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Abstract: Robustness, the ability of a system to function correctly in the presence of both internal and external uncertainty, has
emerged as a key organising principle in many biological systems. Biological robustness has thus become a major focus of
research in Systems Biology, particularly on the engineering—biology interface, since the concept of robustness was first
rigorously defined in the context of engineering control systems. This review focuses on one particularly important aspect of
robustness in Systems Biology, that is, the use of robustness analysis methods for the validation or invalidation of models
of biological systems. With the explosive growth in quantitative modelling brought about by Systems Biology, the problem of
validating, invalidating and discriminating between competing models of a biological system has become an increasingly
important one. In this review, the authors provide a comprehensive overview of the tools and methods that are available for

this task, and illustrate the wide range of biological systems to which this approach has been successfully applied.

1 Introduction

Robustness, in both biological and engineering systems, may
be defined as the ability of a system to function correctly in
the presence of both internal and external uncertainty. The
case for robustness being a key organising principle of
biological systems was first made in an influential series of
papers by J.C. Doyle and co-workers in the early 2000s
[1, 2]. In these papers, the authors compare the robustness
properties of biological and engineered systems, and
suggest that the need for robustness is a key driver of
complexity in both cases. They argue that radically
simplified versions of both jet aircraft and bacteria (for
example) could be conceived of that would function in
highly controlled ‘laboratory’ conditions, but would lack
the robustness properties necessary to function correctly in
highly fluctuating real-world environments.

Somewhat paradoxically, the highly complex nature of
these systems renders them ‘robust yet fragile’, that is,
robust to types of uncertainty or variation that are common
or anticipated, but potentially highly fragile to rare or
unanticipated events. Biological organisms are usually
highly robust to uncertainty in their environments and
component parts but can be highly sensitive to minor
genetic perturbations or to the presence of microscopic
pathogens or toxins that disrupt structural elements or
regulatory control networks. Modern aircraft are robust to
atmospheric turbulence, changes in cargo loads and fuels,
and defects in materials, but could be -catastrophically
affected by failures in a few computer chips or by software
coding errors (in contrast to previous generations of much
more simple ‘mechanical’ aircraft which had little or no
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reliance on computers). The similarities and differences
between biological and engineering notions of robustness
have since been further developed in a series of papers by
Kitano and co-workers [3-7], and subsequently many
researchers have sought to develop a general theory of
biological robustness, with perhaps the most successful
effort in this direction being the work of Wagner on
mutational robustness [8].

In this review, we focus on one of the most practically
useful ideas which has emerged from this sometimes rather
philosophical line of enquiry. This idea was first made
explicit in an article by Morohashi et al [9], and is
encapsulated in the title of their paper: Robustness as a
measure of plausibility in models of biochemical networks.
The idea is a logical consequence of the recognition of the
robust nature of biological systems: if a particular feature of
a system has been shown experimentally to be robust to a
certain kind of perturbation or environmental disturbance,
then any proposed model of this system should also
demonstrate the same levels of robustness to simulated
versions of the same perturbations or disturbances. For
example, the period of oscillations in many biological
systems (from circadian rhythms to cAMP oscillations in
Dictyostelium cells) has been shown experimentally to be
highly robust to variations across different cells and to
changes in environmental conditions. Thus, valid models
for these systems should not display large changes in the
periods of their oscillations across ranges of parameter
values corresponding to realistic levels of biological
variation. The great advantage of this idea is that it provides
a much more stringent test of a proposed model than the
traditional approach of simply asking: does there exist a
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biologically plausible set of model parameter values for
which the model’s outputs provide an acceptable match to
experimental data? As the complexity of the quantitative
models being developed in Systems Biology research
continues to escalate, many conceptually quite different
models may be proposed to explain the workings of a
biological system, and each of these models will often have
biologically reasonable sets of parameter values which
allow the model to accurately reproduce the experimentally
measured dynamics of the system. Since each of these
models encapsulates a different hypothesis regarding the
workings of the underlying biology, it is clear that further
progress depends on the ability to reliably discriminate
between different models, discarding some and focusing on
others for further refinement, development and testing.

In this paper, we use the term ‘model validation’ to describe
this process, although to be precise, as pointed out in [10], the
complete validation of a particular model is never possible in
practice, as it would require infinite amounts of both data and
computational power. Usually, the best one can do is to
proceed by a process of elimination, invalidating more and
more competing models until a single un-invalidated model
remains. This model then encapsulates our current level of
understanding of the underlying biology, which may stand
the test of time, or be subsequently refined in the light of
new data. The evaluation of model robustness provides a
powerful tool with which to achieve the goal of developing
validated models of biological reality, and, as we shall show
in Section 3 of this paper, this approach has now been used
as an essential part of the model development process for a
wide range of biological systems.

Before we review these successful applications, however,
we must turn our attention to the challenges involved in
reliably evaluating the robustness of complex models of
biological systems. Indeed, the development and application
of engineering robustness analysis tools to biological
models has provided many challenges for control engineers
working in the field of Systems Biology, and continues to
be one of the key areas driving theoretical developments in
control systems research. An overview of the tools and
techniques which are available for robustness analysis, and
which have been successfully applied in the context of
biological systems, is given in Section 2 of this review.
Finally, some conclusions and a discussion of the outlook
for future research in this area is provided in Section 4.

2 Overview of methods for the robustness
analysis of systems biology models

In this section, we provide a tutorial-style introduction to the
range of tools and techniques that are available to evaluate the
robustness of models of biological systems to various forms
of uncertainty and variability. Many of these methods were
first developed within the field of Control Engineering,
where linear models, or models with particular forms of
non-linearity, are typically used for the purposes of design
and analysis. Biological systems, on the other hand, often
display highly complex behaviour, including strong non-
linearities, as well as oscillatory, time-varying, stochastic
and/or hybrid discrete-continuous dynamics. Thus, the
application of these methods in the context of Systems
Biology is often far from straightforward, and care must
often be exercised in interpreting the computed results. As
shown below, however, careful analysis of Systems Biology
models using these tools can often provide significant
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insight into both the validity of a particular model and the
underlying biological mechanisms it represents.

2.1 Bifurcation diagrams

Biological systems typically operate in the neighbourhood of
some nominal condition, for example, in biochemical
networks the production and degradation rates of the
biochemical compounds are often regulated so that the
amounts of each species remain approximately constant at
some levels. When such an ‘equilibrium’ is perturbed by an
external event (e.g. by the presence of exogenous signalling
molecules, like growth factors), a variety of different
reactions may take place, which in general can lead the
system either to operate at a different equilibrium point, or
to tackle the cause of the perturbation in order to restore the
nominal operative condition.

In mathematical terms, a point x, in the state space of a
generic non-linear system without exogenous inputs [In the
following we make certain mild assumptions about the
mathematical properties of f (e.g. it is autonomous,
piecewise continuous and locally Lipschitz [11]), which are
in practice true for the vast majority of models used in
Systems Biology.]

¥ =f(x) ey

is said to be an ‘equilibrium point’ if, whenever the state of
the system starts at x,, it will remain at x, for all future
time. The equilibrium points are the roots of the equation
f(x) =0. When the system has an exogenous input u, the
generic model reads

¥ = f(x, u) ()

and the pair (x,, u,) is an equilibrium point for the system if

S x> 1) =0

One of the main differences between linear and non-linear
systems is that the latter can exhibit zero, one or multiple
isolated equilibria, which are in general different from the
origin of the state space. In the linear case, where x = Ax,
the equation 4x = 0 admits only the trivial isolated solution
x=0, if det 4 # 0, or a continuum of equilibrium points
(e.g. a straight line in the state space of a second-order
system) when A4 has one or more zero eigenvalues.

The above discussion relates to robustness due to the fact
that the equilibrium points of a system, and their stability
properties, depend not just on the structure of the equations,
but also on the values of the parameters: in non-linear
systems, even small changes in the value of a single
parameter can significantly alter the map of equilibrium
points, and thus the dynamic behaviour of the system. To
see this, consider the following non-linear system

dx X X

The equilibrium points are solutions of the equation f(x) = 0

which implies
x X
l——)——=0
rx( q) L+
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Obviously, x = 0 is an equilibrium point, but so are all the
solutions to the equation

(R

These solutions can be easily visualised by plotting both sides
of (4) as shown in Fig. 1: the intersections correspond to the
equilibrium points of system (3). Note how both the location
and the number of equilibrium points changes for different
values of the parameter r.

From the above example, it is clear that non-linear systems
can exhibit multiple equilibria, each one being (either simply
or asymptotically) stable or unstable, and that the position of
the equilibrium points, along with their stability properties
and regions of attraction, can vary with the parameter
values of the system. Therefore it comes as no surprise that
the behaviour of a non-linear system might dramatically
change when the value of some parameter varies, even by a
small amount: this phenomenon is called a ‘bifurcation’.
Assume, for example, that the value of ¢ in the above
example is fixed at 20 and let r increase from 0.15 to 0.6.
From Fig. 1, we can see that there will be two bifurcation
points, where the number of equilibrium points changes
from one (low value of r) to three and then back to one
(high value of r). A stability analysis, via linearisation at
the equilibrium points, reveals that the low- and high-
valued equilibrium points are always asymptotically stable,
whereas the middle-valued one, when it exists, is unstable.

The variations in the map of equilibrium points
corresponding to changes of » can be effectively visualised
by using a ‘bifurcation diagram’, in which the equilibrium
values of some state variable are plotted against the
bifurcation parameter. For example, the bifurcation diagram
of system (3) is shown in Fig. 2, which shows the two
bifurcation points where the number of equilibrium points
changes from one to three (occurring at » = 0.198) and then
back to one (occurring at » = 0.528). The solid lines
represent the asymptotically stable equilibrium values,
whereas the dashed line represents the unstable one. For
intermediate values of r the system is bistable, and it can
evolve to the upper or lower branch of the diagram,

0.7

20

Fig. 1 Intersections of x/(I + x°) (solid line) and r(1-x/q) (dashed
lines) for ¢ = 20 and r = 0.15, 0.4, 0.6
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Fig. 2 Bifurcation diagram of system (3)

depending on whether the initial condition is above or
below the middle branch, respectively.

The bifurcation diagram also informs us that there is a
hysteresis-like behaviour in this system: when the system is
at the lower stable equilibrium point and 7 is increased, the
state jumps to the higher stable equilibrium point when 7
becomes greater than 0.528; however, to jump back to the
lower equilibrium point, the value of » must drop below
0.198. Note that the presence of a hysteresis ensures a
stable switching between the two operative conditions for
the system; indeed, if the two thresholds were coincident,
the system trajectories could constantly jump forth and back
when the value of r is subject to stochastic variation around
the bifurcation point. This robust bistable switch is a key
mechanism in many biological regulatory systems.

Bifurcations are classified according to the type of
modifications they produce in the map of equilibrium points
and in their stability properties, some of the most common
types are saddle-node, transcritical and pitchfork bifurcations,
see [12] for more details.

Bifurcation diagrams are powerful tools for understanding
how qualitative changes in the behaviour of non-linear
Systems Biology models arise due to parametric
uncertainty. As tools for measuring robustness, however,
they suffer from two significant limitations, namely, that
analytical solutions are available only for low-order models,
and that they only provide information on the effects of
varying one or two parameters at a time. (In principle, one
could consider more parameters but the dynamic behaviour
near bifurcations with codimension higher than three is
usually so poorly understood that the computation of such
points is not worthwhile.) Nonetheless, bifurcation analysis
was the tool used in the first paper proposing the approach
to model validation surveyed here. In [9], the authors
represent a model of the biochemical oscillator underlying
the Xenopus cell cycle as a mapping from parameter space
to behaviour space, and utilise bifurcation analysis to study
the robustness of each region of steady-state behaviour to
parameter variations. The hypothesis that potential errors in
models will result in parameter sensitivities was tested by
analysis of the robustness of two different models of the
biochemical oscillator. This analysis successfully identified
known weaknesses in an older model and also correctly
highlighted why the more recent model was more plausible.
Also, in [13], the authors use a bifurcation analysis software
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package named AUTO to examine the robustness of a model
of cAMP oscillations in aggregating Dictyostelium cells to
variations in each of the kinetic constants %; in the model.
In [14], the authors use bifurcation analysis to compare the
validity of high- and low-order models describing
regulation of the cyclin-dependent kinase that triggers DNA
synthesis and mitosis in yeast. Finally, in [15], the authors
introduce a novel robustness analysis method for oscillatory
models, based on the combination of Hopf bifurcation
analysis and the standard Routh—Hurwitz stability test from
linear control theory.

2.2 Sensitivity analysis

Sensitivity analysis is a well-established technique for
evaluating the relative sensitivity of the states or outputs of
a model to changes in its parameters. In this sense,
therefore, sensitivity may be interpreted as the inverse of
robustness — parameter sensitivities yield a quantitative
measure of the deviations in characteristic system properties
resulting from perturbation of system parameters, and thus a
higher (absolute) sensitivity of a parameter implies a lower
robustness of the corresponding element of a model. The
classical approach to sensitivity analysis considers small
variations in a single parameter at a time. For the
autonomous dynamical system described by the ordinary
differential equation

x = f(x(?), p, 1) (%)

with time ¢ > f,, the ng x 1 vector of state variables x, the
np x 1 vector of model parameters p, and initial conditions
x(ty) = x9, parameter sensitivities with respect to the
system’s states along a specific trajectory S(¢) (the ng x np
matrix of state sensitivities) are defined by (Of course,
analytical expressions for the relevant derivatives will rarely
be available and thus numerical approximations will
typically have to be employed)

)
S(t) = 5—; 6)

To allow for easier comparisons to be made between different
models, these sensitivity of each parameter p; may be
integrated over discrete time points along the system’s
trajectory from 7, to 7, , and normalised to relative
sensitivity (log-gain sensitivity) to give the overall state
sensitivity for parameter p;
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The sensitivity of each parameter with respect to any
model output, or other characteristic, may be evaluated in
the same way, for example, the sensitivity of the period
and amplitude of an oscillatory system are evaluated,
respectively, as

A
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-
It is important to note that the above parameter sensitivities
are only valid locally with respect to a particular point in
the model’s parameter space, that is, in a neighbourhood of
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a specific parameter set. They thus only provide information
on the robustness of a particular parameterisation of a
model, and care must be taken in interpreting their values
globally. To derive global measures of parametric
sensitivity [16], some kind of gridding or sampling strategy
must be used, in order to evaluate the relative sensitivity of
different parameters over the full range of their allowable
values. Of course, this significantly increases the associated
computational cost, and also makes the direct comparison
of the sensitivity of different parameters more difficult
(relative sensitivities may vary across different regions of
parameter space). Nevertheless, in [17], F.J. Doyle and co-
workers were able to use the above sensitivity metrics to
investigate the specific structural characteristics that are
responsible for robust performance in the genetic oscillator
responsible for generating circadian rhythms in Drosophila.
By systematically evaluating local sensitivities throughout
the model’s parameter space, global robustness properties
linked to network structure could be derived. In particular,
analysis of two mathematical models of moderate
complexity showed that the trade-off between robustness
and fragility was largely determined by the regulatory
structure. An analysis of rank-ordered sensitivities allowed
the correct identification of protein phosphorylation as an
influential process determining the oscillator’s period.
Furthermore, sensitivity analysis confirmed the theoretical
insight that hierarchical control might be important for
achieving robustness. The complex feedback structures
encountered in vivo were shown to confer robust precision
and adjustability of the clock while avoiding catastrophic
failure.

Another significant limitation of traditional sensitivity
analysis methods is that they only consider the sensitivity of
the model to variations in a single parameter at a time — in
theory a model could display low sensitivity to such
variations while being extremely sensitive to simultaneous
variations in multiple parameters. Two recent papers have
proposed some promising strategies for overcoming the
local, one-parameter-at-a-time limitations of traditional
approaches to sensitivity analysis. In [18], the authors used
sensitivity analysis to validate a new computational model
of signal transducer and activator of transcription-3 (Stat3)
pathway Kkinetics, a signalling network involved in
embryonic stem cell self-renewal. Transient pathway
behaviour was simulated for a 40-fold range of values for
each model parameter in order to generate Stat3 activation
surfaces — by examining these surfaces for local minima
and maxima, non-monotonic effects of individual
parameters could be identified and isolated. This analysis
provided a range of parameter variations over which Stat3
activation is monotonic, thus facilitating a global sensitivity
analysis of parameter interactions. To do this, groups of
parameters that had a similar impact on pathway output
were clustered together, so that the effects of varying
multiple parameters at a time could be analysed visually
using a clustergram.

This analysis allowed the identification of groups of
parameters that contribute to pathway activation or
inhibition, as well as other interesting pathway interactions.
For example, it was found that simultaneously changing the
parameters determining the nuclear export rate of Stat3 and
the rate of docking of Stat3 on activated receptors
influenced Stat3 activation more significantly than either of
these parameters in isolation or in combination with any
other parameters. It was further demonstrated that nuclear
phosphatase activity, inhibition of SOCS3 and Stat3 nuclear
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export most significantly influenced Stat3 activation. These
results were unaffected by how much parameters were
changed, and could be averaged over different fold changes
in parameter values. The results of the sensitivity analysis
were experimentally validated by using chemical inhibitors
to specifically target different pathway activation steps and
comparing the effects on the resultant Stat3 activation
profiles with model predictions.

A different approach was adopted in [19], to produce what
the authors refer to as a ‘glocal’ robustness analysis (see Fig. 3)
of two competing models of the cyanobacterial circadian
oscillator. The authors propose a two-stage approach where
the first step involves the sampling of a large set of
parameter combinations spanning several orders of
magnitude for each parameter. From this sampling the
authors select a subset of ‘viable’ parameter combinations
which preserve the particular performance features of
interest. Further sampling is conducted via an iterative
scheme, where in each step the sampling distribution is
adjusted based on a principle component analysis of the
viable set of the previous step. After a Monte Carlo
integration, the volume occupied by the set provides a first,
crude characterisation of a model’s robustness and can aid in
model discrimination by proper normalisation. The second
stage of the proposed approach defines a set of appropriate
normalised local robustness metrics, for example, a measure
of how fast the oscillator returns to its cycling behaviour
when its trajectory is transiently perturbed with the use of
Floquet multipliers, or the sensitivity of the period to
perturbations in individual parameters or parameter vectors.
These metrics are then evaluated for each viable parameter
combination identified in the previous stage, and statistical
tests are used to assess the analysis results.

: str
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Using this approach, the authors compared two
models based on fundamentally different assumptions
about the underlying mechanism of the cyanobacterial
circadian oscillator, termed the ‘autocatalytic’ and ‘two
(phosphorylation)-sites” models, respectively. The results of
their analysis showed that the two-sites model had
significantly better global and overall local robustness
properties than the other model, hence making the
assumptions on which it is based a more plausible
explanation of the underlying biological reality.

2.3 pu-analysis

In this section, we describe a tool for measuring the
robustness of a model to ‘simultaneous’ variations in the
values of several of its parameters. Since its introduction by
J.C. Doyle [20, 21], in the early days of robust control
theory, the structured singular value, or w, has become the
tool of choice among control engineers for the robustness
analysis of complex uncertain systems [22].

It is generally possible to arrange any linear time invariant
system, which is subject to some type of norm-bounded
uncertainty in the form shown in Fig. 4, where M represents
the known part of the system and A represents the
uncertainty present in the system. Partitioning M compatibly
with the A matrix, the relationship between the input and
output signals of the closed-loop system shown in Fig. 4 is
then given by the upper linear fractional transformation (LFT)

y=F, (M, Ay = My, + My AU — My A ' M) (9)

where I is the identity matrix. Now, assuming that the

odel
ucture 4 Step 1 4 Step 2 4 Stepn
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Fig. 3 ‘Glocal’ robustness analysis method [19]
a ‘Glocal’ robustness analysis flow diagram

b Parameter search

¢ Monte Carlo integration

d Local analyses

IET Syst. Biol., 2011, Vol. 5, Iss. 4, pp. 229-244
doi: 10.1049/iet-syb.2010.0072

233
© The Institution of Engineering and Technology 2011



www.ietdl.org

Fig. 4 Upper LFT uncertainty description

nominal system M in Fig. 4 is asymptotically stable and that A
is a complex unstructured uncertainty matrix, the Small Gain
Theorem [22], gives the following result: The closed-loop
system in Fig. 4 is stable if

T(A(jw)) < Vo (10)

1
a(M,,(jw))

where & denotes the maximum singular value and w is
frequency. The above result defines a test for stability (and
thus a robustness measure) for a system subject to
‘unstructured uncertainty’ in terms of the maximum
‘singular value’ of the matrix M.

Now, in cases where the uncertainty in the system also
arises because of variations in specific parameters, the
uncertainty matrix A will have a diagonal or block diagonal
structure, that is

A(jw) =diag(A,(jo), ..., A, (o)), o(A(w) <k Yo (11)

where, for example, certain A blocks could represent
parametric uncertainty whereas others represent unmodelled
dynamics because of structural changes in the system. Now
again assume that the nominal closed-loop system is stable,
and consider the question: What is the maximum value of k&
for which the closed-loop system will remain stable? We
can still apply the Small Gain Theorem to the above
problem, but the result will be conservative, since the block
diagonal structure of the matrix A will not be taken into
account. The Small Gain Theorem will in effect assume
that all of the elements of the matrix A are allowed to be
non-zero, when we know that many of the elements are in
fact zero. Thus the SGT will consider a larger set of
uncertainty than is in fact possible, and the resulting
robustness measure will be conservative, that is, pessimistic.

In order to obtain a non-conservative solution to this
problem, J.C. Doyle [20] introduced the structured singular
value u

1
"~ min(k s.t. det(/ — M;;A) = 0)

ma(Mi) (12)

where ua(M;;) =0 if there is no A which satisfies the
determinant condition. The above result defines a test for
stability (robustness measure) of a closed-loop system
subject to ‘structured uncertainty’ in terms of the maximum
‘structured singular value’ of the matrix M. Singular value
performance requirements can also be combined with
stability robustness analysis in the u framework to measure
the ‘robust performance’ properties of the system.

An obvious limitation of the u framework is that it can only
be applied to linear systems. Since almost all biological
systems are at least to some extent non-linear, this means
that the system model must first be linearised, and hence
the robustness measures provided by u must be treated
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with caution when it comes to validating models of such
systems: essentially u provides local robustness guarantees
about an equilibrium. A second complicating factor is that
the computation of u is an NP hard problem, that is, the
computational burden of the algorithms that compute the
exact value of w is an exponential function of the size of
the problem. It is consequently impossible to compute the
exact value of u for large dimensional problems, but an
effective solution in this case is to compute upper and
lower bounds on w, and efficient routines for u-bound
computation are now widely available [23]. Note that to
fully exploit the power of the structured singular value
theory, tight upper and lower bounds on w are required.
The upper bound provides a sufficient condition for
stability/performance in the presence of a specified level
of structured uncertainty. The lower bound provides a
sufficient condition for C‘instability’, and also returns a
worst-case A, that is, a worst-case combination of uncertain
parameters for the problem. The degree of difficulty
involved in computing good bounds on w depends on (a)
the order of the A matrix, and (b) whether A is complex,
real or mixed — see [23, 24] for a full discussion.

In [13], the authors employed w-analysis to evaluate the
robustness of a biochemical network model which had been
proposed to explain the capability of aggregating
Dictyostelium cells to produce stable oscillations in the
concentrations of intra- and extra-cellular cAMP. Owing to
the large number of uncertain parameters in the model,
standard routines for computing lower bounds on wu failed
for this problem, so that only an upper bound could be
computed. Interestingly, and in contrast to the results of a
parameter-at-a-time sensitivity analysis, this upper bound
suggested a possible high degree of fragility in the model.
This lack of robustness was subsequently confirmed by
further analyses using a newly developed w lower bound
algorithm [25]. As shown in Fig. 5, simultaneous perturbations
in the models kinetic parameters of 1/723 = 0.14% are
sufficient to destabilise the oscillations, in stark contrast to the
original claims that variations in model parameters over
several orders of magnitude had little effect on its dynamics.

m-analysis was also successfully employed by Jacobsen
and co-workers in [26, 27] to investigate the structural basis
of robustness in the mammalian circadian clock. Systematic
perturbations in the model structure were introduced, and
the effects on the functionality of the model were quantified
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Fig.5 w bounds for Dictyostelium network robustness analysis [25]
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using the peak value of u. Although in principle only one
feedback loop involving the Per gene is required in the
chosen clock model to generate oscillations, analysis using
the structured singular value revealed that the presence of
additional feedback loops involving the Bmall and Cry
genes significantly increases the robustness of the
regulatory network. In [28] a similar approach was also
used to validate models of oscillatory metabolism in
activated neutrophils. Structural robustness analysis of
biochemical and metabolic networks is also considered
in [29, 30].

2.4 Optimisation-based robustness analysis

In robustness analysis, numerical optimisation algorithms
can be used to search for particular combinations of
parameters in the model’s parameter space that maximise
the deviation of the model’s dynamic behaviour from
experimental observations over a certain simulation time
period. This type of search can be formulated as an
optimisation problem of the form

max c(x, p) subjectto p<p<p (13)
K p

where x is a vector of model parameters with upper and
lower bounds p and p, respectively, and c(x, p) is an
‘objective function’ or ‘cost function’ representing the
difference between the simulated outputs of the model and
one of more sets of corresponding experimental data [31].
By systematically varying the allowed level of uncertainty
(defined by p and p) in the model’s parameters, and using
the optimisation algorithm to compute the values of the
model parameters which maximise this function, an
accurate assessment of the model’s robustness can be
derived. A particular advantage of this approach is that it
places little or no constraints on the form or complexity of
the model — as long as it can be simulated with
reasonable computational overheads, no additional
modelling or analytical work is required to apply this
approach. This is in sharp contrast to certain analytical
approaches, such as pu-analysis or Sum-of-squares
programming (see below) which require the model to be
represented in a particular form before any analysis can be
conducted.

Owing to the complex dynamics and large number of
uncertain parameters in many Systems Biology models, the
optimisation problems arising in the context of robustness
analysis will generally be non-convex, and thus local
optimisation methods, which can easily get locked into
local optima in the case of multimodal search spaces, are
often of limited use. Global optimisation methods, whether
based on evolutionary principles [32], or deterministic
heuristics [33], are usually much more effective, especially
when coupled with local gradient-based algorithms via a
hybrid switching strategy [34]. This was the approach
adopted in [35], where numerical optimisation algorithms
were applied directly to a non-linear biochemical network
model to confirm an apparent lack of robustness indicated
by a linear analysis using the structured singular value.
Interestingly, it appears that the idea of using global
optimisation to analyse the robustness and validity of
complex simulation models was not first proposed in an
engineering context, but by social scientists, who labelled
the technique ‘active non-linear tests (ANTs)’ [36].
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2.5 Sum-of-squares polynomials

Sum-of-squares (SOS) programming has recently been
introduced in the Systems Biology literature as a powerful
new framework for the analysis and validation of a wide
class of models, including those with non-linear,
continuous, discrete and hybrid dynamics, [37, 38]. A
polynomial p(y), with real coefficients, where y € R",
admits an SOS decomposition if there exist other
polynomials ¢y, ..., g, such that

PO) =>4 (14)
i=1

where the subscripts denote the index of the m polynomials. If
p(»)is SOS, it can be easily seen that p(¢) > 0 for all y, which
means that p(y) is non-negative. Polynomial non-negativity is
a very important property (as many problems in optimisation
and systems theory can be reduced to it) which is however
very difficult to test (it has been shown to be NP-hard for
polynomials of degree greater than or equal to 4). The
existence of a SOS decomposition is a powerful relaxation
for non-negativity because it can be verified in polynomial
time. The reason for this [39] is that p(y) being SOS is
equivalent to the existence of a positive semidefinite matrix
0 (i.e. Q is symmetric and with non-negative eigenvalues)
and a chosen vector of monomials Z(y) such that

p) = Z'(OZ(y) (15)

This means that that the SOS decomposition of p(y) can be
efficiently computed using Semidefinite Programming [40]
and software capable of formulating and solving these types
of problems is now widely available [38]. To see how this
framework can be applied to the problem of model
validation (or more precisely, model ‘invalidation’) consider
a model in the form of an autonomous, ordinary differential
equation

x=f(x,p) (16)

where p is a vector in the allowable set of parameters P
for the model and f satisfies appropriate smoothness
conditions in order to ensure that given an initial condition
there exists a locally unique solution. Now, for the system
in question, assume that a set of experimental data (f;, ;)
fori=1, ..., N exists, where the data points X; € X;. Thus
the sets P and &, encode the uncertainty in the model
parameters and the uncertainty in the data because of
experimental error, respectively. We assume that these sets
are ‘semi-algebraic’, that is, that they can be described by a
finite set of polynomial inequalities. For example, if

)‘c(li) e [)%(li), x(li)] afori=1,..., n, where )‘c(li) refers to the ith
element of the experimental data taken at time f;, then we
obtain the n-dimensional hypercube

X, = [% € RMGE — D)) —iy <0, i=1,...,n
(17)

In this case there is a set of experimental time-course data
points (due to significant levels of uncertainty arising from
measurement noise etc.) and a set of models (due to
uncertainty in the model’s parameter values). A robust
model would produce simulation results, for all models in
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the given set, that match some data points in the set of
experimental data. If however, we can show that no model
from the set P matches even one data point in the set X,
then the model is clearly not robust and may be said to be
invalidated. Note that in order to invalidate a model, one
data point at t = £ where £ € {2, ..., N}, together with
the initial time point #,, is sufficient (usually the point with
the largest residual between the nominal model and the data
is selected).

The above problem can be solved using SOS programming
via a method similar in concept to that of constructing a
Lyapunov function to establish equilibrium stability.
Lyapunov functions ensure the stability property of a
system by guaranteeing that the state trajectories do not
escape their sublevel sets. In [37], the related concept of
barrier certificates is introduced. These are functions of
state, parameter and time, whose existence proves that the
candidate model is invalid given a parameter set and
experimental data, by ensuring that the model behaviour
does not intersect the set of experimental data. Consider a
system of the form given in (16), and assume that
x € X € R". Given this information, if it can be shown
that for all possible system parameters p € P the
model cannot produce a trajectory x(f) such that
x(t) € X, x(t,) € X, and x(t) € X for all ¢ € [1, t/],
then the model and parameter set are invalidated by
X, X,, X This idea is formalised in the following
theorem [37]:

Theorem 1: Given the candidate model (16) and the sets
X, X,, X, P, suppose there exists a real valued function
B(x, p, t) that is differentiable with respect to x and ¢ such that

B(xﬁapa tﬁ)_B(tha tl)>09 v(xﬁaxl:p)e Xl: X Xl xP

OB(x,p, t)

— Sp+

O0B(x,p, 1)
8x Tfo, V(x,p,t)EXX'PX[Il,I,‘E]

Then the model is invalidated by X, X', X and the function
B(x, p, t) is called a barrier certificate.

A key advantage of SOS programming is that these
barrier certificates can be constructed algorithmically using
Semidefinite Programming and SOSTOOLS software.
Using this approach, Papachristodoulou and co-workers
showed in [10] how a barrier certificate could be
constructed for a simple generic biochemical network
model, hence invalidating the model over a certain range of
its parameters for a given set of time-course data, whereas
in [41] they showed how the same approach could be used
to test a model of G-protein signalling in yeast. In [42] they
demonstrated the use of SOS tools for the design of input
experiments which maximise the difference between the
outputs of two alternative models of bacterial chemotaxis.
This approach can be used to design experiments to
produce data that are most likely to invalidate incorrect
model structures. Other recent papers that have exploited
semidefinite programming include [43], which develops
tools for quantifying the robust stability of uncertain genetic
networks with sum regulatory functions, and [44], which
develops a test for model validity based on approximating
the set of parameters for which model trajectories are
consistent with the available experimental data.

The main advantages of the SOS approach is that it can be
applied to non-linear models and that it is simulation-free, that
is, the results are analytical and thus provide guaranteed
results. This is in contrast to simulation-based approaches
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which, for example, can never ‘prove’ that a model with a
given set of uncertain parameters will not enter a defined
region of state space (although of course in practice one can
obtain answers to such questions with arbitrarily high
statistical confidence if one is prepared to run enough
simulations — see below). The main limitation of SoS
techniques, aside from certain restrictions they place on the
form of the model equations, is due to the computational
limitations of the semidefinite programming software,
which currently prohibits their application to high-order
models.

2.6 Monte Carlo simulation

Monte Carlo simulation has for many years been the method
of choice in the engineering industry for examining the effects
of uncertainty on complex simulation models. The method is
extremely simple, and relies on repeated simulation of the
system over a random sampling of points in the model’s
parameter space. The sampling of the system’s parameter
space is usually carried out according to a particular
probability distribution, for example, if there are reasons to
believe that it is more likely for the system’s actual
parameter values to be near the nominal model values than
to be near their uncertainty bounds, then a normal
distribution may be used, whereas if no such information is
available a uniform distribution may be chosen. For a given
number of samples of a system’s parameter space, statistical
results can be derived which may be used to evaluate the
effects of uncertainty on the system’s behaviour. For the
purposes of robustness analysis, these results provide
probabilistic confidence levels that the extremal behaviour
found among the Monte Carlo simulations is within some
distance of the true ‘worst-case’ behaviour of the system.
The numbers of Monte Carlo simulations required to
achieve various levels of estimation uncertainty with
different confidence levels were -calculated using the
Chebyshev inequality and central limit theorem in [45] and
are reproduced here in Table 1. Alternatively, if we use the
well-known Chernoff bound [46, 47] to estimate the
number of simulations required, the numbers are as shown
in Table 2. Note that in both cases it is clear that the
number of samples required to produce a given set of
statistical results is ‘independent’ of the number of

Table 1 Numbers of simulations for various confidence and
accuracy levels (derived using the Chebyshev inequality and
central limit theorem [45])

Percent of estimation 20% 15% 10% 5% 1%
uncertainty

Uncertainty probability range

0.750 — 0.954 25 45 100 400 10 000
0.890 — 0.997 57 100 225 900 22500
0.940 — 0.999 100 178 400 1600 40000

Table 2 Numbers of Monte Carlo simulations required for
various confidence and accuracy levels (derived using the
Chernoff bound [46])

%, Confidence Accuracy level ¢ No. of simulations

99 0.05 1060
99.9 0.01 27 081
99.9 0.005 108 070
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uncertain parameters in the model, and this, together with the
absence of any requirements on the form of the model,
represents the main advantage of Monte Carlo simulation
for robustness analysis. The key disadvantage of the
approach, however, is also readily apparent from the tables,
namely, the exponential growth in the number of
simulations with respect to the statistical confidence and
accuracy levels required — typically at least 1000
simulations would be required in engineering applications
before the statistical performance guarantees would be
considered reliable.

Although the statistical nature of the results generated using
Monte Carlo simulation can sometimes hinder the
comparison of the robustness properties of different models,
one very useful capability of this approach is that it allows
the characterisation of the size and shape of robust or non-
robust regions of parameter space. This is often an
important issue in robustness analysis, since it is clear that a
model which fails a robustness test because of a single
(perhaps biologically unrealistic) parameter combination
should not be considered equivalent to a model which
contains a large region of points which fail the same test.
For example, in [35], Monte Carlo simulation was used to
establish that the loss of oscillatory behaviour of a
biochemical network model was not due to a single point
but to a significant region in its parameter space. In [48],
Bullinger and co-workers evaluate the robustness of models
of the direct signal transduction pathway of receptor-
induced apoptosis via Monte Carlo simulation. By
analysing the topology of robust regions of parameter
space, the authors were able to evaluate the robustness of
the bistable threshold between cell reproduction and death,
and hence discriminate between competing models of the
network.

3 Biological case studies

In this section, we describe a number of different biological
systems for which the use of robustness analysis has been
an integral part of the model development and validation
process.

3.1 P53-Mdm2 system

The negative feedback loop between the tumor suppressor
p53 and the oncogene MDM?2 is by now one of the best-
studied protein circuits in human cells [49]. Cells that
experience stresses such as DNA damage, hypoxia and
abnormal oncogene signals activate an array of internal self-
defense mechanisms. One of the most important of these is
the activation of the tumor suppressor protein p53, which
transcribes genes that induce cell cycle arrest, DNA repair
and apoptosis. p53 transcriptionally activates the Mdm?2
protein which, in turn, negatively regulates p53 by both
inhibiting its activity as a transcription factor and by
enhancing its degradation rate, see Fig. 6. Many additional
proteins interact with p53 and Mdm2, so that the negative
feedback loop is embedded inside a network of additional
interactions, many of which are not fully characterised. The
negative feedback loop formed by p53 and Mdm2 also
includes significant time delays arising from transcriptional
and translational processes, and as a result can produce
complex oscillatory dynamics. Oscillations of p53 and
Mdm?2 protein levels in response to ionising radiation (IR)-
induced DNA damage appear to be damped in assays that
measure averages over population of cells. Recent in vivo
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fluorescence measurements in individual cells, however,
have shown undamped oscillations of p53 and Mdm2
lasting for at least 3 days. Although the oscillations are
initially synchronised to the gamma irradiation signal, small
variations in the timing of these oscillations inevitably arise
because of stochastic variations across individual cells,
causing the peaks to eventually go out of phase and thus
the p53 and Mdm2 dynamics to appear as damped
oscillations in assays over cell populations [50].

Intriguingly, single-cell measurements in experiments with
varying levels of IR have also revealed that increased DNA
damage produces (on average) a greater number of
oscillations, but has no effect on their average amplitude or
period. The precise biological purpose of this ‘digital’ type
of response still remains to be fully elucidated, but one
theory is that the oscillations of p53 may act as a timer for
downstream events — genes inducing growth arrest (e.g.
p21) are rapidly expressed during the first oscillation of
p53, whereas proapoptotic p53 target genes such as NOX4,
PUMA or BAX are gradually integrated over multiple cycles
of p53 pulses, ratcheting up at each pulse until they reach a
certain threshold value that activates apoptosis [51].

Several recent studies have attempted to develop
computational models of the complex dynamics of this
system. In [51], Wagner and co-workers developed a model
in which ATM, a protein that senses DNA damage,
activates p53 by phosphorylation. Activated p53 is
modelled as having a decreased degradation rate and an
enhanced transactivation of Mdm2. The model includes two
explicit time delays, the first representing the processes
(primarily, elongation and splicing) underlying the
transcriptional production of mature, nuclear Mdm2 mRNA,
and the second representing Mdm?2 transport to the cytosol,
translation to protein and transport of Mdm2 protein into
the nucleus. As part of the model development process, the
authors examined a large number of variations in their
model to evaluate its ability to robustly generate oscillations
in the presence of significant levels of model uncertainty.
For example, they explored other kinetics for ATM
activation of p53 and Mdm?2 ubiquitination of p53 and
considered the effects of adding both Mdm2-dependent and
Mdm2-independent ubiquitination of active p53. In all
cases, the model was shown to be robust to such changes,
and the conclusions arising from its analysis did not
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change. An investigation of the effects of varying different
model parameters was carried out using bifurcation
analysis, and this analysis produced new predictions
regarding the source of robustness in the oscillatory
dynamics. For example, with activated ATM-stimulated
Mdm2 degradation, sustained oscillations occurred in the
model if the total time delay is more than a 16-min
threshold. When the activated ATM-dependent degradation
of Mdm2 was removed, however, while keeping the rest of
the model parameters at their nominal values, then there are
no sustained oscillations regardless of how high the time
delay and the DNA damage is. Thus, the mechanism of
activated ATM-dependent degradation of Mdm2 appears to
be a key factor in ensuring oscillatory robustness in this
system.

In another recent study of the p53 system, Alon and
co-workers considered six different mathematical models of
the p5S3—Mdm2 system [50]. All of the models include the
negative feedback loop in which p53, denoted by x,
transcriptionally activates Mdm?2, denoted by y, and active
Mdm?2 increases the degradation rate of p53. Three of the
models were delay oscillators: Model I includes an Mdm?2
precursor representing, for example, Mdm2 mRNA, and the
action of y on x is described by first-order kinetics in both x
and y. In model IV, the action of y on x is non-linear, and
described by a saturating Michaelis—Menten function. In
model III, the Mdm2 precursor is replaced by a stiff delay
term, which makes the production rate of Mdm2 depend
directly on the concentration of p53 at an earlier time. Note
that the model of Wagner and Ma described above
combines features of models III and IV. In addition to the
three delay oscillators, the authors also considered two
relaxation oscillators (I and V) in which the negative
feedback loop is supplemented by a positive feedback loop
on p53. This positive feedback loop might represent in a
simplified manner the action of additional p53 system
components, which have a total upregulating effect on p53.
These models include both linear positive regulation (model
V) and non-linear regulation based on a saturating function
(model II). Models (I-V), although differing in detail, all
rely on a single negative feedback loop. The last model
(VI) considered in the study proposes a novel checkpoint
mechanism, which uses two negative feedback loops, one
direct feedback and one longer loop that impinges on an
upstream regulator of p53. In this model, a protein
downstream of p53 inhibits a signaling protein that is
upstream of p53.

In order to discriminate between these six different models
of the p53 system, the authors numerically solved all six
models for a wide range of parameter values and evaluated
the ability of the different model structures to robustly
generate stable undamped oscillations. Models I-III were
shown to be incapable of robustly producing stable
undamped oscillations, whereas, in contrast, models IV—-VI
could generate sustained or weakly damped oscillations
over a broad range of parameter values. Interestingly, most
of the parameters shared by these three models showed very
similar best-fit values, indicating that these models may
provide estimates of the effective biochemical parameters
such as production rates and degradation times of p53 and
Mdm2. When low-frequency multiplicative noise was added
to the protein production terms in the model to take account
of stochasticity in protein production rates, all models
showed qualitatively similar dynamics to those found in
experiments, including occasional loss of a peak. However,
only model VI was able to reproduce the authors’
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experimental observations that p53 and Mdm2 peak
amplitudes had only a weak correlation (all other models
had a strong coupling in the variations of the peaks of these
two proteins).

Finally, a recent study of the robustness of the p53 protein-
interaction network [52] shows that the idea of robustness
analysis can also be usefully applied at the topological
network level. By subjecting the model to both random
and directed perturbations representing stochastic gene
knockouts from mutation during tumourigenesis, the p53
cell cycle and apoptosis control network could be shown to
be inherently robust to random knockouts of its genes.
Importantly, this robustness against mutational perturbation
was seen to be provided by the structure of the network
itself. This robustness against mutations, however, also
implies a certain fragility, as the reliance on highly
connected nodes makes it vulnerable to the loss of its hubs.
Evolution has produced organisms that exploit this very
weakness in order to disrupt the cell cycle and apoptosis
system for their own ends: tumour-inducing viruses (TIVs)
target specific proteins to disrupt the p53 network, and this
study identified these same proteins as the network hubs.
Although TIVs had previously been likened to ‘biological
hackers’, this study showed why the TIV attack is so
effective: TIVs target a specific vulnerability of the network
that can be explained by analysing the robustness of the
network architecture.

3.2 Bacterial chemotaxis

A key requirement of many biological sensing devices is the
ability to adapt to a persistent input stimulus, thereby
increasing the range of sensitivity of the sensor. This
capability is particularly apparent in the signaling apparatus
mediating bacterial chemotaxis, which exhibits perfect
adaptation to chemoattractants: the output is reset exactly to
the prestimulus value so that the steady-state behaviour of
the system is independent of the concentration of a
homogeneous distribution of the attractant [53]. Bacteria
traverse gradients of chemoeffectors by engaging in a
biased random walk consisting of alternating periods of
smooth runs and random tumbles. Detecting higher levels
of a chemoattractant decreases the probability of a tumble,
thus propelling the bacteria in the favourable direction. This
control over the length of runs is mediated by a signal
transduction pathway consisting of transmembrane receptors
(methyl-accepting proteins) and the products of six Che
genes: cheA, cheB, cheR, cheW, cheY and cheZ.

In [54], Alon and co-workers provided strong experimental
evidence that the precision of adaptation in bacterial
chemotaxis in Escherechia coli is robust to dramatic
changes in the levels of the chemotactic proteins making up
the signalling network. Based on this demonstrated level of
robustness in the real system, J.C. Doyle and co-workers
considered the plausibility of two different mathematical
models of the underlying signalling network [53]. Using a
simple type of bifurcation analysis, the authors were able to
demonstrate that only one of the two models was consistent
with the observed robustness of the system, and that this
robustness derived from a particular type of feedback
control mechanism which is widely used in engineered
industrial control systems, that is, integral feedback control.

Finally, in [42], Papachristodoulou and co-workers applied
a novel approach for iteratively invalidating models to
the chemotaxis pathway of the bacterium Rhodobacter
sphaeroides. The approach allows the systematic design of
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in silico experiments to determine the inputs and model
parameter perturbations that will differentiate best between
model outputs and experimental observations. The designed
experiments were then performed on live cells and the
resulting data used to invalidate all but one of a set of
competing candidate models.

3.3 Circadian clocks

In addition to the studies by the groups of F.J. Doyle and
Jacobsen cited previously, several other authors have
successfully applied robustness analysis to gain an
improved understanding of the design principles underlying
circadian clocks.

In [55], Millar and co-workers used an iterative cycle of
experiment and mathematical analysis to extend a model
of the clock network in the higher plant Arabidopsis
thaliana. The model comprises interlocking feedback loops
comparable to those identified experimentally in other
circadian systems. Validation of the model proceeded by
finding optimal parameter sets to fit the experimental data
and then checking the robustness of the model to parameter
variations. For example, changes in the period and
amplitude of TOC1 RNA oscillation under light—light
cycles were examined after a 5% increase or decrease of
each model parameter value in turn. A key finding
validating the proposed multiple feedback loop model was
that its period and amplitude were much less sensitive to
parameter changes than a previously developed single-loop
LHY/CCA1-TOC1 model. Similar results validating an
interlocked feedback loop model of the network generating
circadian rhythms in Drosophila were derived in [56].

An evolutionary perspective on the generation of robust
network topologies is provided by Wagner in [57], where
the author investigated in silico several hundred different
topologies for a simple biochemical model of circadian
oscillations. This study found that the distribution of
robustness among different network topologies was highly
skewed, with most showing low robustness, and a very few
topologies (involving the regulatory interlocking of several
oscillating gene products) being highly robust. To address
the question of how robust network topologies could have
evolved, the author defines a topology graph, each of whose
nodes corresponds to one circuit topology that shows
circadian oscillations. Two nodes in this graph are
connected if they differ by only one regulatory interaction
within the circuit. For the circadian oscillator under
consideration, it could be shown that most topologies are
connected in this graph, thus facilitating evolutionary
transitions from low to high robustness. Interestingly, other
studies of the evolution of robustness in biological
macromolecules have generated similar results, suggesting
that the same principles may govern the evolution of
robustness on different levels of biological organisation.

Finally, a recent paper by Akman and co-workers
investigated the notion of ‘flexibility’ as an important
counterpoint to robustness in circadian clocks [58].
Flexibility measures how readily the rhythmic profiles of all
the molecular clock components can be altered by
modifying the biochemical parameters or environmental
inputs of the clock circuit. Robustness, on the other hand,
describes how well a biological function, such as the phase
of a particular clock component, is maintained under
varying conditions. As noted in [58], the relationship
between these two high-level properties can be a rather
complex one, depending on the particular properties of the
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system of interest. This is because, although flexibility
might be assumed to imply decreased robustness by
increasing sensitivity to perturbations, in certain cases it can
also yield greater robustness by enhancing the ability of the
network to tune key environmental responses. This
somewhat paradoxical result was nicely illustrated in the
authors’ analysis of a model of the fungal circadian clock,
which is based on the core FRQ-WC oscillator that
incorporates both negative frq and positive wc-1 loops, as
well as part of the light-signalling pathway. By introducing
a simple measure of the flexibility of the network, based on
quantifying how outputs of the entrained clock vary under
parameter perturbations achievable by evolutionary
processes, the authors demonstrate that the inclusion of the
positive we-1 feedback loop yields a more flexible clock.
This increased flexibility is shown to be primarily
characterised by a greater flexibility in entrained phase,
leading to ‘enhanced’ robustness against photoperiod
fluctuations.

3.4 Mitogen-activated protein kinase pathway

The mitogen-activated protein kinase (MAPK) cascade is a
highly conserved signal transduction pathway found in
organisms of complexity spanning from yeast to humans.
This signal transduction pathway has drawn much interest
from systems biologists in recent years, and several
computationally intensive models have been developed
which have been shown to display levels of parametric
robustness corresponding to experimentally measured data
[59, 60]. In many mammalian tissue types, this pathway
can correctly transduce signals from different extracellular
messengers, leading to specific and often mutually
exclusive cellular responses. The transduced signal is tuned
by a set of positive and negative feedback control
mechanisms and fed into a downstream gene expression
network. A key question which arises in the study of this
system is the nature of the relationship between these
regulatory mechanisms and the specificity (the total amount
of proper pathway output divided by the spurious pathway
output, for a given input) of the pathway. In [61],
Thalhauser and Komarova addressed this question by
formulating a new and interesting definition of robustness,
that is, ‘robust specificity’: the ability of a signal
transduction network to cope with variations in input signal
profiles so that it can properly interpret wide ranges of
input signals into the proper temporal output. By analysing
a number of different models, the authors showed that the
complicated nature of the feedback controls involved in the
mammalian MAPK pathway confers robust specificity, thus
allowing the cell to identify and transduce the proper signal
without having to invest in two completely separate signal
cascades.

3.5 cAMP oscillations in Dictyostelium cells

A series of recent papers have used robustness analysis to
interrogate and extend a model, originally proposed in [62],
of the biochemical network underlying stable oscillations in
cAMP in aggregating Dictyostelium cells. In this network
model, shown in Fig. 7, cAMP is produced inside the cell
when adenylyl cyclase is activated after the binding of
extracellular cAMP to the surface receptor CAR1. Ligand-
bound CARI activates the mitogen-activated protein
kinase (ERK2), which in turn inhibits the cAMP
phosphodiesterase RegA by phosphorylating it. When
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Fig. 7 Model of [62] for the network underlying cAMP oscillations in Dictyostelium

Normal arrows and the broken arrows represent activation and self-degradation, respectively. The bar arrows represent inhibition

cAMP accumulates internally, it activates the protein kinase
PKA by binding to the regulatory subunit of PKA. ERK2 is
inactivated by PKA and hence can no longer inhibit RegA
by phosphorylating it. A protein phosphatase activates
RegA such that RegA can hydrolyse internal cAMP. Either
directly or indirectly, CAR1 is phosphorylated when PKA
is activated, leading to loss-of-ligand binding. When the
internal cAMP is hydrolysed by RegA, PKA activity is
inhibited by its regulatory subunit, and protein
phosphatase(s) returns CAR1 to its high-affinity state.
Secreted cAMP diffuses between cells before being
degraded by the secreted phosphodiesterase. The dynamics
of the network shown in Fig. 7 can be expressed as a set of
non-linear differential equations with kinetic constants
k1—14. The activity of each of the seven components in the
network is determined by the balance between activating
and inactivating enzymes which is then reflected in the
equations in the form of an activating and deactivating
term. The model thus consists of a set of non-linear
differential equations in the following form

d IZSA = k; CARI — k, ACAPKA

dPRA _ ky cAMPI — k, PKA

d E£K2 = ks CAR1 — ks PKA ERK2

d ItftgA = k, — ks ERK2 RegA (18)
% = kg ACA — k;; RegA cAMPi
% = k;; ACA — k;, cAMPe

d C(;?Rl = k3 cAMPe — k, CAR1

where cAMPi and cAMPe are internal and external cAMP,
respectively. The dynamics of this model were shown in
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[62] to closely match experimental data for the period,
relative amplitudes and phase relationships of the
oscillations in the concentrations of the molecular species
involved in the network. Based on ad-hoc simulations, the
model was also claimed to be robust (in terms of the period
and amplitude of its oscillations) to very large changes in
the values of its kinetic parameters, and this robustness was
cited as a key advantage of the model over previously
published models in the literature. However, a formal
analysis of the robustness of the model to simultaneous
variations in the values of its kinetic constants, using
the structured singular value w and global non-linear
optimisation, revealed extremely poor  robustness
characteristics [35] as shown in Fig. 5. This rather
surprising result merited further investigation in a number
of follow-up studies, since the experimental justification for
the proposed network structure appeared sound. The first of
these studies [63] used Monte Carlo simulation to evaluate
the effects of intrinsic stochastic noise, as well as the effects
of synchronisation between individual Dictyostelium cells,
on the robustness of the resulting cAMP oscillations.
Interestingly, the effect of intrinsic noise was to ‘enhance’
the robustness of cAMP oscillations to variations between
cells, whereas synchronisation of oscillations between cells
via a shared pool of external cAMP also significantly
improved the robustness of the system. Two further studies
suggested a significant role for other subnetworks involving
calcium and IP3 in generating robust oscillations [64, 65].
Using a combination of structural robustness analysis [64]
and biophysical modelling [65], an extended model
including these subnetworks (Fig. 8) was constructed which
exhibited significantly higher robustness than the original
model, as shown in Fig. 9. The results of these studies
clearly illustrate the power of robustness analysis techniques
to analyse, develop and refine computational models of
biochemical networks.

3.6 Physiological simulation models

As shown above, the analysis of model robustness has now
been used as an integral part of the model development
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Fig. 8 Extended model of the Dictyostelium cAMP oscillatory network incorporating coupled subnetworks involving Ca®* and IP3 [65]
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Fig.9 Comparison of the robustness of the original and extended model to variations in four kinetic parameters common to both models
Analysis conducted using Monte Carlo simulations with three different levels of parametric uncertainty [64]

process for a wide range of biological systems. To date, this
approach has been almost completely confined to studies of
systems at the molecular level, but in principle there is no
reason why it could not also be applied to the development
of Systems Biology models at the organ, organism or even
ecological scales. A first step in this direction was recently
made in a paper by Hardman and co-workers [66], who
used an optimisation-based analysis framework, Fig. 10, to
investigate the robustness of a pulmonary physiology
simulator representing a dynamic in-vivo cardio-pulmonary
state iterating through a mass-conserving set of equations
based on established physiological principles. Physiological
simulation models that are intended for use in clinical
environments face harsh expectations from medical
practitioners; they must cope with significant levels of
uncertainty arising from non-measurable parameters,
population heterogeneity and disease heterogeneity, and
their validation must provide watertight proof of their
applicability and reliability in the clinical arena. In exactly
the same way that various kinetic parameters in molecular-
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level models will be inherently uncertain, many parameters
in physiological simulators will also contain significant
levels of uncertainty — in this case variations in parameters
representing the haemoglobin level (Hb), cardiac output
(CO), oxygen consumption (VO,), respiratory quotient
(RQ) and the core body temperature (7) are considered. By

Uncertain
parameters

Finite time

Max f(x) history
-

Optimisation
Algorithm

Fig. 10 Optimisation-based model validation framework for a
pulmonary physiology simulator [66]

241
© The Institution of Engineering and Technology 2011



www.ietdl.org
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Fig. 11 Nominal and worst-case model predictions for normalised PO,, PCO;, and pH

to — simulation starting time, t,5 — simulation end time, box — allowable values [66]

combining explicit modelling of uncertainty/variability with
advanced global optimisation methods, the authors
demonstrate that the model predictions for the partial
pressures of oxygen, carbon dioxide and blood pH never
deviate from physiologically plausible values for all realistic
levels of parametric uncertainty — see Fig. 11.

4 Conclusions and outlook for future
research

The growth in interest in the notion of robustness in Systems
Biology research over the last decade has been remarkable,
and must represent one of the most striking examples of the
wholesale transfer of an idea from the field of engineering
to the life sciences. Along with this interest in biological
robustness per se, has come the recognition that many of
the tools and methods that have been developed within
engineering to analyse the robustness of complex systems
can be usefully employed by Systems Biologists in their
efforts to develop and validate computational models. In a
pleasing example of interdisciplinary feedback, this interest
has recently spurred the development of several new
analysis techniques which are specifically oriented towards
the analysis of biological systems.

In [67], for example, Kwon and Cho used a computational
approach to investigate generic topological properties leading
to robustness and fragility in large-scale biomolecular
networks. This study found that networks with a larger
number of positive feedback loops and a smaller number of
negative feedback loops are likely to be more robust against
perturbations. Moreover, the nodes of a robust network
subject to perturbations are mostly involved with a smaller
number of feedback loops compared with the other nodes
not usually subject to perturbations. This topological
characteristic could eventually make the robust network
fragile against unexpected mutations at the nodes which had
not previously been exposed to perturbations. In [68, 69],
meanwhile, Chaves and Sontag propose novel analytical
approaches for estimating the size and shape of robust
regions in parameter space, which could provide useful
complements or alternatives to traditional Monte Carlo
analysis. Another fundamental topic in Systems Biology is
the effect of intrinsic stochastic noise on the stability of
biological network models. Promising initial adaptations of
traditional control engineering analysis techniques to
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address this issue were recently reported in [70, 71], and
there is clearly tremendous scope for extending these results
to deal with related robustness analysis problems.

The outlook for future research in this area is clearly very
positive, as the range of biological systems to which the
approach to model validation outlined in this paper is
applied will no doubt continue to grow. This process will
necessitate the development of new robustness analysis
tools, which can handle models that do not fall into the
traditional category of differential equation-based systems,
for example, Boolean network models, Bayesian networks,
hybrid dynamical systems etc. As usual, progress is likely
to be most rapid on the interface between traditionally
separate domains of expertise, for example, statistics and
dynamical systems [72] or evolutionary theory and control
theory [73, 74].
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