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Abstract Feedback circuits are crucial dynamic motifs which occur in many
biomolecular regulatory networks. They play a pivotal role in the regulation and
control of many important cellular processes such as gene transcription, signal trans-
duction, and metabolism. In this study, we develop a novel computationally efficient
method to identify feedback loops embedded in intracellular networks, which uses
only time-series experimental data and requires no knowledge of the network struc-
ture. In the proposed approach, a non-parametric system identification technique, as
well as a spectral factor analysis, is applied to derive a graphical criterion based on
non-causal components of the system’s impulse response. The appearance of non-
causal components in the impulse response sequences arising from stochastic output
perturbations is shown to imply the presence of underlying feedback connections
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within a linear network. In order to extend the approach to nonlinear networks,
we linearize the intracellular networks about an equilibrium point, and then choose
the magnitude of the output perturbations sufficiently small so that the resulting time-
series responses remain close to the chosen equilibrium point. In this way, the impulse
response sequences of the linearized system can be used to determine the presence
or absence of feedback loops in the corresponding nonlinear network. The proposed
method utilizes the time profile data from intracellular perturbation experiments and
only requires the perturbability of output nodes. Most importantly, the method does
not require any a priori knowledge of the system structure. For these reasons, the
proposed approach is very well suited to identifying feedback loops in large-scale bio-
molecular networks. The effectiveness of the proposed method is illustrated via two
examples: a synthetic network model with a negative feedback loop and a nonlinear
caspase function model of apoptosis with a positive feedback loop.

Keywords Biomolecular regulatory networks · Feedback loops · Nonparametric
identification · Spectral factor analysis · Signaling pathways · Systems biology

Mathematics Subject Classification (2000) 92-08 · 92B05 · 93B30 · 93E12 ·
93E10 · 93E24

1 Introduction

Various complex control and regulation mechanisms appear within or between reacting
biomolecular species that are coordinated in the context of cell functions such as
growth, differentiation, and apoptosis. As a result, two of the central themes in current
systems biology research are the identification of regulatory network motifs, and the
development of a quantitative understanding of regulation, control and coordination in
intracellular networks (Wolkenhauer et al. 2003; Cho et al. 2003). Feedback circuits are
key regulatory motifs in many biological systems. It is believed that positive feedback
loops determine diverse cellular processes including development, cell proliferation,
apoptosis, and the response to stress (Eisen et al. 1967; Wolpert and Lewis 1975; Kim
et al. 2007a,b), whereas negative feedback loops contribute to maintaining homeosta-
sis of biological systems under internal and external changes (Laub and Loomis 1998;
Strogatz 2000a; Thomas and Kaufman 2001; Maeda et al. 2004). Moreover, many
complicated functional modules in biological systems are composed of multiple feed-
back loops. For instance, many types of chaotic behavior in biological systems are
generated by combinations of positive and negative feedback loops (Tufillaro et al.
1992; Glendinning 1994; Strogatz 2000b; Kwon and Cho 2008a,b; Kim et al. 2008;
Shin et al. 2009), while interlinked fast and slow positive feedback loops (Brandman
et al. 2005) have been shown to result in a “dual-time” switch that is rapidly inducible
as well as resistant to noise in the upstream signaling system. Further connections
between feedback circuits and particular types of system behaviour were made by
Thomas (1981) who proposed an intriguing conjecture stating that a positive feedback
loop is necessary for multistationarity (i.e., multiple equilibria) and a negative feed-
back loop is necessary for a stable periodic behavior. Gouze (1998) later proved this
conjecture through a strict mathematical deduction.
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Identification of feedback loops embedded in cellular circuits 287

As feedback mechanisms are so pivotal in various cellular functions, the problem of
identifying the existence (or absence) of an intracellular feedback circuit from exper-
imental data has recently been the subject of intensive research. The likelihood ratio
test method (LRTM) proposed by Caines and Chan (1975) aimed at identifying the
existence of a feedback loop, but it required very detailed a priori knowledge on the
system order and structure. The acquisition of such a priori knowledge is difficult
in practice for biological systems, particularly for large-scale regulatory networks.
Schnider et al. (1989) developed a direct coherence method to detect feedbacks in the
central nervous system in the frequency domain. Subsequent studies developed and
extended this method to other physiological applications: for example, the detection
of bi-directional hippocampal interactions between the CA3 and CA1 region (Baccala
and Sameshima 1999) and the quantification of the linear causal strength in closed
interacting cardiovascular variability signals (Porta et al. 2002). The direct coherence
approach used in the above studies requires the determination of a multi-dimensional
parametric structure for the system before the computation of the frequency coherence.
Thus, it usually has a high computational complexity. Vance et al. (2002) investigated
the effect of a pulse change in the concentration of chemical species in a reaction
network. A graphical characteristic of temporal responses was used to identify con-
trol pathways, including feedback regulations and feedforward regulations, from other
generic interactions. However, this graphical characteristic could not distinguish feed-
back regulations from feedforward regulations. Recently, a novel method was proposed
(Dong et al. 2008) by applying intermittent step perturbations to excite the biomolec-
ular species and using a prominent circular causal property to infer the existence of a
feedback loop. This approach was applicable to nonlinear networks without a priori
knowledge of the system structure, but included a requirement on the perturbability of
all reacting species that makes it very difficult to apply to real biomolecular regulatory
networks.

In this study, we apply correlation identification and spectral factor analysis to the
intracellular feedback loop identification problem. The main idea is to identify any
underlying feedback loops by investigating non-causal components of the system’s
impulse response sequences caused by output perturbations. According to Granger’s
definition of causality (Granger 1962), an impulse response is said to be causal if its
negative time parts are equal to zero. This means that the present output is only deter-
mined by the present and past input values. If this is not the case, the impulse response
is deemed to be non-causal. The negative time parts of non-causal impulse response
are called its non-causal components, whereas the zero and positive time parts are
termed its causal components. Let us consider a single input and single output (SISO)
linear system in which the input and output are both stationary stochastic processes.
From correlation identification, the impulse response of the system can be identified
using the input and output time-series data. In the case of no feedback loop between
the input and output, the identified impulse response sequences are causal. On the
contrary, if a feedback loop exists between the input and output, some non-causal
components will appear in the identified impulse response sequences. This prominent
characteristic provides a straightforward criterion with which to identify the existence
of a feedback loop. In order to further extend this criterion to nonlinear systems, we
ensure that the magnitude of the output stochastic perturbation is sufficiently small so
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that the resulting time-responses stay within small neighborhoods of their equilibria.
By then applying the feedback identification procedure to the linearized system, we
can extend our graphical criterion to nonlinear intracellular networks. Importantly, the
proposed method does not require any explicit knowledge about the network order
or structure, and it is also applicable to those cases where not all of the network’s
nodes are perturbable. Hence, it overcomes almost all of the significant limitations
associated with the previous approaches cited above.

The organization of the paper is as follows. We start by describing the corre-
lation algorithm for identifying the non-causal impulse response of a SISO linear
time-invariant system (Sect. 2). Spectral factor analysis is applied in Sect. 3 to derive
the non-causal components criterion for identifying the existence of a feedback loop.
In Sects. 4–6 this criterion is described as an identification algorithm which can be
applied to intracellular perturbation experiments. Factors affecting the precision of the
identification algorithm are detailed in Sect. 7. Finally, the application of the proposed
method is illustrated using a synthetic negative feedback model and a caspase func-
tion model in apoptosis with a positive feedback loop in Sects. 8 and 9, respectively.
The results show the efficacy of the proposed method for feedback loop identification
under nonlinear reacting dynamics.

2 Correlation identification method

Correlation identification is an important nonparametric identification method, which
has proved very useful in identifying the impulse response sequences of a system in
the presence of noise. For this reason, it is widely used in a diverse range of appli-
cations, including stochastic processes in which the probability density distributions
of random signals evolve over time—see, for example, its application to power con-
verter identification (Miao et al. 2005) and X-ray CT imaging system analysis (Doré
et al. 1997), etc. In this study, we apply the correlation identification method for the
identification of non-causal impulse response sequences. Some preliminary defini-
tions and nomenclatures on stochastic processes are provided in the Supplementary
Information.

Let us consider a SISO linear time-invariant system described as follows:

y(k) =
∞∑

σ=0

u(k − σ) h(σ ) + v(k) , (1)

where k and σ denote the discrete time indices, y(k) is the output, u(k) is the input,
and v(k) is the output noise, which is uncorrelated with u(k).

The purpose of identification is to determine the impulse response sequence h(k)

from two data measurements: the deterministic input u(k) and the noise-mixed output
y(k). This can be done by computing the cross-covariance function between u(k) and
y(k) as follows:

Ruy (τ ) =
∞∑

k=0

h(k)Ruu(τ − k) + Ruv (τ ) . (2)
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In Eq. (2), Ruu(τ ) is the auto-covariance function of u(k) and Ruv(τ ) is the cross-
covariance function of u(k) and v(k). If the system is asymptotically stable, h(k)

converges to zero as k goes to infinity. We also note that Ruv(τ ) approaches zero since
v(k) is uncorrelated with u(k). Hence, for some finite number of discrete time steps
M , we have

Ruy (τ ) ≈
M∑

k=0

h(k)Ruu(τ − k). (3)

Equation (3) is known as a discrete Wiener-Hopf equation (Godfrey 1980), and it
suggests a computationally feasible way of computing the causal impulse response
sequences h(k) from the covariance functions. Note that the covariance functions in
Eq. (3) can be estimated accurately by using a large data length L >> M1 + M2 + 1
as follows:

Ruu (τ ) ∼= 1

L

L∑

k=1

u(k)u(k + τ) , (4)

Ruy (τ ) ∼= 1

L

L∑

k=1

u(k)y(k + τ) . (5)

The fast Fourier transform (FFT) technique can be applied to compute the estimates
of the covariance functions in a computationally efficient way (Fang and Xiao 1988).
For a non-causal system,

Ruy (τ ) ≈
M2∑

k=−M1

g(k)Ruu(τ − k), (6)

where g(k) represents a non-causal impulse response sequence. As we focus here on
the non-causal components induced by output noises, we will use Eq. (6) to com-
pute the non-causal impulse response sequences. In particular, a multivariable linear
regression algorithm (Gauss 1963; Rao 1973; Rabiner et al. 1978; Draper and Smith
1981; Hunter and Kearney 1983; Dayal and MacGregor 1996; Westwick and Kearney
1997) is employed to solve g(k). Here we use the method of Hunter and Kearney
(1983) to identify the two-sided linear filter g(k). According to this algorithm, the
least-squares estimate of g(k), denoted by ĝ(k), can be calculated from the following
vector representation:

Cuy= CuuĝLS, (7)

where Cuy = [
Ruy(−M1), Ruy(−M1 + 1), . . . , Ruy(0), . . . , Ruy(M2)

]′ is an M1 +
M2 + 1-dimensional column vector; ĝLS = [ĝ(−M1), ĝ(−M1 + 1), . . . , ĝ(0), . . . , ĝ
(M2 − 1), ĝ(M2)]′ is a M1 + M2 + 1-dimensional column vector; and
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Cuu =

⎡

⎢⎢⎣

Ruu(0) Ruu(−1) . . . Ruu(−M1 − M2)

Ruu(1) Ruu(0) . . . Ruu(−M1 − M2 + 1)

. . . . . . . . . . . .

Ruu(M2 + M1) Ruu(M2 + M1 − 1) . . . Ruu(0)

⎤

⎥⎥⎦ is a M1 +

M2 + 1-dimensional symmetric square matrix, since Ruu(τ ) = Ruu(−τ). Note Cuu
is a Toeplitz matrix since Cuu(i, j) = Cuu(i − 1, j − 1), and hence Levinson’s algo-
rithm can also be applied to the symmetric Toeplitz system to calculate ĝLS recursively
(Levinson 1947; Durbin 1960; Golub and van Loan 1996). Usually, when M1+M2+1
is small, it is unnecessary to perform a very provisional computation as Levinson’s
algorithm does and we can directly compute ĝLS by finding the inverse of Cuu (Hunter
and Kearney 1983):

ĝLS= C−1
uu Cuy. (8)

Through the investigation of the statistical properties of ĝLS (Ljung 1987), we then
obtain

ĝ(k) − g0(k)√
P(kk)

L

∈ N (0, 1), (9)

where g0(k) is the supposed true value of g(k), k = {−M1,−M1 + 1, . . . , M2}, and
P(kk)

L is the kth diagonal element of PL (the covariance matrix of ĝLS). The com-
putation of PL is shown in Eq. (10), under the assumption that all observations are
normally distributed (Ljung 1987):

PL = 1

L [L − (M1 + M2 + 1)]

⎧
⎪⎨

⎪⎩

L∑

k=1

⎡

⎣y(k) −
M2∑

k=−M1

ĝ(τ )u(k−τ)

⎤

⎦
2
⎫
⎪⎬

⎪⎭
(Cuu)−1 .

(10)

Even when the observations are not normally distributed, it is often the case that the
distribution of ĝLS approaches the normal distribution as L increases to infinity. This
follows from the application of central limit theorems to the sum of random variables
that constitutes the estimates (Ljung 1987). For example, the probability that g0(k)

deviates from ĝ0(k) by more than Z(1/2+α/2)

√
P(kk)

L is 1 − α. Herein, Z(1/2+α/2) is
the (1/2 + α/2) quantile of the normal distribution, which is available in standard
statistical tables. Then, a credential region of g0(k) with the significance level α can

be constructed as
∣∣g0(k) − ĝ0(k)

∣∣ ≥ Z(1/2+α/2)

√
P(kk)

L . Therefore, the components of
ĝ0 (k) falling out of this region are considered to have a low credential, and they are
not accepted as significant.
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3 Spectral factor analysis

Just like the frequency analysis of deterministic processes, the concept of spectral
density function can be defined for stochastic processes (see Supplementary Informa-
tion for details). The advantage of introducing spectral density functions is that we
can study a stationary stochastic process in terms of deterministic functions. A spec-
tral factor analysis of stochastic processes is employed here to derive a deterministic
criterion for feedback identification.

Let us consider a discrete-time linear system with a sampling interval Ts as shown
in Fig. 1. In this case, the dynamical couplings between input u(k) and output y(k)

are as follows:

Y (z) = H(z)U (z) + L(z)V0(z), (11)

U (z) = F(z)Y (z) + N (z)W0(z), (12)

where U (z), Y (z), V0(z), and W0(z) represent the Z transforms (Oppenheim et al.
1997) of the signals: input u(k), output y(k), input noise source w0(k), and output
noise source v0(k) respectively. H(z), L(z), F(z), and N (z) are transfer functions
with the frequency variable z = esTs . For instance, H(z) = ∑∞

k=−∞ h (k)z−k where
h(k) is the impulse response and H(z) is the Z transform of h(k). Without loss of
generality, we can make the following assumptions (Schnider et al. 1989):

(i) Both v0(k) and w0(k) are uncorrelated white noises, WN(0, 1).
(ii) The forward transfer function H(z), the feedback transfer function F(z), the

feedforward noise model L(z), and the feedback noise model N (z) are causal,
i.e. H(∞) , F(∞) , L(∞), and N (∞) should be finite.

(iii) L(z) and N (z) are analytic on and outside of the unit circle; i.e., they are asymp-
totically stable.

Fig. 1 A mathematical
framework for feedback
identification. The ‘cut point’
indicates the two possible cases
of feedback or feedback-free

y(k)u(k)

0v(k)

+
+

+
+

v(k)

w(k)

w(k)

H(z)

F(z)

N(z)

L(z)

0
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(iv) H(z) is asymptotically stable.
(v) The closed-loop transfer function 1

1−H(z)F(z) is asymptotically stable.

Based on these assumptions, formal definitions of feedback-free and feedback sys-
tems were proposed by Caines and Chan (1975) as follows: Given a system described
by Eqs. (11) and (12), satisfying assumptions (i)–(iv), the system is defined as a
“feedback-free system” if F(z) = 0. Otherwise (and with a further assumption (v)), it
is a “feedback system”. We note that assumptions (i)–(iii) and (v) imply that the sig-
nals u(k) , y(k) , v(k), and w (k) are all bounded stationary stochastic variables with
rational spectra; the same holds for assumptions (i)–(iv) if there is no feedback, i.e.
F(z) = 0 and u(k) = w(k).

To identify the existence of a feedback loop between u(k) and y(k), we first need
to perform factor decompositions of the spectral density functions. Let Ruu (τ ) and
Ruy (τ ) represent the auto-covariance function of u(k) and the cross-covariance func-
tion between u(k) and y(k), respectively. The corresponding discrete spectral density
functions are defined by the following two DTFT (See Sect. 2 in Supplementary Infor-
mation for a strict definition of discrete spectral density function):

Suu (z) =
∞∑

k=−∞
Ru(k)z−k, (13)

Suy (z) =
∞∑

k=−∞
Ruy (k)z−k . (14)

Then, the non-casual Wiener filter G(z) (Ljung 1987) can be derived as follows:

G(z) = Suy (z) S−1
uu (z) . (15)

Finally, we have the following major theorem.

Theorem 1 Given the closed-loop system described in Eqs. (11) and (12) with the
assumptions (i)–(v), G (z) is causal if and only if there is no feedback, i.e. F(z) = 0.

A complete proof of Theorem 1 is given in the Supplementary Information. In this
proof, we also note that if there is no feedback noise (i.e., w0(k) = 0)), F(z) should
have at least a one step time-delay to utilize the above concept for identification of a
feedback loop. Therefore, we have another theorem which may be used in this case:

Theorem 2 Given the closed-loop system described in Eqs. (11) and (12) satisfying
w0(k) = 0, v0(k) ∼ W N (0, 1), and the assumptions: (ii)–(v), then:

(1) G(z) = 1/F(z);
(2) G(z) is non-causal if and only if F(z) is strictly proper.

Proof The proof is straightforward by substituting w0(k) = 0 into Eqs. (11) and (12).
A transfer function is said to be strictly proper, if and only if the degree of its

numerator is less than the degree of its denominator. Moreover, a transfer function is
said to be biproper, if and only if the degree of its numerator is equal to the degree of
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its denominator. For a discrete time transfer function, it requires no time-forward part
to be biproper and at least one step time-delay to be strictly proper.

Theorem 1 and 2 imply that there can still exist a feedback loop even if G (z)
( �= H(z)) is causal; however, this only happens when w0 (k) = 0 and F(z) is biproper.
Taken together, the above results provide us with an instructive criterion that can be
used to identify the existence of a feedback loop in a SISO linear system regardless
of the presence of feedback noise. The criterion also tells us that the appearance of
non-causal components in the impulse response sequences indicates the existence of
a feedback loop unless w0(k) = 0 and F(z) is biproper. Such a situation is, however,
highly implausible in the context of biomolecular interactions which very often involve
various scales of time-delay. For the remainder of this paper, we refer to this graphical
criterion as the non-causal components criterion (NC-criterion). In the following, we
employ it to develop a new identification method for feedback loops in intracellular
networks based on linearized cellular dynamics.

4 Linearization of nonlinear dynamics of intracellular networks

The dynamic behavior of an intracellular network is often described as a set of non-
linear differential equations:

dx/dt = f(t, x, λ) + v, (16)

where x(t) = (x1(t), x2(t), . . . xn(t)), λ = (λ1, λ2, . . . λp), and v = (v1(t), v2(t),
. . . vn(t)).

In Eq. (16), n is the number of state variables; x(t) is the n dimensional state vector
representing the concentrations or activity levels of the network nodes, i.e., the reacting
biomolecules; f is the n dimensional vector field describing the nonlinear dynamics
of the network; λ is the parameter vector denoting external or internal conditions such
as rate constants, pH values, and temperatures (as the nominal interaction structure of
a network is considered time-invariant, λ is assumed as a constant vector); p is the
number of parameters; v is the additive external noise or perturbation vector such as
an impulse, step, ramp, sinusoid, or stochastic function.

In the context of the biological system under investigation, we assume that such per-
turbations can be realized by an active substance released under control, and that they
are applied to some specified nodes in the network. The concept of a feedback loop
in nonlinear biological systems is based on the Jacobian matrices of the above system
description in Eq. (16). Suppose that the function vector f is continuously differentia-
ble in its biologically feasible domain, then the Jacobian matrix A at the steady state
x∗ = (x∗

1 , x∗
2 , . . . x∗

n ) is defined as A|x∗ = ∂f/∂x|x∗ . If the element ∂ fi/∂x j of the
Jacobian matrix A is nonzero, this means that x j has an interaction with xi . In particu-
lar, there is a feedback loop if some components of the system interact with each other
in a circular manner. In this case, one set of nonzero elements

{
ar1c1 , ar2c2 , . . . , ard cd

}

in A is said to form a d-element feedback loop if and only if the column index set
{c1, c2, . . . , cd} is a cyclic permutation of the row index set {r1, r2, . . . , rd} (Thomas
and Kaufman 2001).
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Since a nonlinear system can be linearized in a small neighborhood of its equi-
librium, we can estimate the impulse response sequences from the measurement of
time-series data near the equilibrium. In this linearized intracellular network, one arti-
ficially perturbed node is chosen as the output node of a SISO system and another
node as the input node, while considering the remaining nodes as intermediate vari-
ables between the input and output nodes. The impulse response sequences can be
obtained by computing the auto- and cross-covariance functions of the input and out-
put data according to Eqs. (4) and (5). Thus, we can determine the existence of a
feedback loop between the two nodes by investigating the non-causal components
involved.

5 Identification algorithm

In this section, we propose an algorithm for feedback loop identification in linearized
intracellular networks. The algorithm has been implemented in Matlab 7.1 (Math-
works, Inc.). Let us consider an experimental setup where the state (activity) change
of each node can be measured under perturbation. We assume that the perturbation
applied to node j can be modeled as v(k) in Fig. 1 and the feedback noise of node i
as w(k). So, nodes i and j can be considered as the input and output nodes of a SISO
system respectively. The identification steps are as follows:

Step 1. Apply a random perturbation that has a direct influence on a given node j .
Step 2. Measure the time-series profiles xi (t) and x j (t) of network nodes i and j with

the sampling time Ts .
Step 3. Estimate Ruu (τ ) and Ruy (τ ) using Eqs. (4) and (5).
Step 4. Estimate the non-causal impulse response sequences g(k) as shown in Eq. (8).

Simultaneously, a credential region of the estimated impulse response
sequences is determined according to Eq. (9).

Step 5. Apply the NC-criterion. To do this, check the non-causal components of the
identified im

pulse response sequences in the negative time axis. If the non-causal compo-
nents are found to be significant (within the credential region), then a feedback
loop exists between nodes i and j , otherwise, no feedback loop exists.

Step 6. Repeat Steps 1–5 for any two nodes of the network.

The complexity of this algorithm can be analyzed as follows: (i) Direct compu-
tations of (4) and (5) have a computational complexity O(L × (M1 + M2 + 1)),
where M1 + M2 + 1 is the required maximum delay for Ruu (τ ). It is required that at
least L ≥ M1 + M2 + 1 to compute all needed Ruu (τ ) and Ruy (τ ). With the use of
the FFT algorithm, the complexity is reduced to O(L × (1 + log2(M1 + M2 + 1)))

(Fang and Xiao 1988). Considering that M1 + M2 + 1 is always greater than 2, we
obtain O(L × log2(M1 + M2 + 1)) for the computation of the covariance functions.
(ii) Straightforward application of Gaussian elimination to solve Eq. (7) is time con-
suming with complexity O((M1 + M2 + 1)3), since it does not exploit the strong
structures present in the Toeplitz system. The Levinson-Durbin recursion can reduce
the complexity of solving Eq. (7) to O((M1 + M2 + 1)2) (Golub and van Loan 1996).
(iii) To estimate the credential region, we need O(L × (M1 + M2 + 1)) flops. Finally,
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since L > M1 + M2 + 1, the total complexity to identify ĝLS will be dominated by
O(L ×(M1 + M2 +1), and thus it appears that the proposed approach has the potential
to be applied to networks of realistic size.

6 Perturbation method

The dynamical behaviors of intracellular networks are usually dominated by the
kinetics of biochemical reactions between various biological molecules such as pro-
teins, genes, and RNAs. For example, we can describe biochemical kinetics using the
mass action law, introduced by Guldberg and Waage (1879). It is stated that the reac-
tion rate is proportional to the probability of a collision of the reactions. This is in turn
proportional to the concentration of reactants to the power of the number in which they
enter the specific reaction (Klipp et al. 2005). To investigate the biochemical kinetics,
it is necessary to trace the variations of biological molecular concentrations with time,
in a situation where the biochemical system is perturbed. Thus, the measurements
of bimolecular concentrations in a given time interval form the time series that are
to be used for network modeling and identification. In practical experimental condi-
tions, two kinds of perturbations are commonly applied to a biochemical network:
(i) parameter perturbations due to changes in external or internal conditions such as
rate constants, pH values, and temperatures, (ii) direct concentration perturbations by
the release of active molecules under control. The following discussions are focused
on the latter, i.e., direct concentration perturbations.

The applied perturbation for the identification can be a random change in the con-
centration of the node j . Note that the output stochastic perturbation or noise is essen-
tial for the identification of non-causal components in our approach. Several different
technologies are now available which generate such perturbations in biological sys-
tems, e.g. the flash photolysis technology that was developed in cell biology and
biochemistry over the last decade (Corrie et al. 1992; Nerbonne 1986).

With flash photolysis technology, the incorporation and photolysis of caged com-
ponents (biologically relevant molecules) into living cells can be realized through
controlled flash sequences. The inactive caged compound precursor is usually formed
through the introduction of photolabile chemical groups into certain of the active
molecules. Many species of molecules, for example, ATP, neurotransmitters, second
messengers, chelators, ionophores, proteins, enzyme inhibitors or activators, and fluo-
rescent dyes, can now be treated with such photochemical preparation (Adams and
Tsien 1993; Giovannardi et al. 1998). Then, the active molecules are released by cleav-
ing the photolabile chemical groups with a pulse of intense light in the near ultraviolet
(350–360 nm) range. This perturbation technique brings many advantages: for exam-
ple, a particular intra- or extracellular region can be preloaded with an exactly deter-
mined amount of substance in its inactive form (usually in much larger quantity than
that released by a single flash); subsequently, it can be controlled and activated at a very
precise time. In this way, perturbation delays due to diffusion of substances into the
preparation and spatial and temporal inhomogeneities can be greatly attenuated. There-
fore, with the flash pulse sequences, one can perturb intracellular networks schemati-
cally and delineate their kinetics in a rather precise manner (Adams and Tsien 1993).
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Flash light resources widely used include xenon flash lamps, the frequency-doubled
ruby laser, or nitrogen laser, and Nd-YAG laser. The pulse width of xenon flash lamps,
such as those used in photography, is in the microsecond time scale. For faster reac-
tions, specially designed lasers must be used that have pulse widths in the nanosecond
range. Using ultra-fast pulsed lasers allows processes in the picosecond or femtosec-
ond time scale to be studied (Mialocq et al. 1982; Okamura et al. 1991; Miyasaka et al.
1992; Sension et al. 1993). Some PC-controlled Laser Flash Photolysis Spectrome-
ters can provide flexible pulse sequence setup, hardware control, data acquisition, and
analysis software for the perturbation designs. For example, a complicated composi-
tion of pulse sequences can be formed by a random triggering from a high frequency
laser stimulator. Since the width of one pulse is very short, it is calculated that the
released amount of active substance by one pulse can be considered proportional to
its duration (Rapp and Güth 1988; Brown et al. 1999). Thus, we can photolyze some
amount of caged proteins with a high frequency flash pulse sequence to approximate
a desired perturbation profile (Ludwig and Ehrhardt 1995; McClung and Hellwarth
2004; Bernardinelli et al. 2005).

The perturbation inputs are commonly designed according to the minimum possi-
ble pulse width provided by flash sources as well as the kinetic time constants of the
reactions. In Fig. 2, we illustrate how a random binary perturbation (Hull and Dobell
1962) can be approximated by a width-adjustable high frequency flash pulse sequence.
Herein, the minimum duration of a single rectangular pulse τ determines the band-
width of the generated perturbation signals as fB = 1/τ (Oppenheim et al. 1997).
In addition, for a biochemical process with multiple reactions, the time scale of reac-
tions is often related to the cut-off frequency of the reactions. Suppose that all studied
reactions are exponential decay processes and the shortest half life (corresponding to
the fastest velocity) of the reactions is t1/2. Then, the associated time constant of the
reactions can be computed as µ = t1/2/ ln 2. Thus, we have that the approximated
cut-off frequency of the fastest reaction is fcutoff = ln 2

2π
1

t1/2
≈ 0.11 1

t1/2
. In order to

fully excite the reactive system, we require fB > fcutoff , i.e. we need to guarantee
sufficient input energy at frequencies where the system gain is large (Ljung 1987).
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Fig. 2 A scheme of random binary perturbation constructed by flash pulse sequences. The minimum width
of rectangular pulse is set as 30 ps (corresponding to 33.3 GHz band-width)
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Since pulsed lasers with widths in various time scales (from ms to fs) are available,
the kinetic characteristics of most biochemical reactions can be investigated using
perturbation signals with sufficient bandwidth. Even in cases where the bandwidth of
the perturbation signals is unsatisfactory due to experimental limitations, some other
methods can still be employed to obtain a robust estimation–see the next section for a
detailed discussion of such methods for band-limited input signals.

7 Factors affecting the identification precision

In the preceding section, we have presented the primary scheme to identify intracellu-
lar feedback loops using the NC-criterion. However, it was noted that computational
imprecision in the estimation of the covariance functions might influence the identi-
fication precision of g(k) significantly, owing to the use of a limited data length L
(Rabiner et al. 1978). In cases where the data length L is fixed, the magnitudes of
the perturbations and the gains of the transfer functions become the critical factors
which influence the identification precision. In order to illustrate this, let us consider
a simple case of a linear SISO system in Fig. 3. In this figure, all the transfer func-
tions were transformed into scale-free forms. Gain 1, Gain 2, Gain 3, and Gain 4
represent the gains of the feedback noises, forward transfer function, feedback trans-
fer function, and output noises, respectively. The forward transfer function includes
a one step time-delay (Ts = 1 min); whereas the feedback transfer function includes
a two-step time-delay. In addition, we set the significance level α as 0.0027, which
can be regarded as a relatively demanding statistical test level. The same significance
level was also adopted in the other example identifications presented in this paper.

Initially, we investigated the identification problem in the open-loop case and stud-
ied the underlying factors which influence identification precision. Rabiner et al. (1978)
showed that the increase of signal and noise ratio (SNR) and data length L can improve

Fig. 3 A simulation model of a linear SISO system to illustrate the NC-criterion. A cloud sign is placed
to differentiate the feedback-free cases from the feedback cases
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estimates in the open-loop case. The SNR is defined as

S/N = 10 log10

[
σ 2

z

σ 2
v

]
, (17)

where σ 2
z is the variance of the signal z(k) and σ 2

v is the variance of the noise signal
v(k). Thus, a high ratio of Gain 1·Gain 2/Gain 4 is beneficial for achieving a high
precision in the open-loop identifications—see Fig. 4 for one illustration of this con-
clusion. Moreover, although the computational errors introduced by Ruv (τ ) can be
efficiently alleviated with a long data length (L 	 M1 + M2 + 1), we can still obtain
a reliable result with limited data lengths, under the condition that the SNR is not
extremely small. In Fig. 5, if only 40 or 80 data points are available for computations,
the significant causal components can still be observed, even when the gain ratio is
10. Thus the NC-criterion does not in general require a long data length, making it
cost efficient both in terms of experiments and computations.

Next, we investigated the situation with a feedback loop, where the broken line was
reconnected by removing the cloud sign in Fig. 3. The result showed that the ratio of
(Gain 1·Gain 2)/(Gain 3·Gain 4) is now the crucial factor that influences the identifi-
cation of g(k). For simplicity, we just give the cases where only Gain 1 and Gain 4 are
adjusted. In Fig. 6a–e, the non-causal component with a two step time-delay can be
correctly identified under the condition that L = 300. With an increase of the ratio of
Gain 1/Gain 4, the identified non-causal component becomes gradually indiscernible.
Fig. 6f–h showed that the non-causal components cannot be identified successfully
when the ratio (Gain 1/Gain 4) was as large as 10, 20, and ∞. This result further
strengthened the previous conclusion that a certain magnitude of output perturbations
are necessary to yield the non-causal components in g(k). Additionally, following the
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Fig. 4 The influence of the ratio (Gain 1–Gain 4) on the identification precisions in the open-loop cases.
The data length used for the identification is equal to 300. The index of g(k) is set to k = −20, −19, . . . , 40.
a Gain 1 = 1 and Gain 4 = 0. b Gain 1 = 1 and Gain 4 = 0.05. c Gain 1 = 1 and Gain 4 = 0.1. d Gain 1 = 1 and
Gain 4 = 0.5. e Gain 1 = 1 and Gain 4 = 1. f Gain 1 = 1 and Gain 4 = 5 (the failure case of the identification)
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Fig. 5 The identifications using two short data length in the open-loop cases. The gain ratio
(Gain 1 · Gain 2 − Gain 4) is kept as 10. a L = 40. The index of g(k) is set as k = −2, −1, . . . , 6.
b L = 80. The index of g(k) is set to k = −4,−3, . . . , 14
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Fig. 6 The influence of the ratio (Gain 1–Gain 4) to the identification precisions in the closed-loop cases.
The data length used for the identification is equal to 300. The index of g(k) is set to k = −20, −19, . . . , 40.
a Gain 1 = 0.02 and Gain 4 = 0.1. b Gain 1 = 0.1 and Gain 4 = 0.1. c Gain 1 = 1 and Gain 4 = 5. d Gain
1 = 1 and Gain 4 = 1. e Gain 1 = 1 and Gain 4 = 0.5; f Gain 1 = 1 and Gain 4 = 0.1 (the failure case). g Gain
1 = 1 and Gain 4 = 0.05 (the failure case). h Gain 1 = 1 and Gain 4 = 0 (the failure case)

same reasoning as in the previous open-loop cases, increasing the data length used for
identification can also improve the precision of the identifications in these closed-loop
cases. Figure 7a and b took two long data lengths: 4000 and 400,000 min; it was noted
that the precision of identifications were improved by the increase of L (compare
Fig. 7a and b with Fig. 6f). It is often difficult to ensure stationarity of time series
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Fig. 7 The identifications using various data length in the closed-loop cases. The gain ratio (Gain 1–Gain 4)
is kept as 0.2. a L = 4000. The index of g(k) is set to k = −20, −19, . . . , 40. b L = 400000. The index
of g(k) is set to k = −20,−19, . . . , 40; c L = 40. The index of g(k) is set to k = −2, −1, . . . , 6.
d L = 80. The index of g(k) is set to k = −4,−3, . . . , 14

when collecting long data records from biological preparations. Thus, the data length
that can be applied for identification is usually limited. In practice, however, a shorter
data length is often enough for accurate identification of the non-causal components,
under the condition that the gain ratio (Gain 1·Gain2)/(Gain 3·Gain 4) is not extremely
large. Figure 7c and d showed the results of applying two short data lengths of 40 and
80 min, respectively; the simulations showed one two-step non-causal component of
g(k) was successfully identified in each of the two cases.

We also illustrated the situation addressed by Theorem 2, where w0(k) = 0 and
the other system structure was maintained as in Fig. 3. The influence of the proper-
ness of F(z) on the non-causal component identification was investigated by assign-
ing both a strictly proper and a proper transfer function to F(z). The two cases,
F(z)= (−z + 0.5) /

(
z3 − 0.3z2

)
(strictly proper) and F(z)= (−z + 0.5) / (z − 0.3)

(biproper), were simulated and the results were compared in Fig. 8. The only differ-
ence between these two feedback transfer functions is that the former one is delayed
by 2 time-steps with respect to the later one. The two non-causal components of g(k)

appeared in Fig. 8a, showing the existence of the feedback loop. In contrast, g(k) was
causal in Fig. 8b. The algorithm thus failed to deduce the existence of the feedback loop
due to the biproperness of F (z). However, if we include the feedback noise in Fig. 3,
the non-causal components were again present (see Fig. 8c; Gain 1 was reset to one).
This alteration made the simulation return to the situation dealt with in Theorem 1,
i.e., although F (z) is bi-proper, there still exist some identified non-causal components
when w0 (k) �= 0.
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Fig. 8 The influence of the properness of the feedback transfer function on the identifications. The index
of g(k) is set as k = −20,−19, . . . , 40. The data length used for identification equals 300. a Gain1 = 0,

Gain 4 = 5, F(z) = (−z + 0.5) /
(
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( strictly proper), and the inlet below (bf a) shows the ampli-

fied region k = −4,−3, . . . , 0, . . . , 4. b Gain 1 = 0, Gain 4 = 5, and F(z) = (−z + 0.5) / (z − 0.3) (proper).
c Gain 1 = 1, Gain 4 = 5, and F(z) = (−z + 0.5) / (z − 0.3) (proper)

Under the assumption of limited data length, it was the ratios between the different
signal gains rather than their absolute values which most influence the identification
precision. This means that perturbation signals of small magnitudes are admissible
for achieving a high precision of identification without driving the system far from its
equilibria. This therefore provides a reliable theoretical basis for applying small per-
turbation signals near the equilibria of the nonlinear intracellular networks. As shown
in the above illustrations, for the identifications about h(k) in the open-loop cases, a
high ratio of input signal to output noise was preferential; whereas, for the identifica-
tions about g(k) in the closed-loop cases, a high ratio of output noise feedback signal
to input signal should be given a priority. In the context of intracellular networks, we
are usually interested in those feedback regulations that have significant gains both
in the feedforward and feedback channels. Therefore, we can adopt an appropriate
output perturbation to satisfy the requirements on the gain ratio in both types of iden-
tifications by just adjusting the magnitudes of the biological perturbations applied. In
this way, the above failure cases in the identification procedure can be avoided through
an appropriate choice of biological experimental setup.

Another critical factor influencing identification accuracy is the bandwidth of the
input signals. As addressed in many references (Rabiner et al. 1978; Golub and van
Loan 1996; Dayal and MacGregor 1996), a high condition number of Cuu is unfavor-
able for solving ĝLS in a linear equation like Eq. (7). When u(k) is colored (band lim-
ited), the condition number of Cuu typically increases significantly. Thus, the spectrum
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of u(k) would seriously influence the numerical stability of Eq. (7). Many methods,
for example, ridge regression (Hoerl and Kennard 1970a,b), the partial least squares
method (Geladi and Kowalski 1986), and the pseudo-inverse method (Westwick and
Kearney 1997) have been developed to deal with such a problem. Here, we shall use
ridge regression and pseudo-inverse method to illustrate this issue for identifications
with colored inputs. For ridge regression, a biased estimate of ĝLS, which is defined
as ĝRR, can be found by

ĝRR = (Cuu + kI)−1 Cuy, (18)

where k is a scalar, and I is the identity matrix. This is equivalent to adding a constraint
on the magnitude and length of the estimated parameters, so that the sum of the vari-
ances can decrease very rapidly with an increase in k (Hoerl and Kennard 1970a). The
scalar k is selected using the starting point of a stable region of the ridge trace (Hoerl
and Kennard 1970b). For the pseudo-inverse method, a singular value decomposition
(SVD) is performed as follows:

Cuu = [V1 V2]

[
S1 0
0 S2

] [
VT

1

VT
2

]
, (19)

where the subscript “1” represents the elements that are related to the larger singular
values, and the subscript “2” denotes the elements that are associated with the insig-
nificant singular values. During the construction of the pseudo-inverse, the elements
which are distinguishable from the effects of noise v (k) are retained (Westwick and
Kearney 1997). Then, a pseudo-inverse can be formed as

C+
uu= V1S−1

1 VT
1 , (20)

Replacing Cuu with C+
uu, the impulse response estimate is computed as

ĝPI= C+
uuCuy, (21)

We show how these two methods can handle the case of colored inputs via a
numerical example—see the open-loop structure in Fig. 1. A white noise signal
w0(k) (L = 1000; sample frequency fs = 100 Hz) was applied to the input of N (z),
which is a 3rd order Chebyshev type I digital filter. This filter has 0.1 dB peak-to-peak
ripple in the pass-band and 0.3 normalized cut-off frequency (the normal cut-off fre-
quency is half of the sample frequency; all frequencies are normalized by this value).
Thus, u(k) (identical to w(k)) becomes a colored stochastic process with a cut-off
frequency of 15 Hz. The test system H(z) is constructed as a fifth order Chebyshev
type I digital filter, which has 0.1 dB peak-to-peak ripple and 0.5 normalized cut-
off frequency. The output of H(z) is added with a 7 dB SNR white noise signal to
form the noise-corrupted output y(k). The identification of the impulse response h (k)

(= g(k)) is shown in Fig. 9a, where the relative error of the estimate is evaluated by
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(Rabiner et al. 1978)

Q = 10 log10

(∑M2
k=−M1

(
g(k) − ĝ(k)

)2

∑M2
k=−M1

g2(k)

)
. (22)

A large value of Q signifies a low accuracy of the estimate. As shown in Fig. 9a,
the exact inverse method produces a quite sensitive estimate with an error QE I =
−10.1022. The ridge regression method has Q R R = −13.8232, and thus produces an
estimate with much higher accuracy than QE I . The pseudo-inverse method provides
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Fig. 9 The identification of impulse response for colored inputs by the three methods: exact inverse
method, ridge regression method, and pseudo-inverse method. A 5th order Chebyshev type I digital fil-
ter is taken as a test system, which has 0.1 dB peak-to-peak ripple and 0.5 normalized cut-off frequency.
a The identified impulse response when a colored input is used to excite the test system. The colored
input is obtained as a white noise passing through a 3rd order Chebyshev type I digital filter with 0.1 dB
peak-to-peak ripple and 0.3 normalized cut-off frequency. The relative errors of three identification methods
are: QEI = −10.1022; Q RR = −13.8232; Q PI = −21.2986. The latter two methods greatly improve
the identification accuracies. b The change of identification errors over a range of input bandwidth. The
bandwidth of the colored input has been changed from 0.1 to 0.9 normalized frequencies. In the low and
middle frequency bands much higher identification accuracies are observed for the ridge regression method
and the pseudo-inverse method than for the exact inverse method. However, at high frequencies (e.g. 0.85
and 0.9) all three methods reach nearly the same accuracies, which are all quite high
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an even better performance with Q P I = −21.2986. We also showed the influence of
the bandwidth of the colored u(k) on the errors in the estimates. In Fig. 9b, the nor-
malized cut-off frequency of N (z) varies from 0.1 to 0.9 by an increment of 0.05. It
is shown that, for most band-limited inputs, the ridge regression method and pseudo-
inverse method have improved accuracy over the exact inverse method. When the
bandwidth of u(k) is greater than 0.85 times the normal frequency, the three methods
almost reach the same accuracy. Thus we see that there is no significant difference in
the errors of the estimates if the bandwidth of the input signal is much greater than
that of the test system. However, for specific physiological conditions where this is not
the case, we are able to use the ridge regression method and pseudo-inverse method
to obtain an improved identification performance for colored input signals.

8 Identification of negative feedback loops in a synthetic network

In this section, the NC-criterion was applied to a synthetic model containing a negative
feedback loop. We constructed this in silico feedback model using the kinetic mech-
anisms and parameters for a set of protein interactions obtained from the literature
(Szallasi et al. 2005). In Fig. 10, the kinase X phosphorylates Y , and the phosphorylated
Y (YP ) activates the degradation of X . In this case, two ODEs (ordinary differential
equations) were used to describe the system behavior:

dX

dt
= k1S − k2YP X + w0 (t) , (23)

dYP

dt
= k3 X (YT − YP )

Km3 + YT − YP
− k4 EYP

Km4 + YP
+ vo (t) , (24)

where Y and YP satisfy the conservation relation and their total amount is denoted
by YT (the units are as follows: [X ] = [YP ] = [S] = [E] = nM, [k1] = [k3] =
[k4] = min−1, [k2] = nM−1min−1, and [Km3] = [Km4] = nM). The equation for
X describes constant synthesis (proportional to S) minus degradation (proportional to

Fig. 10 A synthetic example
network containing a feedback
loop. Parameter values are
assumed as
k1 = k2 = k3 = k4 = 1, S =
Km3 = Km4 = 0.1, YT = 1,
and E = 0.5
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YP · X ), while the equation for YP adopts Michaelis-Menten kinetics to describe the
saturating synthesis and degradation rates.

The identification procedure was as follows. Let us choose X as the input of the
network and YP as the output. During a deterministic simulation (free from noise),
the states of the system are to converge to its stable equilibrium. Fig. 11a shows the
temporal profiles of X and YP from the initial conditions (X0 = 0 and YP0 = 0) until
its stable equilibrium (X∗ = 0.4036, Y ∗

P = 0.2478). To reflect the actual intracellular
environment, we added continuous feedback noise w0 (t) and feedforward noise vo (t)
to the network, which are uncorrelated white noises W N (0, 0.001) and W N (0, 0.01),
respectively. Then we simulated this continuous-time model and took samples for the
time-series data of X and YP . Figure 11b shows the stochastic simulation near the sys-
tem’s equilibrium (X∗ = 0.4036, Y ∗

P = 0.2478). The non-causal impulse response
sequence g(k) (shown in Fig. 11c) was obtained by applying the proposed algorithm
in Sect. 5. Our analysis correctly inferred the existence of a feedback loop, since one
significant non-causal component was observed at k = −Ts . The other significant
components observed at k = 0 and k = Ts min show the causal part of g(k).

To compare the impulse response sequence of the feedback loop case with that of
the feedback-free case, we removed the feedback regulation in Eq. (23) by substituting
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Fig. 11 Feedback loop identification in the synthetic biological network. Ts = 2 min; α = 0.0027; L =
300. a The deterministic simulation in the system containing a negative feedback loop. The initial condi-
tion is X0 = 0 and YP0 = 0 nM. The steady state is X∗ = 0.4036, Y ∗

P = 0.2478 nM. b The stochastic
responses of X and YP in the system containing a negative feedback loop. In this case, the feedback noise
w0 (t) = W N (0, 0.001) and the feed forward noise vo (t) = W N (0, 0.01) provide the required small
disturbances to X and YP . c The identified non-causal impulse response sequences g(k) from the temporal
profile of Fig. 9b. The one step non-causal component at k = −Ts indicates the existence of a feedback
loop. d The identified causal impulse response sequences h (k) of the feedback-free model. The feedback
noise w0(t) = W N (0, 0.01) and the feed forward noise vo (t) = W N (0, 0.001) are applied. The identified
impulse response sequence h(k) is causal, implying that the system is feedback-free
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YP with its equilibrium value (to set the same initial conditions). For the feedback-
free model, w0 (t) ∼ W N (0, 0.01) and vo (t) ∼ W N (0, 0.001) were used, and the
impulse response sequences were identified as illustrated in Fig. 11d. As there was no
significant non-causal component in the impulse response sequences, our algorithm
correctly infers that there is no feedback loop present in this case.

9 Identification of a positive feedback loop in the caspase cascade signaling
model

Apoptosis is a type of programmed cell death which is regulated in an orderly manner
by a series of signal cascades. It plays a crucial role in embryonic development, immune
responses and the elimination of virally infected or transformed cells. A misregulation
of apoptosis often results in severe pathological alterations. For instance, many cancers
are difficult to be eradicate because cells lose the ability to respond to apoptotic sig-
nals. Conversely, neurodegenerative disorders such as Parkinson’s, Alzheimer’s, and
Huntington’s diseases are characterized by excessive apoptotic activity in certain clas-
ses of neurons (Thompson 1995; Haass 1999). Therefore an in-depth understanding
of the underlying mechanisms of apoptosis is of great medical interest.

A caspase cascade involving a family of caspases (cysteine-containing aspartate-
specific proteases) forms a crucial part of the apoptotic signal transduction path-
way. Quantitative modeling of the caspase cascade was first undertaken by Eissing
et al. (2004, 2005) who elucidated the multiple equilibria (bistability) and switch-like
properties of caspase cascade signal transduction pathways. Another kinetic model
was proposed by Bullinger (2005) to analyze the long lag phase of the activated cas-
pase 3 (C3∗) responses. In this model, an apoptopic decision is made by a positive
feedback regulation between the activated caspase 8 (C8∗) and the activated caspase 3
(C3∗). Here, we employed Bullinger’s model to generate time-dependent responses of
the network variables, and then used these data to illustrate the proposed NC-criterion.
The network is shown in Fig. 12 and all the equations and parameters are detailed in
Table 1. In this system description, we regard C3∗ and C8∗ as the input and output
of the system, corresponding to u(t) and y(t) in Fig. 1, respectively. All the other
molecules involved in the indirect interactions between C3∗ and C8∗ constitute inner
state variables between the input and output.

Through steady state analysis, we found three equilibria of the system: E1 (normal
steady state), E2 (transitory state), and E3 (apoptotic steady state). E1 and E3 are stable
equilibria while E2 is an unstable saddle manifold. It was also found that apoptotic
steady state E3 has a relatively larger stable region compared to normal steady state
E1 (Bullinger 2005). This characteristic of E3 is favorable for applying perturbations
while maintaining the stability of systems. We thus chose E3 (9132.37, 74380.1, 18.97,
5161.68, 264.16, 2999.32, 20.54, 3446.51) as an initial condition for the simulation.
Then, we applied w0 (t) ∼ W N (0, 0.001) and v0 (t) ∼ W N (0, 5) as the appropriate
excitation signals, while keeping the fluctuations of C3∗ and C8∗ within small ranges.
For this particular example, we can estimate the forward gain (corresponding to Gain
2 in Fig. 3) as k2 · [C8]E = 1.0 × 10−5 × 9132.37 = 0.09132, where [C8]E is the
concentration of C8 at E3; the feedback gain (corresponding to Gain 3 in Fig. 3) as
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Fig. 12 A diagram of the
caspase signaling network. C8 is
caspase-8, C8∗ is activated
caspase-8; C3 is caspase-3, C3∗
is activated caspase-3, IAP is the
apoptosis inhibitor protein,
CARP is caspase-associated ring
protein, C8∗ ∼ IAP is the
complex of C8∗ and IAP , and
C3∗ ∼ CARP is the complex of
C3∗ and CARP . The solid
arrows indicate the directions of
reaction fluxes; the dash arrows
show the directions of the
control functions. All molecules
are assumed to be degraded with
a constant rate and four
molecules C8, C3, IAP , and
CARP are assumed to be
produced with a constant rate.
All reaction parameters are
detailed in Table 1

k1 · [C3]E = 5.8 × 10−5 × 18.97 = 0.0011, where [C3]E is the concentration of
C3 at E3. From the above computations, we saw that the forward regulation gain is
nearly 83 times that of the feedback regulation gain. In the following, we will show
that this choice of excitation signals works even though the gain ratio is 83. Under the
excitations, the kinetic model produces near-linear network responses. In particular,
the temporal profiles of C3∗ and C8∗ were obtained (Fig. 13a, b) and, based on these
input and output data, we can identify g(k) in Fig. 13c. As shown in the figure, for g(k)

two significant non-causal components appear in the negative time axis. This implied
the existence of a feedback loop between C3∗ and C8∗. As with the previous synthetic
model example, we tested the reliability of our algorithm by removing the feedback
regulation from the output to the input by substituting C8∗ and C3 with their steady
state values. For this case, we applied w0 (t) ∼ W N (0, 10) and v0 (t) ∼ W N (0, 0.1)

as the excitation signals. With this feedback-free model, the impulse response of the
open-loop system was again identified (Fig. 13d). In this case, there was no non-causal
component in the negative time axis, correctly implying the absence of any feedback
loop and clearly demonstrating the accuracy of our proposed identification algorithm.

10 Concluding remarks

We have addressed the problem of identifying the presence or absence of unknown
intracellular feedback loops from time-series measurements of intact cell responses
for given perturbations. By using correlation identification and spectral factor analy-
sis, we have proposed a novel identification criterion called the NC-criterion, which
provides a theoretical as well as an experimental basis for the identification of feed-
back loops in intracellular networks. The proposed identification method was applied
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Fig. 13 Feedback loop identification in the Caspase cascade signaling model. Ts = 2 min; α = 0.0027;
L = 300. a The segment response of C3∗ in the network containing a positive feedback loop. The feedback
noise w0 (t) = W N (0, 0.001) and the feedforward noise vo (t) = W N (0, 5). b The segment response
of C8∗ in the same network containing the positive feedback with w0 (t) = W N (0, 10) and vo (t) =
W N (0, 0.1) c The identified non-causal impulse response sequences g(k) of the closed-loop system from
the temporal data as shown in Fig. 5a and b. d The identified causal impulse response sequences h (k) after
the activation from C8∗ to C3∗ is eliminated. (i.e., feedback-free case). Herein, w0 (t) = W N (0, 10) and
vo (t) = W N (0, 0.1)

to a synthetic negative feedback model and a caspase signal transduction model with
a positive feedback loop. In these examples, significant non-causal components of
the impulse response sequences were observed in the negative time axis, correctly
implying the existence of a feedback loop. Such non-causal components were no
longer observed when the feedback loops were removed from the models, thus dem-
onstrating the ability of the proposed approach to distinguish between feedback and
feedback-free systems.

We employed a noise-driven linearized system as the mathematical framework for
our approach. Thus, the measurement noises, usually considered as external noises
which are uncorrelated with the intrinsic regulations, can be significantly attenuated by
the correlation computations. Hence, the NC-criterion is very suitable for application
to feedback identification in noisy biological networks. In addition, it only requires
the measurement of dynamic expression profiles of the input and output network
nodes. Various experimental methods including real-time PCR, immunofluorescence,
and microarray technologies can now provide such time-series data in a cost efficient
manner.

We noted that perturbations near the output port can give rise to non-causal compo-
nents in the impulse responses. Thus, to apply the NC-criterion, we only need output
noises or perturbations—the perturbability of the input node is not required. Since
the feedback structure is often symmetric and therefore either of the two nodes can
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arbitrarily be chosen as the output node, the requirement of perturbablity can often be
further relaxed in practice.

A significant advantage of the NC-criterion is the lack of a requirement for any
information about the structure of the network. Such a priori information is usually
difficult to obtain in biological systems. Hence, a relatively simple nonparametric iden-
tification approach is often more appropriate for the identification of feedback loops.

It has been shown that the NC-criterion is applicable to nonlinear cellular dynamics
near equilibria. The range of perturbations should be maintained within the neighbor-
hood of equilibria such that the nonlinear system can be approximated as a linearized
system and thereby the correlation analysis can capture non-causal components bet-
ween input and output. In this way, the existence of a feedback loop can be identi-
fied by investigating those non-causal components. Note however that only the linear
dynamics of a given intracellular network are preserved when we apply the NC-crite-
rion. To overcome this limitation, other approaches, such as using the Wiener-Volterra
series extension of nonlinear systems, could be investigated in future extensions of
the approach.
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