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Abstract— The availability of a well-characterised subtrac-
tion module is a key step towards the realisation of modular
embedded feedback controllers in synthetic biological systems.
A well-known problem when dealing with complex biosystems
is represented by the retroactivity effect, which can significantly
modify the dynamics of interconnected subsystem, with respect
to the behaviour they exhibit when disconnected from each
other. In this paper, we illustrate a minimal CRN that im-
plements a subtraction operation between two input molecular
fluxes. In order to assess its effectiveness as a module of a more
complex system, we analyse its retroactivity upon interconnec-
tion. More specifically, we connect the subtraction module with
an upstream module, which determines the dynamics of the
inputs species, and with a downstream transcriptional module,
which acts as a load. By comparing the dynamics of the loaded
and unloaded subtractor, we show that the retroactivity can
be attenuated when the dynamics of the subtractor and of
the load system evolve over different timescales. This result,
obtained through a singular perturbation analysis, is confirmed
by means of numerical simulations.

I. INTRODUCTION

Achieving biological behaviours with novel and pre-
dictable functionalities is a central topic in Synthetic Biology,
which is strictly linked to the theoretical and technologi-
cal challenges posed by the design of molecular feedback
controllers. The control of biomolecular systems is largely
based on the capability of engineering different molecular
components, e.g. plasmids, DNA or RNA strands, to create
biological devices that can accomplish specific tasks (see,
e.g., [1], [2]). Furthermore, it is also important to devise
engineering methods to assemble such components in a
modular, scalable manner, such that the resulting systems
exhibit a predictable behaviour.

In previous works (see [3], [4]), we have proposed a
simple design of an embedded synthetic feedback controller,
based on the Chemical Reaction Networks (CRN) formalism.
A feature of our approach consists in the definition of
molecular fluxes as input/output signals that connect the
different subsystems. This choice is particularly suited to
devise a modular approach to the design of complex systems;
moreover, the use of molecular fluxes naturally arises in
certain contexts, e.g. in metabolic engineering, which aims
at the regulation of the fluxes of one or more species for
industrial applications (see [5],[6]). The present paper deals
with the analysis of a CRN that outputs the difference
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Fig. 1. Block diagram of the classical feedback control scheme: the
subtractor module allows the output of the controlled process to be compared
with the desired value (set point) at each time instant; the difference between
these two quantities is the error signal, which constitutes the input to the
controller.

between two input fluxes; this is a basic component of the
classical feedback control scheme, illustrated in Fig. 1, which
is required to compare the desired set-point with the actual
output of the process to be controlled. In order to evaluate
the exploitability of the proposed molecular subtractor as a
component of a more complex system, here we will focus on
the analysis of its retroactivity properties [7], [8], [9]. Along
the lines of [10], [11], we consider the interconnection of the
subtractor with a generic upstream module, which produces
and consumes the two input species, and with a downstream
transcriptional module. The final goal is to show how the
retroactivity of the subtractor can be arbitrarily attenuated
provided that the connected modules evolve over different
timescales.

The paper is organized as follows: in Section II we discuss
the general properties required from a subtraction block
and translate these into a minimal CRN-based subtraction
module. Section III briefly recalls the concept of retroactivity
and a general modeling scheme for the connection of bio-
molecular systems. In Section IV the behaviour of the sub-
tractor under loaded and unloaded conditions is investigated,
exploiting a nonlinear analysis method, namely singular per-
turbations [12], and numerical simulations. Finally, Section
V, provides some concluding remarks.

II. SUBTRACTION MODULE BASED ON CHEMICAL

REACTION NETWORK

In this section we illustrate the general properties that a
CRN must satisfy in order to compute the difference between
two molecular fluxes and provide a mathematical description
of a minimal CRN that implements this function.

A. Minimal properties for a CRN-based subtractor function

The realization of the subtractor given below is minimal
in the sense that it involves the minimum number of
molecular species required for implementing a CRN that
satisfies properties P1)-P2). A generic CRN comprises two
molecular species, A and B, whose fluxes ΦA(t) and ΦB(t)

978-1-4244-9270-1/15/$31.00 ©2015 IEEE 941



are the input signals to be subtracted, and a third species
C, whose flux ΦC(t) is the output signal. Assume that
ΦA(t) > ΦB(t): the relationship ΦC = ΦA − ΦB requires
that

P1) For each molecule of B that enters the CRN, exactly
one molecule of A is converted into a species different
from C (it may also be the null species, i.e. the molecule is
degraded);

P2) Eventually, the molecules of A that are not converted
into other species are turned into molecules of C.

Notice that, without the minimality constraints, there
would be an infinite number of CRNs that satisfy properties
P1) and P2): indeed, in that case the conversion of A

into other molecules (either C or non-C), might occur
through any sequence of reactions, involving any number
of intermediate species.

B. CRN-based subtraction module

To realize the subtraction operation between the fluxes ΦA

and ΦB , we propose to employ the CRN

∅
ΦA
−−→ A

k1
−→ C

∅
ΦB
−−→ B

A+B
k2
−→ W .

(1)

The model of CRN (1) is given by

ȧ = ΦA − k1 a− k2 a b (2a)

ḃ = ΦB − k2 a b (2b)

ẇ = k2 a b (2c)

ΦC = ċ = k1 a , (2d)

where italic lowercase letters, a, b, c and w are used to denote
the concentration of species A, B, C and W , respectively. A
subtraction function is possible thanks to a conversion into
species C of that molecules of A which don’t bind to B,
therefore species C represent the difference between A and
B while any species A bounded to B undergo a conversion
into species W which cannot longer bind to B.
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Fig. 2. Response of the isolated subtractor (CRN (1)) with the input fluxes
given by ΦA = 0.8µM s−1 and ΦB = 0.2µM s−1, and the kinetic
parameters set to k1 = 4 s−1 and k2 = 3 (µMs)−1 to have a settling
time by 10 s. The output flux (solid line) ΦC converges to the difference
between the two input fluxes (dashed lines).

Note that CRN (1) satisfies properties P1)-P2) and, as
shown in the simulation reported in Figure 2, the output flux
ΦC converges to the difference between the inputs fluxes ΦA

and ΦB .

III. RETROACTIVITY TO THE INPUT AND TO THE OUTPUT

In this section we introduce the concept of retroactivity,
which is a way to quantify how the interconnection of two
systems affects the dynamics of each of them with respect
to their behaviour when isolated.

A. Mathematical model for the connection of bio-molecular
systems

Let us consider a generic system S, shown in Figure 3,
with u ∈ Du ⊂ R

q
+, x ∈ Dx ⊂ R

n
+ and ν ∈ Dν ⊂

R
p
+ denoting concentrations of chemical species, such as

proteins, enzymes, DNA sites, etc. Let r(x, u) and s(x, ν)
be reaction rate vectors modeling retroactivity to the input
and retroactivity to the output, respectively, whereas g(u, t)
and f(x, u) are reaction rate vectors representing the input
and output fluxes of system S.

S
g f

r s νxu

Fig. 3. A system S with its input and output signals. The red signals denote
signals originating from retroactivity upon interconnection of S with other
modules.

Let A ∈ R
r×q , B ∈ R

r×n, C ∈ R
s×n and D ∈ R

s×p

be constant matrices. Let l(ν) ∈ R
p, h(ν, t) ∈ R

p be
vector fields and Gα, Gβ be positive constants modeling the
timescale of the interconnection mechanism of S. The for-
mal mathematical description of the interconnected system
depicted in Figure 3 then reads

u̇ = g(u, t) +Gα A r(x, u) (3a)

ẋ = Gα B r(x, u) +Gα f(x, u) +Gβ C s(x, ν) (3b)

ν̇ = Gβ D s(x, ν) +Gβ l(ν) + h(ν, t) . (3c)

Note that a mathematical description of the unloaded system
can be readily obtained by considering s(x, ν) = 0.

IV. ANALYSIS AND ATTENUATION OF THE

RETROACTIVITY

To study the retroactivity properties of our CRN subtractor
module, we will now compare the dynamics of the loaded
and of the unloaded system, using a singular perturbation
analysis. This approach allows us to deal with subsystems
evolving over different timescales; in particular, by sepa-
rating the fast and slow dynamics, it is possible to reduce
the complexity of the analysis, by approximating the global
dynamics with that of the slow subsystem. To show how
to describe dynamics by singular perturbation analysis, we
illustrate in details the loaded system which is more involved
and then present briefly the more simple unloaded case.
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Fig. 4. The analysis of the retroactivity is realised by a modular
interconnection of the CRN-based subtraction module. The CRN-based
subtraction module takes two fluxes A and B as inputs arising from a
generic upstream module mathematically described with reaction rates of
formation and degradation of each input, and produces C as output flux.
The transcription factor C binds to operator sites on the promoter p in order
to produce a complex protein promoter D.

A. Singular perturbation analysis of the loaded CRN-based-
subtractor

Adopting a similar approach to that in [11], we analyse
the retroactivity for the minimal CRN-based subtractor con-
nected to the following downstream transcriptional module,

C + p
kon
−−−⇀↽−−−
koff

D , (4)

which takes as input the flux of C produced by the subtractor.
Moreover, to study the retroactivity for both inputs, we
consider two source modules, characterised by two generic
rate of formation (ka(t) and kb(t)) and two degradation
coefficients (δa and δb) for the two inputs. The interconnected
CRN system is reported in Figure 4 and corresponds to the
following reaction network

∅
ka
−⇀↽−
δa

A
k1
−→ C

∅
kb
−⇀↽−
δb

B

B +A
k2
−→ W

C + p
kon
−−−⇀↽−−−
koff

D .

(5)

Taking into account the conservation law pTOT = p+d, the
dynamics of CRN (5) are described by

ȧ = ka(t)− δa a− k1 a− k2 a b (6a)

ḃ = kb(t)− δb b− k2 a b (6b)

ẇ = k2 a b (6c)

ċ = k1 a+ koff d− kon(pTOT − d) c (6d)

ḋ = −koff d+ kon(pTOT − d) c . (6e)

To write system (6) in terms of non-dimensional variables,
we define k̄A := maxtka(t)

δa
, k̄B := maxtkb(t)

δb
, uA := a

k̄A
,

uB := b
k̄A

, x1 := w
k̄A

, x2 := c
k̄A

, ν := d
k̄A

, k̃A(t) :=
ka(t)

δak̄A
,

k̃B(t) :=
kb(t)

δak̄A
and τ = δ t so that for a variable x we denote

ẋ := dx
dτ

. Moreover, by assuming the parameter koff much
larger than k1 and k2 which is in turn much larger than δa
and δb, the timescale differences can be made explicit by
defining the large parameters G1 := k1

δa
, G2 := k2 k̄A

δa
and

G3 :=
koff

δa
in which G3 ≫ G2 ≫ G1 ≫ 1. Letting the

dissociation constant kD :=
koff

kon
, system (6) can then be

described as

u̇A = k̃A(t)− uA −G1 uA −G2 uA uB (7a)

u̇B = k̃B(t)−
δb

δa
uB −G2 uA uB (7b)

ẋ1 = G2 uA uB (7c)

ẋ2 = G1 uA +G3(ν −
x2

kD
(pTOT − k̄A ν)) (7d)

ν̇ = −G3(ν −
x2

kD
(pTOT − k̄A ν)) . (7e)

By performing a linear coordinate transformation to take
system (7) into the new variables, z1 = uA + x1 + x2 + ν,
z2 = uB + x1, y1 = x1 and y2 = x2 + ν, we easily obtain
that uA = z1 − y1 − y2 and uB = z2 − y1. Now, defining
ǫ1 = 1

G2
, ǫ2 = 1

G1
and ǫ3 = 1

G3
we can write the loaded

system in the following singular perturbation form,

ż1 = k̃A(t)− z1 + y1 + y2 (8a)

ż2 = k̃B(t)−
δb

δa
(z2 − y1) (8b)

ǫ1ẏ1 = (z1 − y1 − y2) (z2 − y1) (8c)

ǫ2ẏ2 = z1 − y1 − y2 (8d)

ǫ3ν̇ = −(ν −
y2 − ν

kD
(pTOT − k̄A ν)) . (8e)

Approximating the left-hand side of Eqs. (8c)-(8a) to zero,
yields a system of algebraic equations, from which we can
compute y1, y2 and ν as functions of z =

(

z1 z2
)T

from equations (8c)-(8e), which represent the fast subsystem.
Substituting y1 = γy1

(z) and y2 = γy2
(z) into (8a)-(8b), it

is possible to approximate system (8) with (8a)-(8b), which
represent the slow subsystem, thus obtaining a reduced order
system. For the sake of brevity, we here omit a rigorous
mathematical analysis of the conditions under which such
approximation holds, which will be given in future work.

B. Singular perturbation analysis of the unloaded CRN-
based-subtractor

To study the dynamics of the unloaded system, we analyse
system (3) by considering s(x, ν) = 0. Looking at CRN (5)
without considering the downstream transcriptional module
(4) the dynamics are described as follows,

ȧ = ka(t)− δa a− k1 a− k2 a b (9a)

ḃ = kb(t)− δb b− k2 a b (9b)

ẇ = k2 a b (9c)

ċ = k1 a . (9d)

By using the same non-dimensional variables we can perform
a linear coordinate transformation to take system (9) into the
new variables z1 = uA+x1+x2, z2 = uB+x1, y1 = x1 and
y2 = x2, and obtain that uA = z1−y1−y2 and uB = z2−y1.
Defining ǫ1 = 1

G2
, ǫ2 = 1

G1
and ǫ3 = 1

G3
we can write the
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unloaded system in the singular perturbation form

ż1 = k̃A(t)− z1 + y1 + y2 (10a)

ż2 = k̃B(t)−
δb

δa
(z2 − y1) (10b)

ǫ1ẏ1 = (z1 − y1 − y2) (z2 − y1) (10c)

ǫ2ẏ2 = z1 − y1 − y2 . (10d)
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Fig. 5. Comparison of the loaded (red solid line) and unloaded
(black dashed line) system response; the inputs are a sinusoidal signal
ΦA = sin(0.1πf) + 2 (blue dotted line), and a sawtooth signal, ΦB =
sawtooth(0.2πf) + 0.5 (green dotted line). The timescale parameters are
set to G1 = 15, G2 = 50 and G3 = 200 (in the left panel), and
G1 = 150, G2 = 500 and G3 = 10000 (in the right panel): in the latter
case G3 ≫ G2 ≫ G1 ≫ 1 and the effect of retroactivity to the output is
negligible, thus yielding similar behaviour of the loaded (pTOT = 100µM )
and unloaded (pTOT = 0) systems.

C. Comparison between the loaded and unloaded CRN-
based-subtractor

Now, by comparing the singular perturbation forms (8)
and (10), it is easy to identify that the reduced-order loaded
system (8a)-(8b) is equal to the reduced-order unloaded
system (10a)-(10b). Thus, as shown in Figure (5), the re-
sponses of the loaded and unloaded systems show negligible
differences, thus the retroactivity to the output is attenuated.
Finally, we can take both reduced-order systems back to their
corresponding previous coordinates, using the expressions

ż1 = u̇A + γ̇y1
(z) + γ̇y2

(z)

ż2 = u̇B + γ̇y1
(z) .

(11)

Substituting z1 and z2 in the reduced-order loaded and
unloaded systems yields, in both cases,

ż1 = k̃A(t)− z1 + γy1
(z) + γy2

(z) = k̃A(t)− uA

ż2 = k̃B(t)−
δb

δa
(z2 − γy1

(z)) = k̃B(t)−
δb

δa
uB .

(12)

Letting g1(uA, t) := k̃A(t)−uA and g2(uB , t) := k̃B(t)−
δb
δa

uB , which are the input fluxes provided by the upstream

source module, equation (11) yields u̇A = g1(uA,t)

1+
dγy1

(z)

duA
+

dγy2
(z)

duA

and u̇B = g2(uB ,t)

1+
dγy1

(z)

duB

. By comparison the latter equations with

the general form given in (3a), we derive that the retroactivity
to the first and to the second input can be attenuated by

minimising the quantities
dγy1

(z)

duA
+

dγy2
(z)

duA
and

dγy1
(z)

duB
,

respectively.

V. CONCLUSIONS

In this paper we have presented a minimal CRN module
that can be used to realise a molecular device for the
subtraction of two molecular fluxes; this system represents
a key component for the implementation of an molecular
embedded feedback control system. The main contribution
of this work consists in an investigation of the retroactivity
properties of the proposed subtractor device. To perform this
study, we have performed a singular perturbation analysis
of the proposed system, assuming an interconnection with
a generic upstream source module and with a downstream
transcriptional module. Both the theoretical analysis and the
results obtained via numerical simulation show that, time-
scale separation of the connected both can attenuate the
retroactivity to the output effects. These results represent
a useful step towards the construction of methodologically
sound approaches to the design of synthetic biological feed-
back controllers.
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