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SUMMARY

Mathematical models of biological processes which have been observed in vivo to be highly robust to intracellular and
environmental variations should themselves display appropriate levels of robustness when analysed in silico. This paper uses
techniques from robust control theory to analyse and extend a mathematical model of the interacting proteins underlying
adenosine 3′, 5′-cyclic monophosphate (cAMP) oscillations in aggregating Dictyostelium cells. Starting with a previously
proposed ‘minimal’ model, we show how robustness analysis using the structured singular value can identify points of
structural fragility in the network. By combining these results with insights from recent results from the experimental
literature, we show how the original model can be augmented with some important additional modules, comprising networks
involving IP3 and Ca2+. By analysing the robustness of our new extended model, we are able to show that dynamic
interactions between the different modules play a pivotal role in generating robust cAMP oscillations; thus, significantly
improving our understanding of the design principles underlying this complex biological system. Copyright q 2009 John
Wiley & Sons, Ltd.
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1. INTRODUCTION
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key organizing principle of biological systems. One of
the main ways in which many organisms ensure robust
functionality under various chemical, biophysical, and
environmental variations is via feedback control [1–7].
It is thus not surprising that such systems have recently
attracted a great deal of attention from control engineers,
who since the emergence of robust control theory have
developed many powerful techniques for analysing the
robustness of complex systems [8–10]. An important
application of such techniques is to address the problem
of model validation [11, 12]—if a proposed model of a
biological system can be shown to lack the type or level
of robustness demonstrated by the organism in vivo,
then this can indicate that the model requires modifica-
tion or further development to adequately explain the
underlying biological phenomena.

Dictyostelium discoideum are social amoebae that
normally live in forest soil, where they feed on bacteria
[13]. Under conditions of starvation, Dictyostelium
cells begin a programme of development during which
they aggregate to eventually form spores atop a stalk
of vacuolated cells. At the beginning of this process
the amoebae become chemotactically sensitive to
adenosine 3′, 5′-cyclic monophosphate (cAMP), and
after about 6 h they acquire competence to relay cAMP
signals. After 8 h, a few pacemaker cells start to emit
cAMP periodically. Surrounding cells move towards
the cAMP source and relay the cAMP signal to more
distant cells. Eventually, the entire population collects
into mound-shaped aggregates containing up to 105

cells. The processes involved in cAMP signalling
in Dictyostelium are mediated by a family of cell
surface cAMP receptors (cARs) that act on a specific
heterotrimeric guanine nucleotide-binding proteins
(G protein) to stimulate actin polymerization, activa-
tion of adenylyl cyclase (ACA) and guanylyl cyclase,
and a number of other responses. Most of the compo-
nents of these pathways have mammalian counterparts,
and much effort has been devoted in recent years
to the study of signal transduction mechanisms in
these simple microorganisms, with the eventual aim of
improving understanding of defects in these pathways
which may lead to disease in humans [13–15].

In [13], a mathematical model was proposed for the
network of interacting proteins involved in generating
cAMP oscillations during the early development stage

of Dictyostelium aggregation, and the dynamics of the
model were claimed to be highly robust when subjected
to trial-and-error variations of one kinetic parameter
at a time. More systematic robustness analyses of
this model published in [3, 16], however, revealed a
surprising lack of robustness in the model’s dynamics
to a set of extremely small perturbations in its param-
eter space. Since the cAMP oscillations observed
in vivo are clearly very robust to wide variations in
these parameters, this result could be interpreted as
casting some doubt on the validity of the model. On
the other hand, there is strong experimental evidence to
support each of the stages and interconnections in the
proposed network, and the ‘nominal’ model’s dynamics
show an excellent match to the data. Subsequent
studies showed that both intracellular stochastic noise
and extracellular cell-to-cell synchronization acted to
improve the robustness of the proposed model [17], but
still failed to generate the levels of robustness which
would be expected based on the reported experimental
data. In this paper, we show how an analysis of the
structural robustness of the model, using the approach
of [12], allows us to pinpoint the parts of the network
exhibiting extreme fragility. Informed by recent results
from the experimental literature, we are then able
to extend the model to include additional modules
that interact with the original model at exactly these
fragile points in the network. The resulting dramatic
improvement in robustness of the extended model
clearly reveals the crucial role played by dynamic
interactions between (apparently redundant) calcium
(Ca2+), inositol trisphosphate (IP3) and G protein-
dependent modules in allowing the maintenance of
stable cAMP oscillations for an individual cell even
in the absence of strong extracellular cAMP waves.

2. STRUCTURAL ROBUSTNESS ANALYSIS OF
A MODEL OF cAMP OSCILLATIONS IN

DICTYOSTELIUM

In this section, we briefly introduce the ‘minimal’ math-
ematical model for the network of proteins underlying
cAMP oscillations in aggregating Dictyostelium cells.
We then show how fragile points in the network may
be identified using tools from robust control theory.
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2.1. A mathematical model of cAMP oscillations in
Dictyostelium

In [13], a network of interacting proteins was proposed
to explain the generation of stable oscillations in cAMP
(and a number of other molecular species) during
the early stages of Dictyostelium aggregation. The
dynamics of this network can be represented using the
following set of nonlinear differential equations [13]:

ẋ1 = k1x7−k2x1x2

ẋ2 = k3x5−k4x2

ẋ3 = k5x7−k6x2x3

ẋ4 = k7−k8x3x4

ẋ5 = k9x1−k10x4x5

ẋ6 = k11x1−k12x6

ẋ7 = k13x6−k14x7

(1)

where x1 is ACA, x2 is PKA (protein kinase A), x3 is
ERK2 (mitogen-activated protein kinase), x4 is intra-
cellular RegA (internal cAMP phosphodiesterase), x5
is internal cAMP, x6 is external cAMP, x7 is the high-
affinity cell surface cAMP receptor CAR1, and ki are
the kinetic parameters. In the model, pulses of cAMP
are produced when ACA is activated after the binding
of extracellular cAMP to the surface receptor CAR1.
When cAMP accumulates internally, it activates the
protein kinase PKA. Ligand-bound CAR1 also acti-
vates the MAP kinase ERK2. ERK2 is then inactivated
by PKA and no longer inhibits the cAMP phosphodi-
esterase REG A. A protein phosphatase activates REG
A such that REGA can hydrolyse internal cAMP.When
REG A hydrolyses the internal cAMP, PKA activity is
inhibited by its regulatory subunit, and the activities of
both ACA and ERK2 go up. Secreted cAMP diffuses
between cells before being degraded by the secreted
phosphodiesterase PDE [13, 16].

Details of the kinetic parameters are given in Table I.
Figure 1(a) depicts the interactions between the various
proteins involved in the network. In the figure, the arrow
→ indicates activation and � indicates deactivation.
As can be seen from the figure, the proposed network
comprises a number of interacting positive and nega-
tive feedback control loops, which together give rise to

Table I. Nominal parameters.

Parameters Nominal value Parameters Nominal value

k1 (1/min) 2.0 k8 (1/�Mmin) 1.3
k2 (1/�Mmin) 0.9 k9 (1/min) 0.3
k3 (1/min) 2.5 k10 (1/�Mmin) 0.8
k4 (1/min) 1.5 k11 (1/min) 0.7
k5 (1/min) 0.6 k12 (1/min) 6.9
k6 (1/�Mmin) 0.8 k13 (1/min) 23.0
k7 (�Mmin) 1.0 k14 (1/min) 4.5

stable oscillations, as shown in Figure 1(b). Note that,
as discussed in [13], the amplitudes, periods, and phase
relations between the different oscillating states of the
model match well with the available experimental data.

2.2. Structured singular value �

In this paper, the structured singular value, denoted by
�, is used to analyse the robustness of the network
model described above. The structured singular value
[8, 10, 16] is defined as follows:

1

�
:=min

�
{�̄(�)|det(I −M(j�)�)=0 for �∈ B�}

where �̄(·) denotes the maximum singular value,
M(j�) the transfer function of a linear time invariant
system, and B� is a set of admissible norm-bounded
uncertainties. In standard robust control theory, the
structured singular value is usually understood as the
smallest possible uncertainty, which makes the system
unstable. In this paper, however, the nominal oscillating
system has an unstable steady state, and thus � can be
interpreted as the smallest perturbation that makes the
system stable, i.e. which destroys the oscillation [18].
The unstable steady state of the model (1) is computed
as follows:

x∗ = (2.4325,1.6226,0.8210,0.9370,

0.9735,0.3475,1.7761)

Using this equilibrium point, we can linearize the model
as follows:

�ẋ= A�x (2)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1017–1026
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Figure 1. Original biochemical network model for cAMP oscillations in Dictyostelium. (a) Schematic diagram of the original
network model and (b) internal and external cAMP oscillations (arbitrary units).

where �x= x−x∗ and the matrix A is the Jacobian of
the model (1) computed at the equilibrium x∗. Thus,
the linearized model (2) is given as follows:

�ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k2x2 −k2x1 0 0 0 0 k1

0 −k4 0 0 k3 0 0

0 −k6x3 −k6x2 0 0 0 k5

0 0 −k8x4 −k8x3 0 0 0

k9 0 0 −k10x5 −k10x4 0 0

k11 0 0 0 0 −k12 0

0 0 0 0 0 k13 −k14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.4603 −2.1893 0 0 0 0 2.00

0 −1.5000 0 0 2.5000 0 0

0 −0.6568 −1.2981 0 0 0 0.60

0 0 −1.2181 −1.0673 0 0 0

0.30 0 0 −0.7788 −0.7496 0 0

0.70 0 0 0 0 −4.90 0

0 0 0 0 0 23.00 −4.50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�x= A�x

Note that it can be seen easily that the equilibrium is
unstable in light of the eigenvalues of the A matrix,
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Figure 2. Perturbation between network interactions:
(a) nominal network and (b) perturbed network.
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Figure 3. Eigenlocus of L(j�), �∈[0,∞].

0.0042± i0.8570. Using this linearized model and
applying the structured singular value, we now identify
the most fragile parts of the model, as described in the
next subsection.

2.3. Identifying fragile channels in the model

In this subsection, we apply the approach proposed in
[12] to the model (1) in order to identify the most fragile
parts of the biochemical network from a structural point
of view. These points in the network can then be exam-
ined, in the light of results from the experimental litera-
ture, to see whether there exist other interactions whose
dynamics can be added to the model. In the linearized
model (2), the off-diagonal elements of the matrix A
indicate the interactions between the different compo-
nents in the biochemical network. To see more clearly
how these interactions affect the dynamic behaviour of
the network, the linearized model can be written as

�ẋ= Ã�x+(A− Ã)�u (3)

where Ã is a diagonal matrix whose diagonal elements
are those of the matrix A. Then, the transfer function
of the linearized model (3) from �u to �x is given by

L(j�)=(j�I − Ã)−1(A− Ã)

Note that the transfer function L(j�) is a 7×7 transfer
function matrix and that the original interactions are
recovered with �u=�x as in Figure 2(a). Figure 3
shows the eigenlocus of the transfer function L(j�)

with respect to the frequency �. We can see that the
eigenlocus is quite close to the critical point +1. In
view of the generalized Nyquist stability criterion and
Figure 3, it is clear that a small perturbation could make
the eigenlocus move towards and finally encircle the
critical point +1, which would correspond to the disap-
pearance of the oscillation. In order to study robustness
against such perturbations in a quantitative manner, we
consider the perturbed network as shown in Figure 2(b).
By looking into the smallest �ij which changes the
stability of the equilibrium from unstable to stable, we
can see how the model is robust against dynamic pertur-
bations in the interaction between different compo-
nents in the network. In particular, we are interested in
perturbing interactions between two components in the
network for the purpose of finding structurally fragile
channels. To this end, we consider a perturbation �ij(j�)

for an element Lij of the transfer function L(j�), where
Lij(j�) denotes the element in the i th row and j th
column of the transfer function matrix L(j�). Then, the
perturbed form of the element Lij(j�) in the transfer
function L(j�) can be written as:

L p,ij(j�)= Lij(j�)(1+�ij(j�)) (4)

Figure 4 shows the smallest �ij for each network
channel which makes the network stable. Note that
we take only existing interactions from Figure 1
into account. In Figure 4, �ij denotes the influence
of the j th component on the i th component. Note
in particular the value of �17, which is extremely
small compared with the others. This extremely small
stabilizing perturbation indicates a fragile point in the
structure of the network [11, 12], and motivates us to
investigate whether there are other modules that could
be added to the original model between x1 (ACA) and
x7 (CAR1) to improve the structural robustness of the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1017–1026
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Figure 4. Minimal stabilizing perturbation.

model at this point. In fact, an analysis of the available
data from the experimental literature confirms that the
original model neglects important interactions between
certain of the proteins in the network and Ca2+ and
IP3, and that these interactions occur at the most
fragile part of the original network, as discussed in the
following section.

3. EXTENSION OF THE MODEL

In this section, we briefly describe the extension of
the original model based on the robustness analysis
results of the previous section and an analysis of the
available experimental data on Dictyostelium signalling
mechanisms. It has been shown experimentally that the
levels of intracellular Ca2+ and cAMP in Dictyostelium
are tightly interconnected ([19] and references therein).
Based on these experimental results, we have consid-
ered cAMP production and degradation to be depen-
dent on the level of intracellular Ca2+, which in turn is
determined by a balance of fluxes into the cytoplasm
from extracellular medium and endoplasmic reticulum
(ER) and fluxes mostly generated by the membrane
pumps compensating Ca2+ leaks across the plasma
and ER membranes. IP3 is synthesized by the Ca2+-
dependent and G protein-dependent phospholipase C
(PLC). IP3 concentration also has a major impact on

the Ca2+-dependent IP3 receptor (IP3R) located on the
ER membrane. To take account of the above effects, the
molecular circuit regulating the production of cAMP
oscillations inDictyostelium has been modelled as three
interconnected modules involving intracellular Ca2+,
IP3, and the G protein-coupled receptor cAR1, as shown
in Figure 5. When external cAMP binds to cAR1, the
G-protein cascade activates intracellular ACA. Tran-
siently activated cAR1 can also lead to the activation
of ACAs via the MAP kinase (ERK2). Intracellular
cAMP is produced by ACA and degraded by intra-
cellular phosphodiesterase (RegA). ERK2 is inhibited
by cAMP-dependent PKA. Inactivated ERK2 loses its
ability to phosphorylate RegA, in turn boosting the level
of RegA activity. cAMP release creates an extracellular
feedback loop for the cell, and also provides a source of
additional cAMP signals for other cells in the vicinity.
In addition to diffusion, the external cAMP feedback
loop is also diminished by the externalPDE.

The network responsible for Ca2+ oscillations in
Dictyostelium constitutes two feedback mechanisms.
The first feedback loop is based on the movement of
Ca2+ ions between the ER and cytoplasm. Intracel-
lular Ca2+ is sequestered into the ER by sarco/ER
Ca2+-ATPase. It is released from the ER back into the
cytoplasm via the IP3R (which has both a Ca2+ and
IP3 dependence), as well as by a direct leak through the
ER membrane. Another feedback mechanism involves
the Ca2+ release from the intracellular compartment
into the extracellular space by a plasma membrane
Ca2+ pump (PMCA). PMCA compensates for the
constant Ca2+ leak throughout the surface of the
plasma membrane into the intracellular space. Other
routes of Ca2+ into the cytoplasm include a range of
Ca2+ channels, including the stretch-activated Ca2+
channels that play a particularly important role in
Dictyostelium chemotaxis via the directed migration
mechanism. IP3 is produced by the only PLC isoform
found in Dictyostelium, which is structurally similar to
the mammalian isoform and regulated by both Ca2+
and G-protein pathways. IP3 is further converted into
IP4 by IP3 kinase (IP3K ).

The intracellular Ca2+ regulation network described
above is directly connected in the extended model with
the G protein-coupled pathways included in the original
model of Laub and Loomis [13]. Figure 6(a) describes

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1017–1026
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the structure of the extended model, which comprises
the following set of nonlinear differential equations:

dx1
dt

= j inPM ·
(

�i −0.5 ·ln
(
Ca2+out
x1

))

− j APM · x1
kia+x1

· CaMx1
kCaM +CaMx1

+ j inER · pCa2+ER ·x2−a4 · p1ER · p2ER
dx2
dt

= Vi −VER
VER

·(− j inER · pCa2+ER ·x2+a4 · p1ER · p2ER)

dx3
dt

= �PLCCa2+ · x14

(kCa2+ +x1)4

+�PLCG
· x5
kG +x5

+ap−�IP3K · x3
kip+ ip3

dx4
dt

= Dx7 ·ACA∗−RegAi ·
x4

kRegA+x4
· kER
kER+x2

−K cAMP
out · x42

(kcAMP+x4)2
−KCa2+

out · x1
kCa2+ +x1

dx5
dt

= K cAMP
out · x42

(kcAMP+x4)2
·(x4−x5)

+KCa2+
out · x1

kCa2+ +x1
−PDEe · x5

kPDE+x5

dx6
dt

= d1 ·
(
PKA

c1
·(1−x6)−x6

)

dx7
dt

= d2 ·
(
PKA

c2
·(1−x7)−x7

)
(5)

where x1 is Ca2+i , x2 is Ca2+ER, x3 is IP3, x4 is cAMPi ,
x5 is cAMPe, x6 is ERK2, and x7 is ACA. Note
that, due to their almost linear dependence on other
states, the variables PKA, RegA, and CAR1 in the
original model have not been included as independent
states in the extended model, but appear implicitly
in the equations, in order to keep the complexity of
the extended model within manageable levels. Owing

to space limitations, we do not present here a full
description of the derivation of the extended model
equations given above, or of the meaning of all of the
model parameters—the interested reader is referred to
[20] for full details of the model and the underlying
experimental results. The key point to be noticed
about the extended model for our purposes is that,
as shown in Figure 6(a), the newly added modules
in the extended model are connected at the point of
interaction between the states x1(ACA) and x7(CAR1)
in the original model, i.e. at the exact point of fragility in
the original network revealed by our structural robust-
ness analysis. As shown in Figure 6(b), the nominal
responses of the extended model also generate stable
oscillations, and match well with the experimental
data. The obvious question that now arises is whether
the extended model exhibits improved robustness
characteristics when compared with the original
‘minimal’ model—this issue is addressed in the
following section.

4. COMPARING THE ROBUSTNESS PROPERTIES
OF THE EXTENDED AND ORIGINAL MODELS

In this section, we compare the robustness of the
oscillations produced by the original and extended
models against variations in a set of parameters that
are common to both models. In particular, we are
interested in the effects of parametric uncertainty on
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Figure 7. Robustness comparison: existence
of stable oscillations.
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Table II. Robustness test.

Original model Extended model

Period (min) Amplitude Period (min) Amplitude

20% perturbation Mean: 11.12 Mean: 0.62 Mean: 9.09 Mean: 0.63
STD: 0.50 STD: 0.11 STD: 0.02 STD: 0.09

100% oscillation 100 % oscillation

40% perturbation Mean: 11.60 Mean: 0.64 Mean: 9.10 Mean: 0.67
STD: 0.93 STD: 0.12 STD: 0.05 STD: 0.21

19.8% no oscillation 100% oscillation

60% perturbation Mean: 12.12 Mean: 0.62 Mean: 9.12 Mean: 0.72
STD: 1.42 STD: 0.13 STD: 0.11 STD: 0.34

35.8% no oscillation 100% oscillation

80% perturbation Mean: 12.08 Mean: 0.62 Mean: 9.26 Mean: 0.73
STD: 1.38 STD: 0.13 STD: 0.94 STD: 0.45

51.2% no oscillation 100% oscillation

the amplitude, period, and stability of the oscillations.
We focus on uncertainties in a set of parameters that
determine the dynamics of the extracellular cAMP
positive feedback loop in both models—these are k9,
k10, k11, and k12 in the original model and DACA,
RegAi , K

cAMP
out , and PDEe in the extended model. To

compare the robustness of the two models we carry
out 1000 Monte Carlo simulations for a number of
different uncertainty levels, in which the sample value
for each parameter is drawn from the set:

p= p̄(1+�·�) (6)

where p denotes the sampled value of the parameter
used in the simulation, p̄ is the nominal value of the
parameter, � is the maximal level of the perturbation
(chosen as 0.2, 0.4, 0.6, and 0.8 in the various Monte
Carlo simulation campaigns), and � is a uniformly
distributed random number between −1 and 1. Figure 7
shows that the percentage of simulations producing
stable oscillations falls dramatically for the original
model as the maximum allowable level of uncertainty
in the kinetic parameters is increased. For the extended
model, however, 100% of the simulations produce
stable oscillations even for the highest level of uncer-
tainty, demonstrating a dramatic improvement in the
robustness of the model. In Table II, the effect of
the uncertainty on the period and amplitude of the

oscillations is reported for each model. The standard
deviation of the periods for each different level of
uncertainty is approximately an order of magnitude
smaller in the case of the extended model, even though
the standard deviation is calculated only for the cells
displaying stable oscillations in each case. Note also
that although the standard deviations of the amplitudes
appear to be similar for both models, in reality there
is a much greater level of variation in the amplitudes
of the original model. This is because the standard
deviations are calculated only for those cells displaying
stable oscillations in each case, and it is precisely
those cells that are no longer generating stable cAMP
oscillations which have the largest deviation from the
nominal amplitude values.

5. CONCLUSIONS

In this paper we showed how techniques from robust
control theory could be used to analyse and extend a
mathematical model of the interacting proteins under-
lying cAMP oscillations in aggregating Dictyostelium
cells. Starting with a previously proposed ‘minimal’
model, we showed how robustness analysis using
the structured singular value can identify points of
structural fragility in the network. By combining these

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1017–1026
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results with insights from recent results from the
experimental literature, we showed how the original
model can be augmented with some important addi-
tional modules, comprising networks involving IP3
and Ca2+, which interact with the original model at
precisely the points of fragility identified via our initial
robustness analysis. A comparative analysis of the two
models revealed dramatic improvements in robustness
against uncertainty in a set of parameters common
to both networks, thus confirming the key role of
dynamic interactions between the different modules in
generating robust cAMP oscillations. The results of our
study highlight the usefulness of robustness analysis
techniques in validating and improving mathematical
models of biochemical networks.

ACKNOWLEDGEMENTS

This work was supported by BBSRC research grant
BB/D015340/1. This work was also supported by
the National Research Foundation of Korea (NRF)
grant funded by the Korea Ministry of Education,
Science & Technology (MEST) through the BRL (Basic
Research Laboratory) grant (2009-0086964), the Systems
Biology grant (20090065567), the Nuclear Research grant
(M20708000001-07B0800-00110), the 21C Frontier Micro-
bial Genomics and Application Center Program (Grant
MG08-0205-4-0), and the WCU grant (R32-2008-000-
10218-0). This work was also supported by the ‘Systems
biology infrastructure establishment grant’ provided by
Gwangju Institute of Science & Technology in 2009.

REFERENCES

1. Kitano H. Biological robustness. Nature Reviews Genetics
2004; 5:826–837.

2. Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J. Robustness
of cellular functions. Cell 2004; 118:675–685.

3. Ma L, Iglesias PA. Quantifying robustness of biochemical
network model. BMC Bioinformatics 2002; 3(38):1471–2105.

4. Carlson JM, Doyle J. Complexity robustness. Proceedings of
the National Academy of Sciences 2002; 99:2538–2545.

5. Stelling J, Gilles ED, Doyle FJ. Robustness properties of
circadian clock architectures. Proceedings of the National
Academy of Sciences 2004; 101(36):13210–13215.

6. Kwon Y-K, Cho K-H. Quantitative analysis of robustness and
fragility in biological networks based on feedback dynamics.
Bioinformatics 2008; 24(7):987–994.

7. Kim J-R, Yoon Y, Cho K-H. Coupled feedback loops form
dynamic motifs of cellular networks. Biophysical Journal
2008; 94(2):359–365.

8. Doyle JC. Analysis of feedback systems with structured
uncertainties. IEE Proceedings, Part D 1982; 129:
242–250.

9. Zhou K, Doyle JC. Essentials of Robust Control. Prentice-
Hall: Englewood Cliffs, NJ, 1997.

10. Skogestad S, Postlethwaite I. Multivariable Feedback Control.
Addison-Wesley: Reading, MA, 2005.

11. Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J,
Kitano H. Robustness as a measure of plausibility in models
of biological networks. Journal of Theoretical Biology 2002;
216:19–30.

12. Jacobsen EW, Cedersund G. Structural robustness of
biochemical network models with application to the oscillatory
metabolism of activated neutrophils. IET Systems Biology
2008; 2(1):39–47.

13. Laub MT, Loomis WF. A molecular network that
produces spontaneous oscillations in excitable cells of
Dictyostelium. Molecular Biology of the Cell 1999; 9:
3521–3532.

14. Fache S, Dalous J, Engelund M, Hansen C, Chamaraux F,
Fourcade B, Satre M, Devreotes P, Bruckert F. Calcium
mobilization stimulates Dictyostelium discoideum shear-flow-
induced cell motility. Journal of Cell Science 2005; 118:
3445–3457.

15. Williams RS, Boeckeler K, Graf R, Muller-Taubenberger
A, Li Z, Isberg RR, Wessels D, Soll DR, Alexander H,
Alexander S. Towards a molecular understanding of human
diseases using Dictyostelium discoideum. Trends in Molecular
Medicine 2006; 12:415–424.

16. Kim J, Bates DG, Postlethwaite I, Ma L, Iglesias PA.
Robustness analysis of biochemical network models. IEE
Proceedings—Systems Biology 2006; 153(3):96–104.

17. Kim J, Heslop-Harrison P, Postlethwaite I, Bates DG.
Stochastic noise and synchronisation during Dictyostelium
aggregation make cAMP oscillations robust. PLoS
Computational Biology 2007; 3(11):e218.

18. Schmidt H, Jacobsen EW. Identifying feedback mechanisms
behind complex cell behaviors in biochemical networks. IEEE
Control Systems Magazine, Special Issue: Systems Biology
2004; 24(4):91–102.

19. Lusche DF, Bezares-Roder K, Happle K, Schlatterer C. cAMP
controls cytosolic Ca2+ levels in Dictyostelium discoideum.
BMC Cell Biology 2005; 6:12.

20. Valeyev NV, Kim J-S, (Pat) Heslop-Harrison JS,
Postlethwaite I, Kotov NV, Bates DG. Computational
modelling suggests dynamic interactions between Ca2+,
IP3 and G protein-coupled modules are key to robust
Dictyostelium aggregation. Molecular BioSystems 2009; 15:
612–628.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1017–1026
DOI: 10.1002/rnc


