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Abstract— One of the most important design parameters in
synthetic biological circuits is the gain of the system. In many
naturally occurring biological control systems, however, the
precise role of the gain in ensuring accurate control is unclear.
In this study, we employ control theory to explore the role of
gain in osmoregulation. It has been well-documented that the
upstream signalling pathways involved in this system implement
high levels of ultrasensitivity, however, the role of such high
gain in producing the observed perfect adaptation is not clear.
Indeed, it has been argued that a simple integral feedback
controller can explain osmoadaptation without the need for
high gain. Here, we extend a recently developed proportional
controller model for this system with the implementation of
ultrasenstivity. We evaluate the performance of the resulting
two controllers under different biological assumptions and
allowing different levels of gain. We find that a proportional
controller implementing ultrasensitivity allows more precise
and faster adaptation of cell volume following an osmo-shock.
Such an input-output relationship can be tuned as a filter, where
the proportional controller couldn’t, and thereby allowing re-
sponses to signals above a certain threshold. Our results provide
insights on the potential role of gain in biological systems, and
should be of interest to synthetic biologists attempting to design
biomolecular control systems.

I. INTRODUCTION

In recent years, the osmoregulatory response in yeast has
emerged as an important model system for studying adaptive,
homeostatic responses to environmental disturbances. The
underlying molecular control system is well characterized in
Saccharomyces cerevisiae [1], where it comprises three sep-
arate mechanisms that act to adjust the glycerol production
in order to keep cells turgor pressure and volume constant
in the face of environmental changes: 1) the regulation of
the membrane protein Fps1 determining the glycerol export
rate; 2) the transcription of several genes, whose proteins
are involved in glycerol production, by the activation of the
high osmolarity glycerol (HOG) mitogen-activated protein
kinase (MAPK) signaling pathway and 3) the HOG kinase
dependent regulation of the glycerol via non-transcriptional
mechanisms [2].

Despite its biochemical complexity, the osmoregulation
system in yeast can be abstracted as a control system
comprising of distinct branches as described above. This
approach is taken in two recent studies, which aimed to
use control models to capture the experimentally observed
responses of yeast to osmotic shock and to further predict
its structural and dynamic features [2], [3]. These studies
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first combined proportional controllers to model the above-
described biochemical branches. They then argued for the
necessity of at least one branch of such a control model
to be an integral controller to achieve adaptive responses
in the system, as seen experimentally. The role of integral
feedback for perfectly adaptive systems is well-understood
[2], [4] and it is highly likely that the osmoregulation
system in yeast has indeed a biochemical implementation
of integral feedback as seen in other systems [4]–[6]. It is
still unknown, however, how evolution of biological control
systems such as osmoregulation can proceed to result in
integral feedback control. In particular, it is unexplored if
alternative control systems other than integral feedback can
improve the performance of the system.

Towards answering this question, here we explore the
role of ultrasensitivity in osmoregulation. Ultrasensitivity de-
scribes a particular form of sensitivity in biological systems,
where the system does not respond to incoming signals
outside of a certain regime, but responds in a highly sensitive
manner within this regime. Such an input-output relationship
(i.e. ultrasensitivity) can be described by a specific nonlinear
function, is shown to be a ubiquitous feature in several
biological systems, and can be biochemically implemented
through a variety of mechanisms such as phosphorylation
cycles and cooperative binding [7], [8]. Within the yeast
osmoregulation system, the HOG MAPK branch is well-
documented to be capable of high ultrasensitivity [9], [10]
and bistability [11]. Using the recently proportional control
model developed by Gennemark et al. [3], we explore here
the consequences of such potential ultrasensitivity on the
systems performance in achieving homeostasis to osmotic
perturbation. We show that incorporating ultrasensitivity in
a proportional controller significantly increases system per-
formance and allows additional dynamical features.

II. MODEL

The mathematical description is based on the work pre-
sented in [3] and is brought forward in the following para-
graphs. Apart from allowing the controller to be non-linear
under certain conditions, which is explained in more detail
below, the rationale behind the mathematical formalism and
the underlying biological assumptions are, if not explicitly
stated, based on the study of Gennemark et al. [3]. A diagram
of the model is given in Fig. 1.

a) The biophysical module: At any given time t, the
internal osmotic pressure Pi(t), the external osmotic pressure
Pe(t) and the turgor pressure Pt(t) are determining the flow
of water across the cell membrane, which is proportional to
(Pi(t)�Pe(t)�Pt(t)). Assuming that the cell volume is only
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Fig. 1. Mathematical model of the osmoregulation process. This figure has
been adapted from [3].

affected by the inflow and outflow of water, we then can
express the change in volume as

dV
dt

= kp1(Pi(t)�Pe(t)�Pt(t)),

with kp1 denoting a hydraulic water permeability constant.
At equilibrium (equil.), this reduces to

Pi = Pe +Pt (equil.).

The only osmolyte considered explicitly in the model
is glycerol (Gly), and the intra-cellular osmotic pressure,
according to van’t Hoff’s law is expressed as

Pi(t) =
s+Gly(t)
V (t)�Vb

, (1)

with s being the concentration of the sum of osmolytes
other than glycerol present in the cell, and Vb being the non-
osmotic volume of the cell, subsuming non-polar cellular
components, such as membranes. The turgor pressure is
linearly dependent on the volume according to [12], in the
following manner:

Pt(t) = e
✓

V (t)
V (0)

�1
◆
+Pt(0), (2)

where V (0) is the initial volume, Pt(0) is the initial
turgor pressure, and e is the volumetric elastic modulus.
By expressing the volume at which Pt = 0 with the notation
V Pt=0, (2) can be rewritten as

Pt(t) =

(
Pt(0)

V (t)�V Pt=0

V (0)�V Pt=0 , V (t)>V Pt=0

0, otherwise.

b) The controller modules: There are two branches of
control in the model: one is considering the closure of Fps1
glycerol transporter channels as a reaction to osmotic shock,
and the second is the activation of the HOG pathway, leading
to glycerol production after a time delay. The input signal e
arriving at the controllers is expressed as

e(t) = Pt(0)�Pt(t), (3)

which is the difference in turgor pressure. The output of

the Fps1 branch, which corresponds to the response of the
transporter channels, is given by

uF ps1(t) =

(
kp2

Pt (0)�e(t)
Pt (0)

, e(t)> 0
kp2, otherwise.

The output of the HOG branch, which corresponds to the
HOG pathway dependent glycerol production, is expressed
as

uHOG(t) =

(
kHOG · f (e), e(t)> 0
0, otherwise,

(4)

where the control function is given by

f (e) =
e(t)n

be(t)n +Kn , (5)

with b = 1 and K and n being the nonlinear Hill function
variables. We modify the control law for the HOG pathway,
compared to the model of Gennemark et al. [3]. This part of
the model formalism is the main difference to the Gennemark
et al. model, allowing for a non-linear response. This is
inspired by the indication that MAPK systems, of which the
HOG pathway is an example, show Hill type responses [9].
The performance of a nonlinear controller is contrasted to
the proportional controller given in Gennemark et al., which
is one where b = 0 and K = n = 1.

The time delay accounting for transcription and translation
in the HOG pathway is approximated by

dũHOG

dt
=

1
Td

(uHOG(t)� ũHOG(t)),

with ũHOG(t) being the time delayed variable and Td being
the amount of time delay considered. The controllers are
constrained by restricting the HOG controller to positive
values and by the assumption that the Fps1 controller is
dependent on glycerol concentration differences between the
extracellular and intracellular volumes.

c) The glycerol module: Diffusion of glycerol over the
Fps1 channel is modelled as

uDi f f (t) = uF ps1(t)
✓

Gly(t)
V (t)�Vb

� Glye(t)
Ve

◆
,

with Ve being the extra-cellular volume and Glye being
the glycerol concentration in the extra-cellular compartment.
Intra-cellular glycerol Gly production is expressed, combin-
ing the output of the two controllers described above, as

dGly
dt

= ũHOG(t)�uDi f f (t)

and extra-cellular glycerol, depending only on the diffu-
sion over the Fps1 channel, is described by

dGlye

dt
= uDi f f (t).

III. PARAMETER ESTIMATION

The model contains 16 parameters as reported in Table II.
However, four of these are dependent parameters which we
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TABLE I
MODEL PARAMETERS: ALL VOLUMES ARE SCALED SUCH THAT THE

INITIAL VOLUME OF THE CELL IS 1. BOTH Gly AND Glye REPRESENT

NUMBER OF MOLECULES (MOL SCALED BY V (0)).

Parameters Bounds
kp1 Water perm. coeff. [0.0052 160] Osm�1

kp2 Fps1 control const. [0 10]
Td Time delay [5 30] min

kHOG HOG control const. [0 2] Osm�1

K HIll const. [0 .01 2]
n HIll exponent [0 4]

Fixed parameters Value
Gly(0) Initial Gly 2⇥10�4

Pi(0) Initial Pi .636 Osm
Pe(0) Initial Pe .24 Osm

Vb Non osmotic volume .368
V Pt=0 V when Pt = 0 .8

Ve External volume 4.79⇥103

Dependent parameters Value

V (0) Initial V - 1relative volume
Glye(0) Initial Glye

VeGly(0)
(V (0)�Vb)

Pt(0) Initial Pt Pi(0)�Pe(0)

s No. of osmolytes Pi(0)(V (0)�Vb)
other than Gly -Gly(0)

do not need to constraint. The other parameters are estimated
by simulating the model with different osmotic shocks and
minimising the error, defined by the equation (3), and time
adaptation corresponding to the time required by the cell
to reach again approximately the volume before the stress
(see the definition in the next section). For the optimization,
we use a Genetic Algorithm (GA) [13], that combines the
most well-known type of evolutionary algorithms with local
algorithms [14], [15]. We used the function ga from the
MATLAB Global Optimization Toolbox [16] and fmincon
[17] as hybrid function. By the optimisation procedure some
parameters do not significantly change their values, therefore,
they are fixed equal to the values estimated in [3], except
for V Pt=0, which is set to 0.8, value of the volume at zero
Pt according to a recent study presented in [18].

The cost function used for the parameter estimation is
given by

min
x

J , (6)

where
J = Jp + Jv + Jt (7)

is a sum of three scalar functions: Jp is the turgor pressure
error, Jv is the difference between the desired and the
effective volume and Jt is the response time of the system
after the perturbation.

IV. RESULTS

To explore the role of ultrasensitivity in osmoregulation,
we further developed a previously described proportional

control model of this system (see Model section). This model
is previously shown to capture the characteristic features of
the osmoregulation system observed in the model organism
S. cerevisiae [3]. In our re-implementation of the model,
we particularly considered the observed ultrasensitivity in
the HOG branch of the system. This branch was originally
modeled as a proportional control in the model, which
we have replaced here by a Hill-type function to model
ultrasensitivity (see Model section). We then compared the
performance of this new model against the original model.
In particular, we evaluated the two different controllers -
proportional (Pr) and ultrasensitive (Us) - by simulating
their dynamics with different stress inputs (see Fig. 2)
and optimizing their parameters for optimum response (i.e.
minimal deviation of cell volume and tugor pressure in
presence of a osmo-schock, see Parameter Estimation section
for details). We repeated this procedure for different levels
of overall sensitivity (i.e. gain) of the HOG branch and
different types of osmo-shock sequences and quantified the
final (i.e. optimal) performance of the two controllers using
two different performance indices: adaptation precision and
adaptation time. The adaptation precision is defined as

Xa = ’
i

Xs,i , (8)

where Xs,i is the steady state value of the variable X (volume
V or turgor pressure Pt ) after the i-th perturbation. Since the
initial volume is set to unity, this measure gives 1 for perfect
adaptation. Deviations from 1 indicate inability of the system
to perfectly adapt volume to pre-perturbation levels. The time
adaptation, Ta, defined as

Ta = Â
i

ta,i , (9)

where ta,i is the time required by the system to reach the
85% of the volume V after the i-th osmotic stress.
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Fig. 2. Different osmotic stress. Upper plot: a constant step of 1M NaCl
at t = 5 min corresponding to an increase of Pe equal to 1.96 Osm. Middle
plot: single pulse signal at t=5min with duration of 40 min of 1M NaCl.
Lower plot: double pulse signal at t1 = 5 min and t2 = 85 min, both with
duration of 40 min and amplitude of 1M NaCl.
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Fig. 3. Results with two constant step signals of 1M and 2M of NaCl.

0 1 2

0.82

0.84

0.86

0.88

One pulse of 1M

V
a

0 1 2
0

20

40

60

T
a
 [
m

in
]

k
HOG

0 1 2
0.65

0.7

0.75

0.8

0.85

One pulse of 2M

0 1 2
20

30

40

k
HOG

 

 

Pr

Us

Fig. 4. Results with two single pulse signals of 1M and 2M of NaCl.

Figs. 3–5 show the results of this analysis. We find that for
all the different osmo-shock sequences considered - constant
step, single pulse and double pulse -, the ultrasensitive con-
troller achieves better and faster adaptation irrespective of the
level of overall gain. The better performance was particularly
significant when overall gain was limited to lower values,
where the ultrasensitive controller achieved almost 2-fold
faster responses. We can understand this result simply by
considering the input and output of the HOG controller
within the full control model (see Fig. 1). By incorporating
a Hill function within this branch, we effectively achieve
a steeper response from this branch compared to a linear
function for any given error (see equations (4) and (5)). Thus,
the controller acts faster and more strongly, allowing quick
and full recovery of the system.

This insight is in line with the optimized parameters for
both controllers (see Table II). In most cases, we find that
the optimal parameters for the ultrasensitive controller result
in a very steep Hill function that produces maximal outputs
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Fig. 5. Results with two double pulse signals of 0.5M and 1M of NaCl.

TABLE II
OPTIMIZED PARAMETERS FOR A GIVEN kHOG WITH A DOUBLE PULSE

SIGNAL OF 1M.

Optimized Parameters - Pr/Us Us

kHOG
kp1 Td kp2 K nPr Us Pr Us Pr Us

.65 93 155 5 5 .43 .96 .17 3.53
1.1 159 124 5 5 .69 1.17 .23 3.78

1.55 .36 134 5 5 .9 1.61 .23 3.8
2 155 159 5 5 1 1.54 .25 3

for even small error values. Of the other free parameters of
the model, we note that certain parameters get optimized
differently for the two controllers. For example, the perme-
ability coefficient, which controls water flow in the model
(see Model section) is usually optimized to higher values
in the ultrasensitive controller compared to the proportional
controller. This parameter affects the sensitivity of the sys-
tem, as faster water movement can allow both a high volume
reduction for a given osmo-shock but also fast recovery.
Given its fast dynamics, the ultrasensitive controller can
“afford” this parameter to become higher compared to the
proportional controller.

Such differences between optimal parameters of the two
controllers suggest that implementation of ultrasensitivity
might allow more freedom in the other parameters of the
model or allow them to be in a more favorable regime. To
test the former possibility, we have run a simple sensitivity
analysis for the two controllers. Given a certain gain, and Hill
function parameters, we evaluated the adaptation precision
and time of the two controllers for a set of 100 randomly
generated parameters. We found that compared to the propor-
tional controller, the ultrasensitive controller achieved much
more robust behavioral performance according to these two
criteria (Figs. 6–7).

As discussed above, the performance increase of the
ultrasensitive controller over the proportional one stems from
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Fig. 6. Sensitivity analysis by fixing kHOG and Hill function parameters
(K = 0.05, n = 3.5) and applying one pulse signal of 1M. The first column
of each boxplot reports the results for the proportional (Pr) controller, the
second column the results for the ultrasensitive (Us) controller.
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of each boxplot reports the results for the proportional (Pr) controller, the
second column the results for the ultrasensitive (Us) controller.

its high sensitivity to the error due to the Hill function. The
incorporation of the Hill function, however, should also allow
development of thresholds in the system. In particular, the
ultrasensitive controller should be tunable to respond only
to signals of certain magnitude or duration. To test this
hypothesis, we devised an alternative cost function for the
optimization procedure and optimized the system towards
functioning as a filter. The new cost function is given by
Jn = J�Jglyc, where J is defined by the equation (7) and Jglyc
represents the glycerol production upon the signal of limited
duration. Fig. 8 shows the performance for a signal with a
first short and then long duration pulse. The ultrasensitive
controller ignores the first pulse and responds to the second
by tuning the Hill parameters, whereas the proportional
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Fig. 8. Response to a signal with a short and long pulse duration, assuming
kHOG = 0.2. Upper plot: external osmotic signal. Second plot: the volume
response for the proportional controller model. Third plot: the volume
response for the ultrasensitive controller model. Lower plot: the glycerol
concentration for both the models

controller model is not able to response to the second signal
(the permeability coefficient kp1, that affects the sensitivity
of the system, is equal to the lower bound).

V. CONCLUSIONS

Control theory provides a highly useful approach to ab-
stract complex biological systems that seem to operate with
similar goals as engineered control systems. The osmoregu-
lation system in yeast is a prime example of this, where a
complex biochemical signalling and regulatory network al-
lows cell volume to maintain homeostasis in face of osmotic
shock. While this system has been abstracted by conventional
proportional and integral feedback controllers, these models
do not shed light on how the biochemical complexity in the
system could have arisen in evolution and whether its distinct
features have particular functional roles. In particular, the
yeast osmoregulation system employs at least two main and
distinct branches; an ultrasensitive one that regulates glycerol
production (HOG branch) and another that regulates glycerol
exchange across the membrane.

Using a previously developed proportional control model
incorporating these two branches, we showed here that
ultrasensitivity in the HOG branch allows better overall per-
formance. We find that the primary effect of ultrasensitivity
in the HOG branch is an increase in the response speed
of the system and consequently in its adaptation precision.
In addition to this, however, we find that ultrasensitivity
provides also a non-trivial flexibility to the system param-
eters. By increasing the speed of overall system responses,
ultrasensitivity in the HOG branch allows sensitivity to be
increased in the other branch of the system. In the absence
of ultrasensitivity, fast (i.e. highly sensitive) regulation of
the glycerol exchange branch limits the cells adaptability
through the HOG branch (i.e. glycerol production). With

3606



ultrasensitivity in glycerol production, the other system pa-
rameters can be increased or varied more freely, without
compromising performance. Moreover, by increasing the
gain of the HOG branch, the system with a proportional HOG
controller is able to improve the performance in terms of
adaptation but there is a presence of overshoot in the system
response, whereas ultrasensitivity in the HOG branch allows
to avoid this phenomena (we do not consider the overshoot
to compute the performance). Note that for large values of
the error (e > 1), a proportional branch may have a higher
gain than ultrasensitive one and, if K > 1, the gain of the
proportional controller will always be higher, but it is not
the case because the error never goes above 1 given the
system parameters (the absolute maximum value of the error
is Pt(0)).

The ultrasensitive response in the HOG branch also allows
tuning of the overall system response towards certain signal
regimes. In other words, the control system can be tuned
to filter out signals below a threshold and respond only
when volume decreases cross this threshold. Considering
that glycerol production is potentially highly costly for the
cell, this ability of the system could given an evolutionary
advantage by allowing cells to ignore short lived or low doses
of osmo-shock.

In summary, our analysis provides the first steps towards
using control theory based approaches to decipher the po-
tential roles of specific biochemical features in complex
regulatory systems seen in biology. Such understanding can
provide on one hand, insights into evolutionary steps that led
to current, complex biological systems and on the other hand,
allow better (re)engineering of de novo biological systems in
synthetic biology.
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