal to the power of the (sub)harmonic analysed, taking into account its 
neighbouring frequency lines, say those in the range of ±0.25fs around the (sub)harmonic. The 
amplitude of this sinusoid, divided by the test subject’s weight, is the value widely accepted for 
characterisation of the strength of each (sub)harmonic. This value is called the dynamic loading factor 
(DLF). 

3.2.1 DLFs for main harmonics 

Different people generate different values of DLFs, even when walking at the same frequency [14] and 
[9]. For the first harmonic, Kerr [9] found that the mean value of its DLF is dependent on the walking 
frequency fs, as follows: 

 3 2
DLF1 0.2649 1.3206 1.7597 0.7613.s s sf f fµ = − + − +  (2) 
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The distribution of DLF1 around its mean value, for a particular walking frequency, can be obtained via 
multiplication of the mean value by a normally distributed factor MF [12] shown in Fig. 3(a) by the solid 
line. 
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Figure 3: (a) Probability density function for multiplication factor for DLF1 (solid line) and DLF2 (dashed 

line). (b) DLF2 measured by Kerr [9]. 
 

For a complete description of the walking force, the probability distributions of DLFs for higher 
harmonics are also required. This paper deals with the first five harmonics of the walking force, since it 
is believed that harmonics higher than the fifth are not capable of inducing perceptible vibrations in 
footbridges. 

Kerr [9] reported a mean value for DLF2 equal to 0.07 (Fig. 3(b)) regardless of the walking frequency. 
Under an assumption of normal distribution of DLF2 for each walking frequency and assuming that 
DLF2 is independent from DLF1, a normal distribution of a multiplication factor for getting DLF2 from its 
mean value can be presented based on Kerr’s data (dashed line in Fig. 3(a)). It should be noted that, 
due to large standard deviation, some negative values of DLF2 tend to appear in Fig. 3(a). These do 
not have physical meaning and as such should be removed from the calculation procedure by 
replacing them with zero values. It can be seen that the scattering of DLF2 is much higher in 
comparison with that for the first harmonic. 

Based on Kerr’s research [9], the normal distribution for the third and forth harmonics can be defined 
in a similar way as was done for the second harmonic. By analysing 95 force time histories measured 
by Brownjohn et al. [10], the data related to the fifth harmonic have also been collected. The mean 
values and standard deviations describing the normal distributions of the second, third, fourth and fifth 
harmonics are listed in Table 1. Similarly to DLF2, all negative values of DLFs that appear in the 
probability distributions due to large scatter should be replaced by zero values.  

 
Table 1: Parameters describing normal distribution of DLFs for higher harmonics. 

Harmonic # Mean Standard deviation 

2 0.07 0.03 

3 0.05 0.02 

4 0.05 0.02 

5 0.03 0.015 

 

3.2.2 DLFs for subharmonics 

This section aims to define DLFs for the first five subharmonics in the walking force. These data are 
missing from the literature available. Because of this, the 95 time histories measured by Brownjohn et 
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al. [10] for nine test subjects walking on a treadmill were transformed into the frequency domain. Then 
the power for each subharmonic was calculated in the frequency range (i−0.5)fs±0.25fs, where i is the 
subharmonic considered (i=1,2,3,4,5). After this, the amplitude of a sinusoidal force having the same 
power was calculated and divided by the weight of the test subject to get the DLF. However, since 
force time histories for only nine test subjects taking part in 95 measurements with different walking 
speeds were available, it is not prudent to construct probability density functions for these 
subharmonics as there were insufficient data points around each walking frequency. Instead, it is 
possible to establish a relationship between DLFs for the subharmonics and, say, the first walking 
harmonic DLF1. These relationships are presented in Fig. 4, based on the DLFs obtained for 95 force 
time histories. Also, a linear fit in the least square sense is presented for each graph in the figure. 
Therefore, for modelling purposes only the relative relationship between subharmonics and the first 
harmonic is adopted. In this way the magnitude of the DLF for the subharmonics can be obtained only 
after the magnitude of DLF1 is known. 
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Figure 4: DLFs for subharmonics as functions of DLF1. 
 

It is worth commenting here that Fig. 4 implies that the magnitudes of the DLFs for subharmonics are 
generally higher when the magnitude of DLF1 is higher. However, it might occur that for a sample of 
test subjects that is larger than the nine used here when obtaining Fig. 4, this relationship is actually 
nondeterministic (random), i.e. the DLFs for subharmonics can be considered as independent from 
DLF1. This should be verified when more data become available. This is especially important if the 
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force model is to be used for structures that are sensitive even to small force magnitudes present at 
frequencies typical for subharmonics. 

3.2.3 Pedestrian’s weight 

An additional random parameter that influences the force modelling but is not considered as a random 
variable in this paper is the pedestrian’s weight W. There are indications that increasing the 
pedestrian’s weight leads to increased DLFs [15]. However, there is no quantification of this 
dependence known to the authors. Therefore, it is currently not possible to construct a joint probability 
density function for these two, apparently dependent, variables defining the force amplitude DLF W⋅  
for each (sub)harmonic. This was the reason to decide to include the pedestrian’s average weight of 
750 N [16] in the formulation of the force model. 

4 Intra-subject variability during walking 

Due to the inability of human beings to walk in the same way when making every single step, the 
walking force is not a perfectly periodic process. Imperfections in the human walking force can be 
described via slight changes of the walking frequency (that is the reciprocal value of the period 
presented in Fig. 1(d)), amplitude (Fig. 1(a)) and phase lag in each step. These changes can be taken 
into account via investigation of the force in the frequency domain that is an inherent part of the force 
modelling described in the next section. These imperfections change the level of footbridge vibration 
response in comparison with that obtained due to the corresponding sinusoidal force. This is 
especially so when considering higher harmonics of the walking force [10]. 

5 Force modelling 

In this section, the frequency content of the measured walking forces is analysed first, followed by a 
description of the force model adopted. Then a procedure for model usage is briefly summarised. 

5.1 Force description in the frequency domain 

The force induced by walking can be presented in the frequency domain via its amplitudes and phases 
characterising each frequency line in the force spectrum (Fig. 1(b) and (c)). Since a decision to cover 
the frequency range of the walking force related to the first five harmonics and subharmonics was 
made, a force model covering the frequency range 0.25fs–5.25fs will be formulated. 

To formulate this force model, 95 time histories measured on a treadmill set to a constant speed [10] 
were analysed. The Fourier spectrum of exactly 80 steps for each time history was found. Amplitudes 
of this spectrum in the range ±0.25fs around each (sub)harmonic were divided with the corresponding 
DLF for this (sub)harmonic. In this way the normalised amplitude spectra were obtained. They were 
overlayed for each (sub)harmonic, and are presented as grey lines in Fig. 5. After this, the mean 
functions for all spectra were found and fitted in the least square sense. The normalised amplitudes 
DLF ( )i jf for the ith harmonic are fitted by a function that is available as a built-in function in MATLAB 
[17]: 

 

2 2 2
,1 ,2 ,3

,1 ,2 ,3

,1 ,2 ,3DLF ( ) e e e
i i ij j j

i i i

f b f b f b
c c c

i i i ijf a a a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠= + +  (3) 

where , ,,i k i ka b  and ,i kc  ( 1,2,3)k =  are nine fitting parameters for the ith harmonic. jf  is the 
frequency ratio between the current frequency line and step frequency fs, and it belongs to the interval 
[i−0.25, i+0.25), with step 1/80, including its left limit. Therefore, for the first harmonic variable jf  is in 
the range 0.75–1.25, for the second harmonic 1.75–2.25, for the third 2.75–3.25, for the fourth 3.75–
4.25 and for the fifth 4.75–5.25. Therefore, the spectrum width of 0.5fs around each harmonic is taken 
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into account when defining the normalised DLF for that harmonic. Since every time history analysed 
contained 80 steps, this was the reason to have spacing between frequency lines equal to fs/80. When 
the spectrum width of 0.5fs used for each harmonic is divided by the frequency spacing, it follows that 
each harmonic is described by 40 lines. The nine parameters for each of the first five harmonics are 
listed in Table 2. 
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Figure 5: Normalised DLFs for the first five subharmonics (left column) and harmonics (right column). 
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Table 2: Fitting parameters for five harmonics. 

i 1 2 3 4 5 

ai,1 0.785200 0.513000 0.390800 0.325500 0.280600 

bi,1 0.999900 2.000000 3.000000 4.000000 4.999000 
ci,1 0.008314 0.011050 0.009560 0.008797 0.007939 
ai,2 0.020600 0.133000 0.156700 0.164700 0.158400 

bi,2 1.034000 1.957000 3.000000 4.001000 5.004000 

ci,2 0.252400 0.263200 0.055250 0.066410 0.078250 
ai,3 0.107400 −0.049840 0.068660 0.068880 0.072890 
bi,3 1.001000 1.882000 2.957000 3.991000 4.987000 
ci,3 0.036530 0.058070 0.560700 0.375000 0.450100 

 

The normalised amplitudes for subharmonics DLF ( )
s s
i jf  were fitted by a function: 

 

2 2

,1 ,2

,1 ,2

,1 ,2DLF ( ) e e

s ss s
i ij j

s s
i i

i

f b f b

c cs s s s
i ijf a a

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= +  (4) 

where , ,,s s
i k i ka b  and ,

s
i kc  ( 1,2)k = are six fitting parameters for ith subharmonic. 

s

jf  is the frequency 
ratio between the current frequency line and step frequency fs, and it belongs to the interval 
[i−0.75,i−0.25) including its left limit. So, for the first subharmonic this variable is in the range 0.25–
0.75, for the second subharmonic it is 1.25–1.75, and so on. As in the case of the main harmonics, 40 
lines are used for the description of a subharmonic. The six parameters for each of the five 
subharmonics are listed in Table 3. 

 

Table 3: Fitting parameters for five subharmonics. 

i 1 2 3 4 5 

,1
s
ia  0.340600 0.302400 0.262700 0.234400 0.264500 

,1
s
ib  0.498800 1.500000 2.500000 3.501000 4.499000 

,1
s
ic  0.008337 0.008735 0.009748 0.009898 0.010190 

,2
s
ia  0.280300 0.134500 0.245600 0.235500 0.238900 

,2
s
ib  1.133000 1.532000 0.231200 −1.576000 1.153000 

,2
s
ib  0.638800 0.723300 2.932000 7.050000 4.561000 

 

The functions in Eqs. (3) and (4) used to fit the mean functions for the harmonics and subharmonics 
are shown as black lines in Fig. 5. It can be seen that the fit for subharmonics is quite similar for all of 
them in terms of normalised amplitude and shape of the fitting function. In the case of main harmonics, 
it is evident that the higher ones are weaker in amplitude and broader in frequency content than the 
lower ones. This indicates a higher degree of randomness for higher harmonics. 

Having a model representing amplitudes in the spectrum of walking force, additional information about 
the phase for each frequency line is required for accurate force representation in the time domain. For 
this purpose, the phase spectra of measured forces were examined. It was noticed that the phases for 
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all frequency lines in the range 0.25fs–5.25fs are uniformly distributed in the interval [ π− ,+π ] for any 
force time history analysed. An example of this distribution for the phase diagram presented in Fig. 
1(c) is shown by a histogram in Fig. 6. Any interdependence between phase changes around the main 
harmonics (where the amplitudes are the highest and most important) as well as between different 
harmonics could not be noticed. This was the reason to adopt a uniformly distributed random phase in 
the force model. 
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Figure 6: Distribution of phases for 400 lines in the force spectrum. 
 

It should be said here that the modelling presented in this section is an extension of a model 
formulated by Brownjohn et al. [10], as:  

• subharmonics are now included into the force model, 

• phase information is taken into account, and  

• the complete frequency content of the force spectrum, up to the frequency of 5.25fs, is now 
included into the model without any discontinuities. 

With all frequency lines considered and phase information added, the reconstruction of the force in the 
time domain is possible. This, in turn, makes it possible to weight the human-induced force by mode 
shape in order to take into account that the force moves across the footbridge and has limited 
duration. This weighted (modal) force can then be used to calculate the structural modal response in a 
particular mode of vibration. This kind of analysis is not possible in the frequency domain, which is a 
feature of the model formulated by Brownjohn et al. [10]. 

5.2 Time domain force model 

For the ith harmonic, occurring at frequency ifs, the force can be reconstructed in the time domain via 
the following formula: 

 π θ
+

= −

= ⋅ × +∑
0.25

0.25

( ) DLF DLF ( )cos(2 ( )),
j

i

i j j ji i s
f i

F t W f f f t f  (5) 

while for the ith subharmonic it would be 

 π θ
+

= −

= ⋅ × +∑
0.25

0.25

( ) DLF DLF ( )cos(2 ( )).
s
j

i s s s ss s
i j j ji i s

f i

F t W f f f t f  (6) 
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Here, i is the (sub)harmonic considered, and j sf f  is a frequency line within the energy range of the 

harmonic analysed, while θ ( )jf  is the phase assigned to the current line in the spectrum. This 
assignment is based on a uniform distribution of phases in the interval [ π π− +, ]. DLFi is the DLF for 

the harmonic analysed, and DLF ( )i jf  is the normalised amplitude for the same harmonic for each line, 
while W=750 N is the average weight of a pedestrian. Variables containing superscript s are related to 
subharmonics. Finally, the total force can be obtained as: 

 
= =

= +∑ ∑
5 5

1 1
( ) ( ) ( ).s

i i
i i

F t F t F t  (7) 

To demonstrate the quality of the force model presented, an attempt to model the force shown in Fig. 
1(a) has been made. The fundamental frequency of this force as well as its DLFs are already known. 
The frequency is 1.96 Hz while DLFs for all harmonics and subharmonics are obtained based on the 
procedure explained in Section 3.2. These values were used as input values for defining normalised 
amplitudes in the frequency domain for the force analysed. The force spectrum obtained in this way is 
presented in Fig. 7(a). The peaks in this spectrum are a bit attenuated in comparison with the real 
spectrum (Fig. 1(b)) due to using an average spectrum of walking forces defined by Eqs. (3) and (4) 
and Fig. 5. After obtaining the spectrum of amplitudes, uniformly distributed random phases were 
generated for all 400 lines in the spectrum and the force was reconstructed in the time domain (Fig. 
7(b)). It can be noticed that the force model (Fig. 7(b)) differs from that in Fig. 1(a). The two forces 
could visually be, in general, both more similar and more different from each other than obtained here, 
depending on the randomly generated phase values for each case. Since the probability-based 
response calculation will be based on a large sample of generated forces, it can be assumed that the 
phase influence on the results in such a sample is not significant. It should be noticed that the energy 
of the force is not influenced by the phase values. 
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Figure 7: (a) Force spectrum for force shown in Fig. 1(a) according to the force model adopted. (b) 

Force reconstructed in the time domain. 

5.3 Procedure for response simulations 

This section reviews briefly the key steps required for estimation of a modal response of a footbridge 
when using the force model formulated. To simplify the explanation, it is assumed that simulations for 
2000 individual pedestrians walking on their own across a bridge will be conducted. It is further 
assumed that only a single mode is relevant for the calculation, and that its modal properties are 
known. In the case that more than one mode is relevant, the modal responses obtained for individual 
vibration modes should be summed according to the mode superposition principle. The procedure for 
a single mode response can be described as follows: 

1. Generate the walking frequency and step length for each of 2000 pedestrians (Fig. 2(a) and 
(b)). 

2. Calculate µDLF1  for each walking frequency (Eq. (2)). 
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3. Calculate the crossing time for each person via Eq. (1). 

4. Generate multiplication factors for each DLF1 (Fig. 3(a)) and multiply them with µDLF1  one by 
one to get 2000 DLFs for the first harmonic.  

5. Generate 2000 DLFs for higher harmonics (Table 1). 

6. Generate 2000 DLFs for each subharmonic depending on the DLF1 values (Fig. 4). 

7. Generate functions for normalised DLFs for harmonics and subharmonics by using the 
functions defined in Eqs. (3) and (4). 

8. For each pedestrian do the following: 

• Generate 400 random phase values for each frequency line in the 400-line force 
spectrum. 

• Reconstruct the force in the time domain by using Eqs. (5), (6) and (7). The force 
should be reconstructed for time equal to the crossing time for the person analysed. 

• Calculate the modal force by multiplying the individual forces F(t) by the mode shape. 

• Calculate the footbridge modal response to each of 2000 modal forces. 

• Calculate the peak and/or RMS value of the response and save it. 

9. Find the cumulative probability that a certain footbridge vibration level will be less than or 
equal to a prescribed limiting value. 

6 Verification of the force model 

Verification of the force model was conducted by analysing the response of two structures to walking 
excitation. The first ‘structure’ is an imaginary 3DOF bridge while the second one is an as-built real-life 
footbridge near Sheffield in the UK. 

6.1 Imaginary footbridge 

The imaginary 3DOF footbridge is a lightly damped ‘structure’ that responds to dynamic excitation in 
three vibration modes. It is assumed that all vibration modes have maximum displacement at the same 
point. This allows a simple summation of the responses in individual modes in order to get the total 
response of the structure. The modal properties of the mode shapes were chosen to be: 

• Modal mass equal to 10 000 kg in each vibration mode. 

• Natural frequencies equal to 1.9 Hz, 3.8 Hz and 5.7 Hz, for the first, second and third mode 
respectively. 

• Modal damping equal to 0.3% for all modes. 

The natural frequencies of vibration modes were chosen to correspond with the dominant walking 
frequency and its integer multiples. Therefore, it is expected that all three modes of vibration will be 
excited since their frequencies are matched by the dominant frequencies for the first three harmonics. 
Since the three harmonics will all generate structural responses that cannot be neglected, it is 
expected that phase difference between different harmonics will play an important role in the 
estimation of the total vibration response. 

The structural response was calculated in two ways. Firstly, 95 responses to 95 measured forces, 
lasting 60 s each, were calculated. Then, 95 forces were generated using the force model described in 
Section 5.2. The walking frequencies and DLFs for all harmonics and subharmonics for these 95 
forces were manually adjusted to be the same as those for measured forces. The responses obtained 
in this way were then compared with those obtained from measured force time histories. Before 
presenting the results, it should be said that all simulations were conducted under an assumption of 
the force being stationary, i.e. acting at the point of maximum modal response in each mode. This 
does not reduce the value of this comparison. 
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Obtained results can be summarised as follows: 

• The cumulative distribution of the RMS value for the response in each vibration mode 
individually under the measured forces was almost the same as that under the simulated 
forces (Fig. 8).  

• The cumulative distribution of RMS values for the sum of responses in any two modes was 
almost the same for cases of measured and simulated forces. For comparison, only the sum 
of responses in the second and third mode is presented in Fig. 9(a) and (b). 

• The cumulative distribution of RMS values for the total response of all three modes to 
measured forces was almost the same as the one to simulated forces (Fig. 9(c) and (d)). 

This example shows that taking phases as random variables that are uniformly distributed, when 
defining the force model, is a reasonable approximation of the real situation. 
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Figure 8: Cumulative probability that the RMS acceleration level for the whole response signal is 

smaller than or equal to the RMS acceleration level shown on the horizontal axis for the 
response in (a) Mode 1 due to measured forces, (b) Mode 1 due to simulated forces, (c) 
Mode 2 due to measured forces, (d) Mode 2 due to simulated forces, (e) Mode 3 due to 
measured forces and (f) Mode 3 due to simulated forces. 
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forces, (b) simulated forces. Cumulative probability of (c) total RMS response to measured 
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6.2 As-built footbridge 

The as-built footbridge analysed is a 30 000 kg catenary structure near Sheffield spanning 34 m (Fig. 
10(a)). The footbridge is quite short and of simple structure. It has five well separated vertical modes 
of vibration in the frequency range up to 10 Hz. Their mode shapes are presented in Fig. 10(b), while 
their natural frequencies, modal dampings and modal masses, as identified by Pavic and Reynolds 
[18], are listed in Table 4. Note that the first mode is anti-symmetric, which is a consequence of the 
curvature of the underformed shape of the bridge deck. 
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Figure 10: (a) Catenary footbridge. (b) Mode shapes for five vertical vibration modes. 
 

Table 4: Modal properties of the catenary footbridge. 

Mode 1 2 3 4 5 

Natural frequency [Hz] 2.44 3.66 4.86 6.66 9.50 

Modal damping [%] 0.53 0.65 0.96 0.73 0.77 

Modal mass [kg] 10520 5880 8690 10767 10319 
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6.2.1 Response measurements 

The acceleration response of this footbridge to a single person excitation was measured at a quarter-
span (hereafter referred to as test point 1) and at the midspan point (test point 2) [19]. Seven test 
subjects were asked to cross the bridge with a pacing rate they personally considered to be normal. 
The exercise was repeated twice for each test subject so that in total 14 responses were recorded. By 
using a video camera, the crossing time was also recorded for every crossing. Typical acceleration 
time histories measured at test point 1 (TP1) and test point 2 (TP2) are shown in Fig. 11(a) and (b), 
respectively. Their Fourier spectra are presented in Fig. 11(c) and (d). It can be seen that at the 
quarter-span point (TP1) several modes respond significantly to walking excitation. These are Φ1,Φ3 
and Φ4, i.e. all modes that have nonzero amplitude at TP1 (Fig. 10(b)). Also, at the midspan point 
(TP2), the response is mainly a combination of the second and the fifth modes (Fig. 10(b)). Based on 
these measurements it is evident that the contribution of several vibration modes should be taken into 
account when estimating the vibration response to human-induced force. The measured accelerations 
are low-pass filtered (up to 10 Hz) in order to contain only the frequency content related to the first five 
vertical modes analysed. The results are summarised in Fig. 12 and Fig. 13 in the form of peak 
acceleration and RMS acceleration of the whole signal. They are shown as solid lines on the 
probability histograms presented in Fig. 12(a) and (b) for TP1, and Fig. 12(c) and (d) for TP2. 
Cumulative probabilities are also presented as solid lines in Fig. 13(a) and (b) for TP1, and Fig. 13(c) 
and (d) for TP2. 
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Figure 11: Measured time history at (a) TP1 and (b) TP2. Fourier spectrum of signal at (c) TP1 and (d) 

TP2. 
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Figure 12: Probability of certain acceleration level for (a) peak acceleration at TP1, (b) RMS 

acceleration at TP1, (c) peak acceleration at TP2, and (d) RMS acceleration at TP2. 
Measured data are presented as solid lines while calculated responses are shown as 
grey. 
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Figure 13: Cumulative probability for measured and simulated (a) peak acceleration at TP1, (b) RMS 

acceleration at TP1, (c) peak acceleration at TP2, and (d) RMS acceleration at TP2. 
Measured data are presented as solid lines while calculated responses are shown as 
grey. 
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6.2.2 Multi-mode response simulations 

The response of the bridge was calculated for 2000 different force time histories generated according 
to the procedure described in Section 5.3. The modal responses at TP1 and TP2 were obtained for 
individual vibration modes and then summed after multiplication of each modal response by the mode 
shape amplitude at the point considered. In this way the total physical responses were obtained at 
both test points. 

The probability and the corresponding cumulative distribution for peak and RMS values of total 
acceleration responses in these two points are shown as grey in Fig. 12 and Fig. 13, respectively. 
Comparing them with the probability distribution of measured accelerations (solid lines in Fig. 12 and 
Fig. 13), it can be seen that probability of having a high level of peak responses generally exists for the 
calculated responses only (Fig. 12(a) and (c)). This is an estimate that is on the safe side and is a 
consequence of the fact that the probability of having forces with greater amplitudes and with 
frequencies of their harmonics closer to some of the natural frequencies is much greater in simulations 
than in the measured sample of only seven pedestrians making 14 crossings in total. An additional 
reason not to have high level responses in the measured data is that some pedestrians lost their 
steady step due to human–structure interaction when perceiving a vibration level that they personally 
considered as disturbing [20]. 

It should be emphasised here that, under the condition that probability distributions of walking 
frequency and step length for crossings of the bridge analysed can be described by functions in Fig. 2, 
the result from 2000 simulations presented is actually more reliable in a statistical sense than the 
measurement set limited to seven people only, that cannot represent inter-subject variability. 

Finally, the model is much more accurate in the prediction of vibration response of footbridges to 
single person excitation than BS 5400 [1] currently used in the UK. The same applies to a more recent 
document BD 37/01 [5] that makes use of the same calculation procedure as BS 5400. To illustrate 
this, a deterministic ‘single-harmonic–single-mode’ response defined in BS was applied on the first two 
modes individually. In both cases, the amplitude of the dynamic force is taken to be 180 N, i.e. 25.7% 
of the test subject weight, being 700 N. It was assumed, based on the recommendations in BS, that 
the pedestrian walking at a step frequency that matches the natural frequency of the first mode at 2.44 
Hz crosses the bridge with a quite fast, and also quite improbable, walking speed of 2.2 m/s, while the 
one walking at the step frequency that matches the second mode at 3.66 Hz moves with an even less 
probable speed of 3.3 m/s. The peak acceleration responses calculated in this way were 0.42 m/s2 
and 0.72 m/s2 for the first two modes respectively. Comparing these results with those presented in 
Fig. 13(a) and (c), it can be concluded that the values estimated by BS 5400 are highly unlikely to 
occur on the bridge analysed. This is despite the fact that the BS takes into consideration only a single 
vibration mode. 

7 Conclusions 

This paper describes the modelling of the human-induced walking force for a single pedestrian. A 
probability-based model is proposed that takes into account inter- and intra-subject variability in the 
walking force. The model takes into account all of the frequency content of the walking force up to the 
fifth harmonic. In this way, a general multi-harmonic force model is formulated that allows for 
calculation of multi-mode response of a structure. 

This model is an extension of a probability-based ‘single-harmonic–single-mode’ response calculation 
model developed in a previous stage of the research [12]. The inter-subject variability is modelled via 
probability distributions of walking frequencies, force amplitudes and step lengths. The intra-subject 
variability is modelled via a frequency domain representation of both amplitudes and phases in the 
spectrum of the walking force. As such, this modelling of intra-subject variability is an extension of the 
model formulated by Brownjohn et al. [10]. 

Based on case studies of one imaginary 3DOF footbridge simulation model and one real-life as-built 
footbridge, the proposed model was successfully verified. It was shown that it predicts the multi-mode 
response of footbridges with sufficient accuracy. The new challenge in the next stage of research is 
the verification of the model on slender floor structures, where multi-mode response occurs more 
frequently, as well as an implementation of the model for multi-person traffic. 
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It should be noted that the model defined is easily programmable and as such could present a 
powerful tool for estimating efficiently the probability of footbridge vibration response due to single 
person walking. The novel methodology has the potential to revolutionise the current codes of practice 
dealing with vibration serviceability assessment due to dynamic excitation caused by human walking. 

Acknowledgements 
The authors would like to thank to Professor J.M.W. Brownjohn of the University of Sheffield and the 
National Institute of Education in Singapore for their permission to use the data related to measured 
walking forces. We also acknowledge the financial support which came from the UK Engineering and 
Physical Sciences Research Council (EPSRC) for grant reference GR/S14924/01 (“Investigation of the 
As-Built Vibration Performance of System Built Floors”) as well as for grant reference GR/T03000/01 
(“Stochastic Approach to Human-Structure Dynamic Interaction”) provided to Professor A. Pavic, for 
his Advanced Research Fellowship. Finally, the authors are grateful for the financial support from the 
Universities UK Overseas Research Student Award Scheme (reference ORS/2002036023). 

References 
[1] BSI. Steel, concrete and composite bridges. Part 2: Specification for loads; Appendix C: vibration 

serviceability requirements for foot and cycle track bridges (BS 5400). London (UK): British 
Standards Institution; 1978. 

[2] [2] OHBDC. Ontario highway bridge design code. Ontario (Canada): Highway Engineering 
Division, Ministry of Transportation and Communication; 1983. 

[3] Bachmann H, Ammann W. Vibration in structures — induced by man and machines. Structural 
engineering documents 3e. Zürich: International association of bridge and structural engineering 
(IABSE); 1987. 

[4] CSA. Canadian highway bridge design code. CAN/CSA-S6-00. Canadian Standards 
Association; 2000. 

[5] HA. Design manual for roads and bridges. Volume 1, Section 3: Loads for Highway Bridges 
(BD37/01). London (UK): Highway Agency; 2001. 

[6] BSI. Mechanical vibration — evaluation of measurement results from dynamic tests and 
investigations on bridges. BS ISO 18649: 2004. London (UK): British Standards Institution; 2004. 

[7] Pimentel RL. Vibrational performance of pedestrian bridges due to human-induced loads. Ph.D. 
thesis. Sheffield (UK): University of Sheffield; 1997. 

[8] A. Ebrahimpour, A. Hamam, R.L. Sack and W.N. Patten, Measuring and modeling dynamic 
loads imposed by moving crowds, ASCE Journal of Structural Engineering 122 (1996) (12), pp. 
1468–1474. 

[9] Kerr SC. Human induced loading on staircases. Ph.D. thesis. UK: Mechanical Engineering 
Department, University College London; 1998. 

[10] J.M.W. Brownjohn, A. Pavic and P. Omenzetter, A spectral density approach for modelling 
continuous vertical forces on pedestrian structures due to walking, Canadian Journal of Civil 
Engineering 31 (2004) (1), pp. 65–77.  

[11] Sahnaci C, Kasperski M. Random loads induced by walking. In: Proceedings of the sixth 
European conference on structural dynamics, vol. 1. 2005, p. 441–6. 

[12] Živanović S. Probability-based estimation of vibration response of footbridges. In: Probability-
based estimation of vibration for pedestrian structured due to walking. Ph.D. thesis. United 
Kingdom: Department of Civil & Structural Engineering, University of Sheffield; February 2006 
[chapter 6]. 

[13] R.W. Clough and J. Penzien, Dynamics of structures, McGraw-Hill, New York (1993). 

[14] J.H. Rainer, G. Pernica and D.E. Allen, Dynamic loading and response of footbridges, Canadian 
Journal of Civil Engineering 15 (1988) (1), pp. 66–71.  

[15] F.W. Galbraith and M.V. Barton, Ground loading from footsteps, The Journal of the Acoustical 
Society of America 48 (1970) (5), pp. 1288–1292.  



This paper has been published under the following reference: 
Živanović, S., Pavić, A. and Reynolds, P. (2007) Probability-based prediction of multi-mode vibration 
response to walking excitation. Engineering Structures, Vol. 29, No. 6, pp. 942-954. 
doi:10.1016/j.engstruct.2006.07.004 

 

19 

[16] DH. Department of Health, UK, webpage: 
http://www.dh.gov.uk/PublicationsAndStatistics/PublishedSurvey/HealthSurveyForEngland/Healt
hSurveyResults, 2005. 

[17] MathWorks. Curve fitting toolbox, Version 1.1.4. In: MATLAB: The Language of Technical 
Computing. 2006. 

[18] Pavic A, Reynolds P. Modal testing of a 34 m catenary footbridge. In: Proceedings of the 20th 
international modal analysis conference, vol. 2. 2002, p. 1113–8. 

[19] Athanasiadou A. Determination of vertical lock-in levels for pedestrians crossing a footbridge. 
MSc thesis. Sheffield (UK): University of Sheffield; 2001. 

[20] Živanović S. Human-structure dynamic interaction during footbridge crossing. In: Probability-
based estimation of vibration for pedestrian structured due to walking. Ph.D. thesis. United 
Kingdom: Department of Civil & Structural Engineering, University of Sheffield; February 2006 
[chapter 5]. 


