

Introduction to heat driven (adsorption) cycles

Prof. Bob Critoph

THE UNIVERSITY OF WARWICK

Contents:

- 1. Types of heat driven cycle
- 2. Adsorption history and principles
- 3. Some painless theory
- 4. Applications

Applications: Heat pumps Refrigerators Air conditioning

Driven by heat from: Fossil fuels Bio fuels Waste heat Solar thermal energy

In the beginning...

It started with Faraday in 1821...

Mr. FARADAY on the condensation of

several gases into liquids.

sion to notice some years since with chloride of silver.* When dry chloride of silver is put into ammoniacal gas, as dry as it can be made, it absorbs a large quantity of it; 100 grains condensing above 130 cubical inches of the gas: but the compound thus formed is decomposed by a temperature of 100° F. or upwards. A portion of this compound was sealed up in a bent tube and heated in one leg, whilst the other was cooled by ice or water. The compound thus heated under pressure fused at a comparatively low temperature, and boiled up, giving off ammoniacal gas, which condensed at the opposite end into a liquid.

Liquid ammonia thus obtained was colourless, transparent, and very fluid. Its refractive power surpassed that of any other of the fluids described, and that also of water itself. From the way in which it was obtained, it was evidently as free from water as ammonia in any state could be. When the chloride of silver is allowed to cool, the ammonia immediately returns to it, combining with it, and producing the original compound. During this action a curious combination of effects takes place: as the chloride absorbs the ammonia, heat is produced, the temperature rising up nearly to 100°; whilst a few inches off, at the opposite end of the tube, considerable cold is produced by the evaporation of the fluid. When the whole is retained at the temperature of 60°, the ammonia boils till it is dissipated and re-combined. The pressure of the vapour of ammonia is equal to about 6.5 atmospheres at 50°. Its specific gravity was 0.76.

* Quarterly Journal of Science, vol. V. p. 74.

197

WARWICK

One of the few commercial machines in production :

REFRIGERANT REQUIREMENTS:

- HIGH LATENT HEAT PER UNIT VOLUME - CHEMICAL STABILITY
- PRESSURE BETWEEN 1 AND 5 BAR
- NON POLLUTING

MAIN CONTENDERS:

- WATER - METHANOL - AMMONIA

ADSORBENTS:

- SILICA GEL Low temperature lift

 ZEOLITES Low pore volume, High temperature lift
 CARBONS High pore volume, Medium lift

Porosity measurement equipment

Rubotherm magnetic suspension balance

Test vessel

Temperature control

Basket and sample

ENV ADMAN

The (nearly) painless theory...

Idealised Adsorption Cycle

Initial State:

Ambient Temperature

Low pressure

High concentration

Process 1

Carbon bed is heated, ammonia is driven off and pressure increases until...

Process 2 starts

The saturation pressure is reached and ammonia condenses in the right hand vessel at ambient temperature.

Process 2 continues

More ammonia is driven out from the carbon and condensed in the right hand vessel

Representation of a simple cycle on the pressure – temperature – concentration diagram

Thermal Regeneration

Heat must be rejected during processes 3 and 4 where the carbon is cooled.

Some of that heat may be used in processes 1 and 2 where the carbon is heated.

This *thermal regeneration* gives high efficiency.

Cycle Selection

Two Main Heat Recovery Methods for Adsorption Cycles:

- Thermal Wave (Performance envelope in Red Below)
- Multiple-Bed (Four-Bed In Green, Two-Bed In Blue)

Four Bed Adsorption Cycle

Illustration of a Four-Bed Adsorption Cycle with Mass Recovery

PROBLEMS FACING ADSORPTION MACHINES:

- Poor heat transfer
 - Iow specific power
 - high capital cost
- Simple cycle has low COP
 - high running cost scontinuous processes
- Discontinuous processes
 - unsteady output
- PROBLEMS SPECIFIC TO AMMONIA :
- Toxicity
- No copper or brass

ADVANTAGES OF ADSORPTION MACHINES:

- Rugged, not sensitive to vibration, orientation
- Regenerative cycles have a high COP

ADVANTAGES OF AMMONIA :

- High pressure, so permeability of sorbent is not critical
- Can be easier to engineer than sub-atmospheric systems

Challenges common to all our research:

1.Getting heat in and out of a low conductivity granular bed.

2.Doing it with zero cost and zero mass!

Previous approaches at Warwick :

- **1. Monolithic carbon generators**
- 2. Multiple-Bed regenerative cycle
- 3. Plate heat exchanger bonded to thin layers of adsorbent.

GRANULAR CARBON

MONOLITHIC CARBON

Carbon- Aluminium Laminate

Carbon- Aluminium Laminate

Typical conductivity of monolithic carbon : 0.5 W/mK

Typical radial conductivity of new carbon - aluminium laminate: 20 W/mK

Previous approaches at Warwick :

- 1. Monolithic carbon generators
- 2. Multiple-Bed regenerative cycle
- 3. Plate heat exchanger bonded to thin layers of adsorbent.

A patented cycle based on modular generators lined with monolithic carbon

Initial carbonlined tube

Double sorption module

WARWICK

The realisation that the mechanical complexity outweighed the benefits of the 'counterflow' design, lead us to a low-cost 'cross-flow' concept...

VARIATIONS ON MODULE DESIGNS:

Advanced module (separate condenser and evaporator)

Fixed beds – Being used on 'SOCOOL' tri-generation project

Module with separate evaporator, receiver and condenser

FIXED MODULAR BED CONFIGURATION

Adsorption

Desorption

Phase 1

FIXED MODULAR BED CONFIGURATION

Desorption

Adsorption

'Spinner' project using the fixed bed design

The advantages are those of simplicity – the only moving parts are fans.

A 1–2 kW air conditioner for laboratory demonstration was built in early 2006.

'Spinner' project

Assembled prototype without fans

Advantages :

- Sealed modules are low-cost and safe
- No ammonia valves or controls
- Only moving parts are the fans

Disavantages :

More modules needed than for rotating system

Single module under test, January 2005

5 kW SOCOOL prototype before delivery to Italy

THE COMPLETE UW SOCOOL MACHINE INSTALLED AT CRF

Previous approaches at Warwick :

- **1. Monolithic carbon generators**
- 2. Multiple-Bed regenerative cycle
- 3. Plate heat exchanger bonded to thin layers of adsorbent.

Has been investigated in a group project during 2003/4

This is two orders of magnitude more compact than commercially available adsorption refrigerators

Advantages

- VERY compact
- Low ammonia mass

Disadvantages

- Not yet demonstrated some technical risks (seals, thermal shock)
- Liquid-liquid heat transfer may not suit all applications

This lead to an EU-funded project, 'TOPMACS', aimed at heat operated car/truck air conditioning.

It was coordinated by CRF and started in March 2005.

We collaborated with Chemviron Carbon and Bodycote to work on a novel brazed plate generator design.

Two applications:

- C-Class car (2 -3 kW)
- Long distance truck

The car application has a potential fuel consumption reduction of 8% in southern European climates.

Sorption Generator Design

Plate Heat Exchanger – 12mm shim spacing design used with aluminium fins

We are actually using the plate technology in three separate projects:

- Gas fired heat pumps
- Solar powered refrigeration
- Car air conditioning

More on that from my colleagues later...

Laboratory Prototype 2-bed heat pump (10kw heating) tested successfully.

Achieved:

- All major
 components installed
- New adsorbent tested
- Control algorithm
 chosen
- Water loops installed

To do :

- New generators to be completed and filled with carbon
- Test in laboratory with electric heating
- Deliver for testing in Arizona

ATMI Solar refrigerator

ΞK

THE UNIVERSITY OF

Car Air Conditioning Project Summary:

- Successful demonstration of plate heat exchanger concept
- Short cycle times
- Accurate performance predictions
- Power density SOCOOL 2.5 W/litre
 Sortec 4 W/litre
 Latest machine 63 W/litre

New development :-

Sorption Energy

Commercialisation

Sorption Energy formed to spin technology out of University of Warwick for commercial success

- H2O Venture Partners acting as commercialisation partner to bring quality business skills
 - Engaging full time with Sorption Energy until first significant (£multimillion) funding round

Now engaging with vehicle builders and Tier1 suppliers

- Validation of market concept
- Understanding of market and timelines
- Support and advice on in-vehicle demonstrator

CALEBRE and FoF to develop gas fired heat pump technology

Watch this space...

Thank you!

