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Chapter 4
Modelling and Analysis of Feedback Control
Mechanisms Underlying Osmoregulation
in Yeast

Francesco Montefusco, Ozgur E. Akman, Orkun S. Soyer
and Declan G. Bates

Abstract Biological systems display complex dynamics emerging from intricate1

networks of interacting molecular components: cells use signalling pathways and2

regulatory control mechanisms to coordinate multiple processes, allowing them to3

respond and adapt to an ever-changing environment. Many structural and dynamical4

features of biological control systems can also be found in engineered control systems5

and, hence, feedback control theory can provide a useful approach for the analysis and6

design of complex biological systems. In this chapter we provide a control theoretic7

analysis of the osmoregulation system in Saccharomyces cerevisiae (see [8, 24, 26,8

40]), where a complex biochemical signalling and regulatory network allows cells9

to maintain homeostasis in the face of osmotic shock.10
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2 F. Montefusco et al.

4.1 Introduction14

Osmosis is the diffusion of water through a semipermeable membrane (permeable to15

the solvent, but not the solute), from the compartment containing a low concentra-16

tion (hypotonic) solution to the one at high concentration (hypertonic). The chemical17

potential of water is central in this process and can be considered as a measure of18

the effective water concentration in a given area. The water potential is influenced19

by two factors, [17]: the osmotic potential and the pressure potential. The first is20

approximately proportional to the concentration of dissolved molecules of solutes:21

when the concentration of solute molecules increases, the water potential decreases.22

The second takes into account the hydrostatic pressure, the pressure exerted by a fluid23

at equilibrium due to the force of gravity. For two regions of water with different24

potentials and separated from each other by a semipermeable membrane, there is a25

water flow to the region of lower potential by osmosis: the movement of the fluid26

from the hypotonic to the hypertonic solution, while decreasing the concentration27

difference, increases the pressure of the hypertonic solution with respect to the hypo-28

tonic, thus producing a force that counteracts the osmosis. When these two effects29

balance each other, the osmotic equilibrium is reached: there is no net movement of30

solvent and the pressure required to maintain an equilibrium is defined as the osmotic31

pressure.32

Osmosis is particularly important for cells, since many biological membranes33

are permeable to small molecules like water, but impermeable to larger molecules34

and ions. Osmosis provides the primary means by which water is transported into35

and out of cells. Typically, a cell has a higher intra cellular osmotic pressure (Pi )36

than extra cellular osmotic pressure (Pe). The main reason for this difference is37

that highly charged macromolecules and metabolites attract many small inorganic38

ions to the cell interior (the Donnan effect, see [1]). Due to this difference, water39

will flow into the cell, leading to swelling and potentially to cell rupture. The yeast40

Saccharomyces cerevisiae prevents the fundamental problem of water inflow and cell41

swelling by its cell wall, which is less elastic than the plasmamembrane. The cell wall42

resists the expansion of the cell and creates an inward pressure on the cell contents,43

Gervais and Beney [9]. This pressure is called the turgor pressure Pt , defined as the44

difference in the hydrostatic pressure between the inside and the outside of the cell.45

At equilibrium (equil.), the water potential is equal inside and outside of the cell and46

the turgor pressure balances the difference in osmotic pressures, as in [33],47

Pi = Pe + Pt (equil.). (4.1)48

Osmotic shocks arise due to a sudden rise (for example the addition of salt to the49

cellmedium) or fall in the concentration of a solute in the cell’s environment, resulting50

in rapid movements of water through the cell’s membrane. These movements can51

produce dramatic consequences for the cell, since loss of water inhibits the transport52

of substrates and cofactors into the cell, while the uptake of large quantities of water53

can lead to swelling, rupture of the cell membrane or apoptosis. Due to their more54
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4 Modelling and Analysis of Feedback Control Mechanisms 3

direct contact with their environment, single-celled organisms are generally more55

vulnerable to osmotic shock. However, cells in large animals such as mammals also56

suffer similar stresses under certain conditions, Ho [12].57

Osmoadaptation is the mechanism by which cells sense and respond to various58

changes in their environmental conditions to avoid the aforementioned dramatic con-59

sequences. Organisms have evolved a variety of mechanisms to respond to osmotic60

shock. Typically, cells recognise changes in the osmolarity of their surroundings61

by using surface sensors which generate signals by activating signal transduction62

networks. These pathway are found in all eukaryotic organisms and are important63

in coordinating the response from the cell membrane into the cell, Rep et al. [30].64

Recent experimental research indicates that most eukaryotic cells use the mitogen65

activated protein (MAP) kinase pathways for this purpose, Kltz and Burg [16].66

4.2 Osmoregulation Process in Yeast67

In recent years, the osmoregulatory response in yeast has emerged as an important68

model system for studying adaptive, homeostatic responses to environmental distur-69

bances (see [8, 15]). The underlying molecular control system is well characterized70

in Saccharomyces cerevisiae (see [26, 40]), where it comprises three separate mech-71

anisms that act to adjust the glycerol production in order to keep the cell’s turgor72

pressure and volume constant in the face of environmental changes: (1) the regu-73

lation of the membrane protein Fps1 determining the glycerol export rate; (2) the74

transcription of several genes, whose proteins are involved in glycerol production,75

by the activation of the high osmolarity glycerol (HOG) mitogen-activated protein76

kinase (MAPK) signaling pathway and (3) the HOG kinase dependent regulation of77

the glycerol via non-transcriptional mechanisms. Despite its biochemical complex-78

ity (see Fig. 4.1), the osmoregulation system in yeast can be naturally abstracted79

as a feedback control system comprised of distinct branches as described above.80

This approach was taken in recent studies, which aimed to use standard engineering81

control models to capture the experimentally observed responses of yeast to osmotic82

shock and to further predict its structural and dynamic features (see [8, 24, 26]). Gen-83

nemark et al. [8] combined proportional controllers to model the above-described84

biochemical branches. Mettetal et al. [24] developed a concise model by using linear85

systems theory, and then revised this model arguing for the necessity of at least one86

branch of the system to implement integral control to achieve the experimentally87

observed adaptive responses in the system, Muzzey et al. [26]. The role of integral88

feedback in perfectly adaptive systems is by nowwell-studied in the SystemsBiology89

literature (see [26, 27]), and it is highly likely that the osmoregulation system in yeast90

does indeed include a biochemical implementation of integral feedback, as seen in91

other systems (see [6, 27, 39]). It is still unclear, however, exactly how biological92

control systems such as osmoregulation might have evolved to use integral feedback93

control, and whether other alternative mechanisms might produce similar (or better)94

performance properties.95
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4 F. Montefusco et al.

Fig. 4.1 Overview of the response of yeast to osmotic schlock, the figure has been taken from [15]
and reproduced with permission of Nature Publishing Group

As a first step towards answering this question, we recently extended the propor-96

tional controller model devised in [8] with the implementation of an ultrasensitive97

controller, Montefusco et al. [25]. Ultrasensitivity describes a particular form of98

sensitivity in biological systems, where the system does not respond to incoming99

signals outside of a certain regime, but responds in a highly sensitive manner within100

this regime. Such an input-output relationship (i.e. ultrasensitivity) can be described101

by a specific nonlinear function, is shown to be a ubiquitous feature in several biologi-102

cal systems, and can be biochemically implemented through a variety of mechanisms103

such as phosphorylation cycles and cooperative binding (see [4, 11]). The MAPK104

systems, which are also found in osmoregulation, are theoretically shown to be capa-105

ble of embedding ultrasensitivity (see [3, 13]), and bistability [21]. Starting from the106

proportional control model developed by [8], we explore the consequences of such107

potential ultrasensitivity and show that it significantly increases system performance108

in achieving homeostasis to osmotic perturbations.109

In the following sections we present the model devised in [8], then we focus110

our attention on the results presented in [24, 26]. Finally, we provide an updated111

description of the recent results first presented in [25].112

4.3 A Proportional Control Based Model113

of the Osmoregulation in Yeast114

In this section we describe the model presented in [8], where the authors devised a115

simple ordinary differential equation (ODE) model of the adaptive response to an116

osmotic shock in S. cerevisiae. They abstracted several elements to yield a reduced117
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4 Modelling and Analysis of Feedback Control Mechanisms 5

Fig. 4.2 Mathematical model of the osmoregulation process. This figure has been adapted from [8]

representation of the system, starting from the detailed model developed in [15] (see118

the diagram in Fig. 4.2). The model, in particular, consists of two main components.119

First, a biophysical model describing how the cell volume and the turgor pressure are120

affected by varying extra–cellular osmolarity. Second, the two parallel mechanisms121

for controlling the biophysical system in order to keep turgor pressure and volume122

constant: one by controlling the production of glycerol via the HOG pathway and123

the other by controlling the outflow of glycerol via the Fps1 channel. The complete124

model consists of 4 ODE’s, 3 algebraic equations and 10 parameters, that have been125

estimated using experimental data on glycerol. The authors have validated the model126

by predicting the behaviour of modified strains and input functions.127

4.3.1 The Mathematical Model128

The mathematical model presented in [8] is described in the following paragraphs.129

4.3.1.1 The Biophysical Module130

The biophysical system is modelled by considering the dependencies between cell131

volume V , the turgor pressure Pt , the intra–cellular osmotic pressure Pi and the132

extra–cellular osmotic pressure Pe. At any given time t , Pi (t), Pe(t) and Pt (t) are133

determining the flow of water across the cell membrane, which is proportional to134

(Pi (t)− Pe(t)− Pt (t)). Assuming that the cell volume is only affected by the inflow135

and outflow of water, then the change in volume can be expressed as136

dV

dt
= kp1(Pi (t) − Pe(t) − Pt (t)), (4.2)137
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6 F. Montefusco et al.

with kp1 denoting a hydraulic water permeability constant. At equilibrium (equil.),138

i.e. constant volume and no net flow of water over the membrane, the Eq. (4.2)139

reduces to (4.1).140

The only osmolyte considered explicitly in the model is glycerol (Gly) and,141

hence, ions and other small molecules, changing upon osmotic shock, Sunder et al.142

[35], are not considered. This assumption is motivated by experimental results from143

[29], where the authors found that glycerol counter-balances approximately 80% of144

applied NaCl in S. cerevisiae. Therefore, the intra-cellular osmotic pressure, accord-145

ing to van’t Hoff’s law, is expressed as146

Pi (t) = s + Gly(t)

V (t) − Vb
, (4.3)147

with s being the concentration of the sum of osmolytes (assumed constant) other than148

glycerol present in the cell, and Vb being the non-osmotic volume of the cell, sub-149

suming non-polar cellular components, such as membranes. According to Eq. (4.3),150

the intra–cellular osmotic pressure increases with the glycerol, which can be used151

to control the turgor pressure of the cell. The extra-cellular osmotic pressure is only152

modified by the input signal, for example applied salt stress, and is then independent153

of changes in other variables. The turgor pressure is linearly dependent on the volume154

according to [17], in the following manner:155

Pt (t) = ε

(
V (t)

V (0)
− 1

)
+ Pt (0), (4.4)156

where V (0) is the initial volume, Pt (0) is the initial turgor pressure, and ε is the157

volumetric elastic modulus. By expressing the volume at which Pt = 0 with the158

notation V Pt =0, (4.4) can be rewritten as159

Pt (t) =
{

Pt (0)
V (t)−V Pt =0

V (0)−V Pt =0 , V (t) > V Pt =0

0, otherwise.
160

4.3.1.2 The Controller Modules161

There are two branches of control in the model: the first represents the closure of162

Fps1 glycerol transporter channels as a reaction to osmotic shock, and the second163

the activation of the HOG pathway, leading to glycerol production after a time delay.164

The input signal e arriving at the controllers is expressed as165

e(t) = Pt (0) − Pt (t), (4.5)166

which is the difference in turgor pressure. The output of the Fps1 branch, which167

corresponds to the response of the transporter channels, is given by168
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4 Modelling and Analysis of Feedback Control Mechanisms 7

uFps1(t) =
{

kp2
Pt (0)−e(t)

Pt (0)
, e(t) > 0

kp2, otherwise.
(4.6)169

The function uFps1 returns real values in the interval [0, kp2], where 0 corresponds170

to completely closed and where kp2 is the glycerol permeability coefficient in a171

completely open Fps1 channel.172

The output of theHOGbranch,which corresponds to theHOGpathway dependent173

glycerol production, is expressed as174

u H OG(t) =
{

kH OG · e, e(t) > 0

0, otherwise,
(4.7)175

where kH OG is the gain of this branch.176

The time delay accounting for transcription and translation in the HOG pathway177

is approximated by178

dũ H OG

dt
= 1

Td
(u H OG(t) − ũ H OG(t)),179

with ũ H OG(t) being the time delayed variable and Td being the amount of time delay180

considered. As reported in [8], very simple proportional controllers have been used181

in order to reduce the complexity of the model, even though it is known that, for182

example, MAPK signalling pathways often exhibit a switch–like behaviour, Huang183

and Ferrell [13]. In the last section of this chapter we compare the dynamics of this184

model with those obtained by using a HOG controller implementing ultrasensitivity,185

Montefusco et al. [25] (Table 4.1).186 AQ1

4.3.1.3 The Glycerol Module187

The exchange of internal and external glycerol, u Di f f over the Fps1 channel is188

modelled by using Fick’s first law of diffusion as189

u Di f f (t) = uFps1(t)

(
Gly(t)

V (t) − Vb
− Glye(t)

Ve

)
,190

with Ve being the extra-cellular volume and Glye being the glycerol concentration in191

the extra-cellular compartment. Intra-cellular glycerol Gly production is expressed,192

combining the output of the two controllers described above, as193

dGly

dt
= ũ H OG(t) − u Di f f (t)194
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8 F. Montefusco et al.

Table 4.1 Model parameters: all volumes are scaled such that the initial volume of the cell is 1

Parameters Bounds

kp1 Water perm. coeff. [0.0052, 160] Osm−1

kp2 Fps1 control const. [0, ∞]
Td Time delay [5, 30] min
kH OG HOG control const. [0, ∞] Osm−1

Gly(0) Initial Gly [1.1 5] × 10−4

Pi (0) Initial Pi [0.6 0.7] Osm
Pe(0) Initial Pe [0.24 0.25] Osm
Vb Non osmotic volume [0.31 0.46]
V Pt =0 V when Pt = 0 [0.5 0.99]
Ve External volume [0.5 5] × 103

Dependent parameters Value
V (0) Initial V - 1

relative volume
Glye(0) Initial Glye

Ve Gly(0)
(V (0)−Vb)

Pt (0) Initial Pt Pi (0) − Pe(0)
s No. of osmolytes Pi (0)(V (0) − Vb)

other than Gly -Gly(0)

Both Gly and Glye represent number of molecules (mol scaled by V (0))

and extra-cellular glycerol, depending only on the diffusion over the Fps1 channel,195

is described by196

dGlye

dt
= u Di f f (t).197

4.3.2 Parameter Estimation and Results198

The model contains 14 parameters, 4 of which are dependent, as given in Table 4.5.199

In [8], the other parameters are estimated by simulating the model and minimising200

the error defined as the sum of the squares of the difference between simulated, X (t),201

and experimental time series data, X̂(ti ), for intra–cellular and total glycerol. The202

error for one time series is calculated as203

error =
∑

i

(X (ti ) − X̂(ti ))
2. (4.8)204

The best parameters found are given in Table 4.2. To find a possible global mini-205

mumpoint of the error function, the authors in [8] evaluated several randomly chosen206

starting points in the feasible region of the parameter space. The research was contin-207

ued for the sets of parameter with sufficient low error by using the function fmincon208

from theMATLABOptimization Toolbox, MATLAB [22]. Figures 4.3 and 4.4 show209

the simulated data using the simple model devised in [8] and the parameter set given210
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4 Modelling and Analysis of Feedback Control Mechanisms 9

Table 4.2 Optimized parameters by using the relation (4.8): the values of Pe and kp1 were fixed
while the remaining 8 parameters were estimated from time series data

Parameters Value

kp1 Water perm. coeff. 1 Osm−1

kp2 Fps1 control const. 0.316
Td Time delay 8.61 min
kH OG HOG control const. 0.416 Osm−1

Gly(0) Initial Gly 2 × 10−4

Pi (0) Initial Pi 0.636 Osm
Pe(0) Initial Pe 0.240 Osm
Vb Non osmotic volume 0.368
V Pt =0 V when Pt = 0 0.99
Ve External volume 4.79 × 103

Gly represents number of molecules (mol scaled by V (0))
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Volume
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0
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e
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O
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t
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O
sm

−20 0 20 40 60 80 100 120
0

2

4
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−3 [Total glycerol]

time [min]

M

sim. data
exp. data

Fig. 4.3 Simulation of a step signal of 1M NaCl at t = 0. Upper plot external osmotic signal.
Second plot the turgor pressure. Third plot the volume response. Lower plot the total glycerol
concentration for the simulated (sim.) and experimental (exp.) data taken from [8]

in Table 4.2 and a comparison with the time-series experimental data. Figure 4.3211

shows the simulation of the model by applying an osmotic stress of 1M NaCl at time212

t = 0, corresponding to an increase in the extra–cellular osmotic pressure by 1.86213

Osm, while Fig. 4.4 shows the response to a double stress of 0.5M NaCl at t = 0 and214

t = 30. The simulated data show how the turgor pressure and volume drop immedi-215

ately upon the osmotic stress. While the volume returns to approximately the same216

value as before the stress, the turgor pressure, the controlled variable, doesn’t reach217

its previous value. The main reason for incomplete recovery is that the model para-218
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10 F. Montefusco et al.
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Fig. 4.4 Simulation of a double stress of 0.5M NaCl at t = 0 and t = 30. Upper plot external
osmotic signal. Second plot the turgor pressure. Third plot the volume response. Lower plot the
total glycerol concentration for the simulated (sim.) and experimental (exp.) data taken from [8]

meters are estimated by using the measured glycerol data, which are not sufficient219

for complete recovery of both volume and turgor pressure. The reason why volume220

and not turgor pressure is recovered is due to the high value of the estimated V Pt =0,221

indicating a low elasticity of the cell wall. Therefore, turgor pressure is not recovered222

until the volume is almost completely recovered. For a lower value of V Pt =0, the223

turgor pressure would be recovered faster and the volume slower. Figure 4.4 shows224

that the model can reproduce the regulatory behaviour of the system to a series of225

osmotic shocks. Moreover, it is able to predict the behaviour of modified strains. For226

example, Fig. 4.5 shows the simulation to an osmotic shock in a modified strain with227

constitutively open Fps1 (i.e. only one control mechanism via the HOG pathway).228

This test was experimentally demonstrated in [15]. To simulate this experiment we229

set uFps1 = kp2 (see Eq. (4.6)) and adjust the value of Glyc(0) to obtain a realistic230

initial value of total glycerol. Figure 4.5 shows that the model correctly predicts231

the levels of total glycerol. Note, in particular, an over-production of the glycerol as232

experimentally measured (double production compared to wild type experiment) and233

a prolonged activation time of the HOG pathway (see Fig. 4d in [15]), that can not234

be explicitly observed using this model, since Hog1 is not a variable of the model,235

but implicitly deduced from the delay of volume recovery.236

This model can therefore give us significant insight into the functioning of the sys-237

tem, and the results indicate that even such a simple model can predict the behaviour238

of different strains and the response to different input functions. It is also easier to239

understand and analyse than the detailed model developed in [15] (compare Fig. 4.1240
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Fig. 4.5 Simulation of one osmotic stress of 0.5M NaCl at t = 0 in modified system (open Fps1).
Upper plot external osmotic signal. Second plot the turgor pressure. Third plot the volume response.
Lower plot the total glycerol concentration for the simulated (sim.) and experimental (exp.) data
taken from [8]

with Fig. 4.2). However, detailed models are often important to completely under-241

stand a particular phenomena. For instance, in [15] the authors extracted novel infor-242

mation on the features of the system: the switch-like behaviour of the phosphorelay243

module consisting of three protein (Sln1, Ypd1 and Ssk1) that become more pro-244

nounced for higher number of components (see Fig. 2a in [15], where a comparison245

of the steady-state characteristics is performed for phosphorelay systems consisting246

of one, two and three proteins); and the main role of the phosphatases, that is to247

constantly counteract HOG pathway activation to set thresholds and reduce noise248

instead of providing a direct downregulation of the pathway.249

4.4 Systems-Engineering Approaches250

In this section we introduce some methods based on systems-engineering tools to251

better understand the dynamics of the osmo–adaptation response. In this area, impor-252

tant contributions have been produced by the group of van Oudenaarden. In a first253

work (see [24]), the authors analysed the dynamics of the system in the frequency254

domain, a feasible approach which allows the derivation of a concise model of the255

basic mechanisms of the osmoregulation, that emerge from an intricate network256

of interactions acting at very different time–scales, e.g. ligand binding or unbind-257

ing, phosphorylation, diffusion between compartments and transcription of genes.258

In [26], the authors later found that Hog1–dependent glycerol accumulation is cru-259

cial for the perfect adaptation of yeast to simple step increases of osmotic change,260
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12 F. Montefusco et al.

suggesting that Hog1 may implement integral–feedback via an as yet–unknown role261

for protein-protein interactions that increase the internal osmolyte concentration.262

4.4.1 A LTI System Identification263

In this section we apply frequency domain analysis to derive a concise model of the264

HOG MAPK cascade in the budding yeast S. cerevisiae. Our treatment is mainly265

based on the results presented in [24]. After a hyper osmotic shock, membrane266

proteins trigger a signal transduction cascade that culminates in the activation of267

the MAPK Hog1. This activated protein, which is primarily cytoplasmic before the268

shock, is then imported into the nucleus, where it activates several transcription269

responses to osmotic stress. When the osmotic balance is restored, Hog1 is deacti-270

vated through dephosphorylation, thus allowing its export back in the cytoplasm. In271

order to identify themodel, the input and the output of the system to be predicted have272

to bedefined: in this case the input is the extra–cellular osmolyte concentration and the273

output is the concentration of active Hog1 protein. In [24] the input is manipulated by274

varying the salt concentration of the medium surrounding the cells, whereas the out-275

put is measured by estimating the localisation of Hog1 in the nucleus, R(t), through276

fluorescence image analysis: the cellular localisation of Hog1-YFP, a yellow fluores-277

cent protein fused to Hog1, and Nrd1-RFP, a red fluorescent protein fused to a strictly278

nuclear protein, are simultaneously monitored and R(t) is measured as the nuclear279

to total Hog1 ratio in the cell (R(t) = (< Y F P >nucleus / < Y F P >cell)population ,280

averaged over the 50–300 cells observed in the microscope’s field of view).281

The experiments are performed by applying pulse wave signals to the cells with282

different values of the period T0, ranging from 2 to 128 min and they show that283

the steady-state response is approximately sinusoidal, with period T0 (see Fig. 4.6).284

Using Fourier analysis, both the input and the output can be approximated as sine285

waves oscillating with a period T0 = 2π/ω0. In particular, the experimental input,286

using a first harmonic approximation (see [5] pp. 26–30), can be written as287

u(t) ≈ 0.2

(
1

2
+ 2

π
sin(ω0t)

)
(4.9)288

and the steady-state response R∞(t) as289

R∞(t) = R0 + A(ω0) sin(ω0t + φ(ω0), (4.10)290

where R0 is the offset term and A and φ are two parameters that characterise the291

oscillations. A and φ are represented through the absolute value and phase of the292

complex number R̃(ω0), respectively. This complex number is calculated from the293

Fourier coefficient of the experimental data, R∞(t), taken for stimuli with period T0294

using the following relation:295

324129_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:15/5/2014 Pages: 34 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4 Modelling and Analysis of Feedback Control Mechanisms 13

30 35 40 45 50
−0.1

0

0.1

0.2

0.3

Single harmonic approximation

[M
 N

aC
l]

input approx. input

30 35 40 45 50

1.25

1.3

1.35

1.4

time [min]

[N
uc

le
ar

 H
og

1] sim−data
exp−data

Fig. 4.6 Upper plot Pulse signal of 0.2M NaCl with T0 = 8 min and its approximation using the
first harmonic. Lower plot the function R∞(t) (sim.) defined by (4.11) and fitted to the experimental
(exp.) measurements of nuclear Hog1 enrichment taken from [24]

R̃(ω0) = 2

(n+m)T0∫
nT0

exp−iω0t R∞(t)

mT0
dt, (4.11)296

The amplitude of the signal, defined as A(ω0) = |R̃(ω0)|, represents half the distance297

from the peak to the trough of the output sine wave. The phase parameter, φ(ω0), can298

be written implicitly as R̃(ω0)

|(R̃(ω0)| exp
i(φ(ω0)−π/2). The parameter n is chosen so that the299

system is allowed to approach steady state before computing R̃(ω0). The parameter300

m, which represents the number of periods over which the Fourier transform is301

computed, is set to be at least two for periods less than 64 min. For periods greater302

than or equal to 64 min, it is found that the first period is a good representation of the303

steady state oscillations and thus R̃(ω0) is computed over this period alone. However,304

the values A(ω0) and φ(ω0) can be computed for different values of ω0 by fitting305

the parameters of the Eq. (4.11) to the experimental time response as shown in the306

lower plot of Fig. 4.6 for ω0 = 2π/8 rad/min. The resulting frequency response is307

shown on the Bode plots in Fig. 4.7.308

Apredictivemodel can be identified from the available experimental data by using309

linear systems theory: a linear input–output relationship in Fourier space is defined310

by311

Ỹ (ω) = A0

∏n
i=1(zn + iω)∏n
i=1(pn + iω)

Ũ (ω), (4.12)312
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Fig. 4.7 The experimental data of the Fourier amplitude A(ω) and phase φ(ω) (two measurements
at each frequency), for wild type (circles) and underexpressed Pbs2 mutant (squares) strains, with
the fitting models (solid lines). Experimental data taken from [24]

Table 4.3 Best-fitting
parameters for the Eq. (4.13)

p1 [min−1] p2 [min−1] A0 [min−1]
Wild type −0.1434 + 0.239i −0.1434 − 0.239i 0.3292
Low Psb2 −0.0466 −0.9755 0.3169

where Ỹ (ω) and Ũ (ω) are the output and input Fourier spectra, respectively, zn are313

the n roots of the numerator of Eq. (4.12), also called zeros, and pn are the n roots314

of the denominator, also called poles. The simplest such model from this class, that315

describes the experimental points in Fig. 4.7, exhibits a zero at the origin (z1 = 0)316

and a pair of poles p1 and p2 yielding317

(p1 + iω)(p2 + iω)Ỹ (ω) = (iω)A0Ũ (ω) . (4.13)318

The best-fit parameters for the wild type and for the mutant (Pbs2 underexpression)319

strains are shown in Table 4.3. Applying the inverse Fourier transform (note a mul-320

tiplication by iω in Fourier domain corresponds to the derivative operator in time321

domain) the following relationship in the time–domain is given:322

ÿ(t) + (p1 + p2)ẏ(t) + (p1 p2)y(t) = A0u̇(t) . (4.14)323

The identified second-order LTI models, defined by the Eq. (4.13), are used to324

predict the response of the two strains to a step input of 0.2MNaCl. Figure 4.8 shows325

the predicted responses of the two models and a comparison with the experimental326

measurements: the responses of the linear systems are offset by a constant value327

(1.23 M NaCl), which is the experimentally measured basal activity level of Hog1.328

The twomodels show a good qualitative match to the different sets of data for the two329
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Fig. 4.8 Time domain response of the system to a step increase of 0.2 M NaCl: comparison of the
responses predicted by the two linearmodels developed in the frequency domain vs the experimental
measurements taken from [24]

yeast strains (the match is not perfect, since these are linear models of a process that330

will clearly also involve some nonlinear dynamics). Note that the wild type model331

exhibits a pair of complex conjugated poles and therefore the response is oscillatory,332

with a larger overshoot and a faster response than the low Pbs2 model, as expected333

from the experimental data. Indeed, the latter has two real poles, and thus exhibits a334

limited initial overshoot, a fast initial rise (due to the pole with small time constant)335

and a slow decay (caused by the large time constant associated with the other real336

pole). The identified LTI model can be written as a pair of differential equations, that337

is more readily interpreted in terms of biological process:338

(
ż(t)
ẏ(t)

)
=

(
a b
c d

) (
z(t)
y(t)

)
+

(
e
f

)
u(t) (4.15)339

340

with rate constants a, b, c, d, e and f . The variable y(t) is assumed to represent the341

observable output of the system (the level of Hog1 activity), whereas the variable342

z(t) represents the hidden state and u(t) the osmotic stimulus. When these equations343

are simplified to remove the hidden variable z(t), a single second order differential344

equation in y(t) is obtained:345

ÿ(t) = (a + d)ẏ(t) + (bc − ad)y(t) + (ec − a f )u(t) + f u̇(t) (4.16)346

This equation is equivalent to the one in (4.14), if f = A0, ce = a A0 and c �= 0.347

Substituting these relations in (4.15), we obtain the following system:348
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Fig. 4.9 Block diagram representation of the system (4.18): two negative feedback loops (Hog1-
independent and Hog1-dependent mechanisms) act to reduce the difference between the stimulus,
A0u(t), and the internal-state variable, x(t), representing the internal pressure

(
ż(t)
ẏ(t)

)
=

( ce
A0

b
c d

)(
z(t)
y(t)

)
+

(
e

A0

)
u(t) =

( e
A0

b
1 d

) (
A0u(t) + cz(t)

y(t)

)
. (4.17)349

350

Defining x(t) = −cz(t), α = − ec
A0

, β = −bc and γ = −d the system (4.17) is351

written as352

(
ẋ(t)
ẏ(t)

)
=

(
α β

1 −γ

) (
A0u(t) − x(t)

y(t)

)
=

(
α(A0u(t) − x(t)) + βy

A0u(t) − x(t) − γ y

)
. (4.18)353

354

Comparing this relation with the LTI model, we can equate coefficients to obtain the355

relations:356

α + γ = p1 + p2, p1 = 1

2
((α + γ ) +

√
(α − γ )2 − 4β,357

358

and359

αγ + β = p1 p2, p2 = 1

2
((α + γ ) −

√
(α − γ )2 − 4β.360

361

362

The identified model, described by the relation (4.18), contains two negative363

feedback loops, which act to reduce the difference, (A0u(t) − x(t)), between the364

stimulus, A0u(t), and the internal-state variable x(t) (see Fig. 4.9). This enables us365

to assign a physical meaning also to the variable, x(t): since the input is the exter-366

nal pressure, x represents the internal pressure. Moreover the model tells us that367

one feedback mechanism is mediated by the Hog1 MAPK pathway (βy changes x368

through the activity of the observable output y), whereas a second one is mediated369

by a pathway which is independent of Hog1. Since Hog1 is activated by Pbs2, we370

can derive useful insight by comparing the responses of the wild type strain with371

the mutant strain, in which Pbs2 is underexpressed (see Fig. 4.8). This compari-372

son suggests that the feedback action provided by the Hog1 pathway is stronger,373
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4 Modelling and Analysis of Feedback Control Mechanisms 17

producing a faster response. As discussed in Sect. 4.3, the hyperosmotic-shock374

response in yeast is regulated by two parallel mechanisms: 1) the Hog1-independent375

pathway activating the membrane protein Fps1 that quickly (<2 min) responds by376

decreasing the glycerol-export rate (see [19, 36]); 2) the Hog1-dependent pathway377

increasing the expression of Gpd1 and Gpd2 which accelerate the production of the378

glycerol over a longer time scale (>30min—see [2]). Although the topology of the379

model identified corresponds closely to that of the known biological system (see380

Fig. 4.9) the dynamic differences suggest that the MAPK Hog1 plays a role not only381

in the transcriptional regulation of glycerol producing proteins, but also in the control382

of the rapid accumulation of glycerol, consistent with previous studies (see [19, 36,383

37]): from Fig. 4.8 the peak times of the responses of both wild type and mutant384

strains are less than 10 min and in both cases the response is much faster than the385

characteristic dynamics of gene expression. From this analysis the authors, in [24],386

have hypothesized that gene expression may be more important as a longer–time387

scale feedback in the hyperosmotic-shock response. To test this hypothesis, they388

stimulated cells with periodic pulses of NaCl (see Fig. S5 in [24]). The cells were389

shocked either in the absence or presence of cycloheximide, a small molecule that390

inhibits protein synthesis. They showed that cells respond very similarly to an initial391

pulse of osmolyte both in the absence or presence of cycloheximide. On the other392

hand, to adapt to subsequent pulses, cells need less time in the absence of cyclo-393

heximide and more in its presence. These results suggest that non transcriptional394

feedback mediates short–time scale osmolyte accumulation (see [8, 15, 28, 37]),395

whereas gene expression plays a role in osmolyte production only over longer time396

scales and for more intense shocks.397

4.5 Perfect Adaptation in Yeast Osmoregulation398

As shown in the last section the concise model developed by [24] is able to predict399

the Hog1 response by using only two differential equations. However, a detailed400

comparison of the LTI model’s predictions with the experimental data sets shows401

that this model (only containing two negative feedback loops that control the rapid402

accumulation of glycerol) is too simple to fully reproduce the quantitative dynamics403

of the Hog1 nuclear enrichment when the cell are stimulated multiple times with404

periodic pulses of NaCl (see Figs. S8 and S9 in [40]). In particular, the experimental405

data sets and the model presented in [40] suggest that yeast can remember the first406

pulse of high osmolarity and needs less time to adapt to subsequent pulses of sim-407

ulation. The LTI model developed by [24] fails to capture this dynamical property408

and, in [26], the same group proposed a revised concise LTI model by implementing409

an integral feedback mechanism which requires Hog1 kinase activity. They started410

with a minimalist model represented by the network diagram of Fig. 4.10, which411

aims to predicts the dynamics of the osmoregulation system with only a few key412

parameters, starting from input-output data, and, using biological measurements and413

engineering principles, to better understand the relation of its dynamics with the414
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18 F. Montefusco et al.

Fig. 4.10 Network diagram of the omsoregulation system presented in [26]

network topology. The authors represent in a subsystem all relevant reactions that415

determine the activation of the MAPK signalling pathway and the nuclear import416

of the activated protein Hog1 (MAPK signaling & nuclear import) and in another417

subsystem all the Hog1-dependent mechanisms that promote the glycerol production418

(Hog1-dependent mechanisms—such as the transcriptional activation of genes that419

encode enzymes involved in the glycerol production and potential protein-protein420

interaction initiated by Hog1 in the cytoplasm or nucleus that lead to glycerol accu-421

mulation). In contrast in the model of Fig. 4.2, developed by [8], the HOG pathway422

controller represents both the HOG signalling pathway, transcription/translation and423

the synthesis of enzymes involved in glycerol production.424

4.5.1 Experimental Measurements for the Perfect Adaptation425

In [26] the authors observed perfect adaptation of Hog1 nuclear enrichment in426

response to step increases of the extracellular osmolyte concentration (see Fig. 4.11427

where step inputs of NaCl with different amplitude are applied and Fig. S3 in [26]428

where K Cl and sorbitol are also used as osmolytes—in these and in the following429

figures of this section, Hog1 nuclear enrichment is defined as the relative change from430

the pre-shock level): this adaptation occurs with very low cell-to-cell variability and431

is robust to the signalling fidelity of the MAPK cascade. In particular, for different432

cells, the dynamics of Hog1 nuclear enrichment and cell volume are very similar433

in response to a step osmotic stress, with trends that closely follow the population434

average (see Fig. 2A, B in [26]). In fact, the cell-to-cell variability in unstressed cells435

is comparable to the one in osmo-stressed cells as shown in Fig. S2 in [26], further436

indicating that the intrinsic noise of signal propagation is low and suggesting that the437

experimental setup itself may be the predominant source of noise in the experimental438

data. Moreover, to demonstrate the robustness of this perfect adaptation, measure-439

ments of the Hog1 response have been performed in cells with compromised MAPK440

signalling, by controlling the expression of PBS2, which encodes the kinase of Hog1441
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Fig. 4.11 Time measurements of Hog1 nuclear enrichment and volume to hyperosmotic shocks
with indicated concentrations of salt. Data taken from [26]
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Fig. 4.12 Time measurements of Hog1 nuclear enrichment after changing the signaling fidelity of
the MAPK cascade by controlling the expression of PBS2. Data taken from [26]

(see Fig. 4.12). Also in this case Hog1 nuclear enrichment still perfectly adapts and442

therefore we can say that the perfect adaptation is a robust property of the system443

and not a consequence of ad hoc parameter tuning. From these results, together444

with extensive theoretical analysis of adaptive systems in engineering, Muzzey et445

al hypothesised that this system implements integral feedback control in order to446

achieve robust perfect adaptation that does not require a precise tuning of system447

parameters such as protein levels or rate constant (see [14, 34, 39]).448
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Fig. 4.13 Block diagram of the omsoregulation system presented in [26]. H represents all relevant
reactions that link an osmotic disturbance at the membrane with Hog1 nuclear enrichment. D
and I represent the Hog1-dependent and independent mechanisms for the glycerol accumulation,
respectively. G represents the metabolic reactions involved in the glycerol synthesis

4.5.2 The Integral Feedback449

The osmoregulation system is described by using the network diagram of Fig. 4.10,450

where the error indicates the deviation from the initial turgor pressure before apply-451

ing the hyperosmotic stress. Figure 4.13 shows the corresponding block diagram of452

the osmosensing network of 4 subsystems denoted with G, D, H and I . H takes453

into account reactions that determine the activation of theMAPK signalling pathway454

and the nuclear import of the activated protein Hog1. D and I represent the Hog1-455

dependent and independent mechanisms that contribute to glycerol accumulation,456

respectively. Finally, G represents the metabolic reactions involved in the glycerol457

synthesis and any other reactions that promote glycerol accumulation. Approxi-458

mating the network as being LTI, each subsystem can be described by a Laplace459

transform, or transfer function. In general a Laplace transform F(s) of a function460

f (t) is given by461

F(s) =
∞∫
0

f (t) exp−st dt, (4.19)462

where s is a complex variable. The transfer function S(s) of a LTI system is defined463

as S(s) = Y (s)/U (s), where U (s) and Y (s) are the Laplace transform of the system464

input, u(t), and output y(t), respectively (see [5] pp. 30–33). The Laplace transform465

has the useful property thatmany relationships and operations in the time domain that466

require calculus can instead be performed using linear algebra in the s-domain (the467

differential equations in the time domain can be transformed into algebraic equations468

in the s-domain using the Laplace transform—these are then much easier to solve).469

By applying the final-value theorem (see [32] p. 43), the steady-state input and output470

are related via yss = S(0)uss , so perfect adaptation of the system output (yss = 0)471
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Fig. 4.14 Measurements of Hog1 nuclear enrichment and volume in an experiment where the salt
concentration ramps upward over time, reaching a plateau after nearly 45 min. Experimental data
taken from [26]

for an LTI system is equivalent to S(0) = 0, since the input is constant and nonzero.472

The input-error transfer function of the osmosensing system of Fig. 4.13 is given by473

Sue(s) = E(s)

U (s)
= 1

1 + G(s)(D(s)H(s) + I (s))
, (4.20)474

where G(s), D(s), H(s) and I (s) are the transfer functions of the four subsystems475

in the network (see [5] pp. 42–46). We need that Sue(0) = 0 to achieve perfect476

adaptation of the error to a step input. Therefore at least one of the four subsystems477

implements an integrator (its transfer function is given by 1/s—see [5] p. 31—478

thereby allowing Sue to be zero at s = 0). In general, a system contains at least one479

feedback loop with at least n + 1 integrators connected in series in order to achieve480

perfect adaptation to an input corresponding to the n-th integral of a step function,481

where n is a positive integer. Perfect adaptation to a step input, where n = 0, requires482

at least one integrator, perfect adaptation to a ramp input, where n = 1 since the ramp483

is the integral of a step, requires at least two integrators in series, and so on. In [26]484

the authors showed that neither cell volume nor Hog1 perfectly adapt in response485

to a ramp input, confirming that there is exactly one integrator in the osmosensing486

network (see Fig. 4.14). Therefore, the perfect adaptation of the error to a step input487

requires that only one of the four subsystems contains one integrator. Similarly, the488

input-output transfer function is given by489

Sus1(s) = S1(s)

U (s)
= H(s)

1 + G(s)(D(s)H(s) + I (s))
. (4.21)490
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Fig. 4.15 Time domain response of the system (4.26) to a step increase of 0.4MNaCl: comparison
of the responses (sim.) predicted by the two models (wild type and PP1) vs the experimental (exp.)
measurements taken from Fig. 5A in [26]

If H(s) were the only subsystem performing integration, then Hog1 would not per-491

fectly adapt (Sus1(0) �= 0). Therefore one or more of the other subsystems must492

contain an integrator to achieve perfect adaptation of Hog1, but the system only con-493

tains one integrator. In [26] it is shown that the cells lose perfect adaptation with PP1,494

a treatment to completely eliminate theHog1 kinase activity, as the steady-stateHog1495

accumulation (s1ss in Fig. 4.13) does not go back to the pre-stimulus level. Since the496

presence of PP1 disconnects the D subsystem from Hog1, the input-output transfer497

function of the system is modified as498

Sus1(s) = H(s)

1 + G(s)I (s)
. (4.22)499

In this case Hog1 does not perfectly adapt, then the product G(s)I (s) does not go to500

infinity at s = 0 (Sus1(0) �= 0), which implies that either the G and I subsystems both501

lack integrators, or one subsystem has an integrator but the other perfectly cancels502

the integrator (it is a differentiator with a transfer function equal to s—see [5] p. 31).503

If I contained the integrator, then the turgor pressure would perfectly adapt in the504

presence of PP1, and Hog1 likely would as well, but both properties are not observed505

in the data. If G were to act as an integrator, then cell volume and turgor pressure506

would continue to perfectly adapt for a nonzero input to the G subsystem. But, in507

the presence of PP1, the only input to subsystem G is the output from subsystem I ,508

as subsystem D is disconnected. Thus, no volume recovery observed in PP1-treated509

cells would only occur if the output of subsystem I prematurely goes to zero (i.e. if510

it were a differentiator). As explained in [26], this observation would require that all511

Hog1-independentmechanisms completely desensitize within approximately 20min512

(i.e. the time needed for Hog1 nuclear enrichment to reach steady state in PP1 cells—513
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4 Modelling and Analysis of Feedback Control Mechanisms 23

see the lower plot of Fig. 4.15) despite persistence in their stimulus (i.e. the acute514

loss of turgor pressure). On the basis of this argument, it is extremely improbable515

that subsystem G acts an integrator. Therefore, the combination of all findings points516

to D as the subsystem with the only integrator in the feedback loop. Moreover, in517

PP1 cells, levels of total glycerol and extracellular glycerol are measured over time518

in the presence and absence of osmotic shock (see [26]): in the absence of salt519

shock, glycerol synthesis is increased as well as glycerol leakage; in the presence of520

osmotic shock, glycerol leakage is rapidly and transiently diminished, as in wild type521

cells, whereas the absence of Hog1 kinase activity prevents an increase in glycerol522

synthesis, unlike in wild type cells. These data suggest that Hog1 kinase activity523

plays a critical role in rapidly regulating glycerol synthesis but not its leakage as524

in [38].525

Note from Fig. 4.12 (see also Fig. 3D in [26]) that the time-integral of the Hog1526

scales linearlywith the shock strength. If the systemwere composed only of reactions527

modelled with linear dynamics, then the result that D subsystem is an integrator528

would be trivial. However, this result is valid also when the other subsystems are529

nonlinear stable systemswithout integrators (see Fig. 4.12where the fact that the peak530

Hog1 amplitude saturates as a function of salt is an evidence of nonlinear dynamics531

in the H subsystem). If it is assumed that the error perfectly adapts and the the steady-532

state output of the I subsystem is zero when its steady-state input is zero, then 1)533

the net change induced by the system in the steady-state input of the G subsystem534

simply equals the time-integral of Hog1, 2) the net change in the output of G must535

equal the net change in the system input in order for the error to go to zero. If the G536

subsystem were perfectly linear, then its output would be directly proportional to its537

input at steady state and so the time-integral of Hog1 would be directly proportional538

to the magnitude of the osmostress (despite potential nonlinearities in the H and I539

subsystems). This relationship is almost exactly what Fig. 3D in [26] shows, except540

that the line relating the integral of Hog1 nuclear enrichment to the magnitude of the541

osmostresses does not cross the origin. This difference may be due to nonlinearities542

in the input-output steady-state function of subsystem G that become evident for543

osmostresses of small magnitude (<0.2 M NaCl).544

Finally, in order to validate these results, a LTI system can be used to implement545

the concise model represented by the block diagram of Fig. 4.13. The subsystems546

of the osmosensing network can be represented as follows: H and G as first-order547

systems where the corresponding transfer functions H(s) = kh
s+γh

, with gain kh and548

time constant γ −1
h , and G(s) = 1

s+γg
with time constant γ −1

g , I as a scalar αi (i.e.549

I (s) = αi ) and D as an integrator with gain αd (i.e. D(s) = αd
s ). Therefore the550

Laplace transform of the output, S1(s), of the H subsystem is defined as:551

S1(s) = kh

s + γh
E(s) = kh

s + γh
(U (s) − S3(s)), (4.23)552

where the Laplace function error E(s) = U (s) − S3(s), with U (s) and S3(s) the553

Laplace functions of the input u(t) of the system and the output s3(t) of subsystem554
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Table 4.4 Best-fitting parameters for the system (4.26)

kh [min−1] γh [min−1] γg [min−1] αd [min−1] αi [min−1]
Wild type 0.496 0.369 0.119 0.0106 0.0806
PP1 0.147 0.369 0.119 0 0.0806

G, respectively. We can obtain the rate equation for the output s1 (corresponding to555

measured Hog1 nuclear enrichment) in the time domain applying the inverse Laplace556

transform of the following relation, by rewriting the Eq. (4.23):557

sS1(s) = −γh S1(s) − kh S3(s) + khU (s) . (4.24)558

By applying the property that the derivative operator with respect to time correspond559

to a multiplication by s in the s-domain (see [5] p. 31), the inverse Laplace transform560

of (4.24) follows as:561

ṡ1(t) = −γhs1(t) − khs3(t) + khu(t) (4.25)562

In the same way, we can obtain the rate equations for the outputs s2 and s3 of563

the corresponding subsystems D and G. Then the following system of differential564

equations is obtained:565

⎛
⎝ṡ1(t)

ṡ2(t)
ṡ3(t)

⎞
⎠ =

⎛
⎝−γh 0 −kh

αd 0 0
0 1 −(αi + γg)

⎞
⎠

⎛
⎝s1(t)

s2(t)
s3(t)

⎞
⎠ +

⎛
⎝kh

0
αi

⎞
⎠ u(t) . (4.26)566

567

Figure 4.15 shows the response of two strains (wild type and PP1 cells) to a568

step input of 0.4 M NaCl. Table 4.4 reports the best set of parameters that fit the569

experimental data. For the PP1 experiment we set αd = 0 to break the connection570

between Hog1 and the D subsystem. The simulations show how the devised model571

is able to capture the dynamics of the system and produces an excellent match to the572

experimental data.573

4.6 The Role of Ultrasensitivity574

As shown above, systems and control theory provides a highly useful approach to575

abstract complex biological systems that seem to operate with similar goals as engi-576

neered control systems, and the osmoregulation system in yeast is a prime example577

of this. The models here presented, by combing proportional and integral feedback578

controllers capture the key dynamics of a homeostatic system like osmoregulation in579

yeast, but they do not shed light on how the evolution of such a biological control sys-580

tem can proceed to result in integral feedback control. In the following we explore581

the possible role of ultrasensitivity in osmoregulation. Indeed, it has been well-582
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4 Modelling and Analysis of Feedback Control Mechanisms 25

documented that the upstream signalling pathways involved in this system imple-583

ment high levels of ultrasensitivity, however, the role of such high gain in producing584

the observed perfect adaptation is not clear. Therefore, we extend the proportional585

controller model presented in [8] for this system with the implementation of ultra-586

senstivity, Montefusco [25].587

4.6.1 Ultrasensitive Model and Parameters588

The mathematical model used for our analysis is the same as that presented in589

Sect. 4.3, apart from allowing the Hog controller to be non-linear (see Fig. 4.2).590

Indeed, in this case, the output of the HOG branch, which corresponds to the HOG591

pathway dependent glycerol production, is expressed as592

u H OG(t) =
{

kH OG · f (e), e(t) > 0

0, otherwise,
(4.27)593

where the control function is given by594

f (e) = e(t)n

βe(t)n + K n
, (4.28)595

with β = 1 and K and n being the nonlinear Hill function variables. We have thus596

modifed the control law for the HOG pathway, compared to the model in [8], to597

allow for a non-linear controller response. This is inspired by the fact that MAPK598

systems, of which the HOG pathway is an example, often show Hill type responses,599

Huang and Ferrell [13]. The performance of the nonlinear controller is contrasted600

with the proportional controller given in [8], where β = 0 and K = n = 1. Our601

model contains 16 parameters as reported in Table 4.5. However, four of these are602

dependent parameters which do not need to be constrained. The other parameters are603

estimated by simulating the model with different osmotic shocks and minimising the604

error, defined by Eq. (4.5), and time adaptation corresponding to the time required605

by the cell to approximately return to its volume before the stress (see the definition606

in the next subection). For the optimization, we use a hybrid Genetic Algorithm607

(GA) (see [18]), that combines the most well-known type of evolutionary algorithm608

with local gradient-based algorithms (see [7, 10]). We use the function ga from609

the MATLAB Global Optimization Toolbox, MATLAB [23], and fmincon from the610

MATLAB Optimization Toolbox, MATLAB [22], as the local algorithm. By the611

optimisation procedure some parameters do not significantly change their values,612

therefore, they are fixed equal to the values estimated in [8], except for V Pt =0, which613

is set to 0.8, the value of the volume at zero Pt according to a recent study presented614

in [31].615 AQ2

The cost function used for the parameter estimation is given by616
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Table 4.5 Model parameters: all volumes are scaled such that the initial volume of the cell is 1

Parameters Bounds

kp1 Water perm. coeff. [0.0052 160] Osm−1

kp2 Fps1 control const. [0 10]
Td Time delay [5 30] min
kH OG HOG control const. [0 2] Osm−1

K Hill const. [0 0.01 2]
n Hill exponent [0 4]
Fixed parameters Value
Gly(0) Initial Gly 2 × 10−4

Pi (0) Initial Pi 0.636 Osm
Pe(0) Initial Pe 0.24 Osm
Vb Non osmotic volume 0.368
V Pt =0 V when Pt = 0 0.8
Ve External volume 4.79 × 103

Dependent parameters Value
V (0) Initial V - 1

relative volume
Glye(0) Initial Glye

Ve Gly(0)
(V (0)−Vb)

Pt (0) Initial Pt Pi (0) − Pe(0)
s No. of osmolytes Pi (0)(V (0) − Vb)

other than Gly -Gly(0)

Both Gly and Glye represent number of molecules (mol scaled by V (0))

min
x

J, (4.29)617

where618

J = Jp + Jv + Jt (4.30)619

is a sum of three scalar functions: Jp is the turgor pressure error, Jv is the difference620

between the desired and the effective volume and Jt is the response time of the system621

after the perturbation.622

4.6.2 Results: Ultrasensitive Versus Proportional Controller623

In our adaptation of themodel developed by [8],we particularly consider the observed624

ultrasensitivity in the HOG branch of the system. This branch was originally mod-625

eled as a proportional control in [8], which we have replaced here by a Hill-type626

function to model ultrasensitivity (see Eqs. (4.27) and (4.28)). We then compare the627

performance of this new model against the original model. In particular, we evaluate628

the two different controllers—proportional (Pr) and ultrasensitive (Us)—by simulat-629

ing their dynamics with different stress inputs (see Fig. 4.16) and optimizing their630
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4 Modelling and Analysis of Feedback Control Mechanisms 27

Fig. 4.16 Different osmotic
stresses. Upper plot a constant
step of 1M NaCl at t = 5
min corresponding to an
increase of Pe equal to 1.96
Osm. Middle plot single pulse
signal at t =5minwith duration
of 40 min of 1M NaCl. Lower
plot double pulse signal at
t1 = 5 and t2 = 85 min, both
with duration of 40 min and
amplitude of 1M NaCl
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parameters for optimum response (i.e. minimal deviation of cell volume and turgor631

pressure in presence of an osmo-schock, see Sect. 4.6.1 for details). We repeat this632

procedure for different levels of overall sensitivity (i.e. gain) of the HOG branch and633

different types of osmo-shock sequences and evaluate the tests by using two differ-634

ent performance indices: adaptation precision and adaptation time. The adaptation635

precision is defined as636

Xa =
∏

i

Xs,i , (4.31)637

where Xs,i is the steady state value of the variable X (volume V or turgor pressure638

Pt ) after the i-th perturbation. Since the initial volume is set to unity, this measure639

gives 1 for perfect adaptation. Deviations from 1 indicate inability of the system to640

perfectly adapt volume to pre-perturbation levels. The time adaptation, Ta , defined as641

Ta =
∑

i

ta,i , (4.32)642

where ta,i is the time required by the system to reach 85% of the volume V after the643

i-th osmotic stress. Figure 4.17 shows the results of the two controllers by applying644

three different osmotic stresses: constant step, single pulse and double pulse. For645

all different inputs the ultrasensitive controller achieves better and faster adaptation646

irrespective of the level of overall gain. The better performance is particularly signif-647

icant when overall gain is limited to lower values, where the ultrasensitive controller648

achieves almost 2-fold faster responses. Indeed, using a a Hill function within the649

HOG branch allows us to effectively achieve a steeper response from this branch650

compared to a linear function for any given error (see Eqs. (4.27) and (4.28)). Thus,651

the controller acts faster and more strongly, allowing quicker and fuller recovery of652
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Fig. 4.17 Performance comparison between the proportional (Pr) and ultrasensitive (Us) controllers
by applying different shocks: first column, a step of 1M of NaCl; second column, 1 pulse of 1M;
third column, 2 pulses of 0.5M. Va close to 1 indicates the capability of the system to adapt. Ta
indicates the time adaptation

Table 4.6 Optimized parameters for a given kH OG with a double pulse signal of 1M of NaCl

kH OG Optimized parameters—Pr/Us Us
kp1 Td kp2 K n
Pr Us Pr Us Pr Us

0.65 93 155 5 5 0.43 0.96 0.17 3.53
1.1 159 124 5 5 0.69 1.17 0.23 3.78
1.55 0.36 134 5 5 0.9 1.61 0.23 3.8
2 155 159 5 5 1 1.54 0.25 3

the system. This insight is in line with the optimized parameters for both controllers653

as reported in Table 4.6: in most cases, the optimal parameters for the ultrasensitive654

controller result in a very steep Hill function that produces maximal outputs for even655

small error values. Of the other free parameters of the model, we note that certain656

parameters are optimized differently for the two controllers. For example, the per-657

meability coefficient kp1, which controls water flow in the model (see Eq. (4.2)) is658

usually optimized to higher values in the ultrasensitive controller compared to the659

proportional controller. This parameter affects the sensitivity of the system, as faster660

water movement can allow both a high volume reduction for a given osmo-shock and661

also fast recovery. Given its fast dynamics, the ultrasensitive controller can “afford”662

this parameter to become higher compared to the proportional controller.663
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Fig. 4.18 Sensitivity analysis using the box-and-whisker representation (median–middle line, the
25th and 75th percentile—lower and upper lines of the box, and the outliers (crosses)) by fixing
kH OG and Hill function parameters (K = 0.05, n = 3.5) and applying one pulse signal of 1M of
NaCl. The first column of each boxplot reports the results for the proportional (Pr) controller, the
second column the results for the ultrasensitive (Us) controller. The system robustly adapts if Va
and Pa are close to 1. Ta indicates the time adaptation. Similar results are obtained with different
Hill function parameters (K = 0.2, n = 2)—see Fig. 7 in [25]

Such differences between the optimal model parameters for the two controllers664

suggest that implementation of ultrasensitivitymight allowmore freedom in the other665

parameters of the model or allow them to be in a more favorable regime. To test the666

former possibility, we perform a simple sensitivity analysis for the two controllers.667

Given a certain gain, and Hill function parameters, we evaluate the adaptation preci-668

sion and time of the two controllers for a set of 100 randomly generated parameters.669

Figure 4.18 shows that the ultrasensitive controller achieves much more robust adap-670

tation performance than the proportional controller according to these two criteria.671

As discussed above, the performance increase of the ultrasensitive controller over672

the proportional one stems from its high sensitivity to the error due to theHill function.673

The incorporation of the Hill function, however, can also allow development of674

thresholds in the system. In particular, the ultrasensitive controller can be tuned as a675

filter allowing responses only to signals of certain magnitude or duration. To test this676

hypothesis, we devise an alternative cost function for the optimization procedure and677

optimize the system towards functioning as a filter. The new cost function is given by678

Jn = J − Jglyc, where J is defined by the Eq. (4.30) and Jglyc represents the glycerol679

production upon the signal of limited duration. Figure 4.19 shows the performance for680

a signal with a first short and then long duration pulse. The ultrasensitive controller681

ignores the first pulse and responds to the second by tuning the Hill parameters,682

whereas the proportional controller model is not able to response to the second683

signal (the permeability coefficient kp1, that affects the sensitivity of the system, is684

equal to the lower bound).685
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Fig. 4.19 Response to a signal with a short and long pulse duration, assuming kH OG = 0.25.Upper
plot external osmotic signal. Second plot the volume response for the proportional (Pr) controller
and the ultrasensitive (Us) controller model. Lower plot the glycerol concentration for both the
models

In conclusion, we show, using a previously developed proportional control model686

of the osmoergulation incorporating twomain and distinct branches (HOG and chan-687

nel branches), that ultrasensitivity in the HOG branch allows better overall perfor-688

mance. We find that the primary effect of ultrasensitivity in the HOG branch is689

an increase in the response speed of the system and consequently in its adapta-690

tion precision. In addition to this, however, we find that ultrasensitivity provides691

also a non-trivial flexibility to the system parameters. By increasing the speed of692

overall system responses, ultrasensitivity in the HOG branch allows sensitivity to693

be increased in the other branch of the system. In the absence of ultrasensitivity,694

fast (i.e. highly sensitive) regulation of the glycerol exchange branch limits the cell’s695

adaptability through the HOG branch (i.e. glycerol production). With ultrasensitivity696

in glycerol production, the other system parameters can be increased or varied more697

freely, without compromising performance. Moreover, by increasing the gain of the698

HOG branch, the system with a proportional HOG controller is able to improve the699

performance in terms of adaptation, but there is a presence of overshoot in the system700

response, whereas ultrasensitivity in theHOGbranch allows to avoid this phenomena701

(we do not consider the overshoot to compute the performance). Note that for large702

values of the error (e > 1), a proportional branch may have a higher gain than an703

ultrasensitive one and, if K > 1, the gain of the proportional controller will always704

be higher, but this is not the case here because the error never goes above 1, given the705

system parameters (the absolute maximum value of the error is Pt (0)). The ultrasen-706

sitive response in the HOG branch also allows tuning of the overall system response707

towards certain signal regimes. In other words, the control system can be tuned to708

filter out signals below a threshold and respond only when volume decreases cross709
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this threshold. Considering that glycerol production is potentially highly costly for710

the cell, this ability of the system could give an evolutionary advantage by allowing711

cells to ignore short lived or low doses of osmo-shock.712

4.7 Conclusions713

The results illustrated in this chapter demonstrate the power of applying engineer-714

ing principles to the analysis of the osmoregulation system in yeast. Gennemark715

et al. [8] proposed a simple model that describes the essential physics and biology of716

osmoregulation. This model has been abstracted from another more detailed model,717

developed by [15], by focusing on fewer components which allow the reproduction718

of the main dynamics of the system: the cell controls the biophysical system (in719

particular in terms of volume and turgor pressure) by using two proportional con-720

trollers, which act in parallel and regulate the glycerol production and the glycerol721

outflow (see Fig. 4.2). This simple model captures the main dynamical features of722

the osmoadaptive response by predicting the behaviour of different strains (wild type723

and modified) with different inputs and confirming the existence of two mechanisms724

of control (see Sect. 4.3). Note, however, that in general the volume adapts while725

the turgor pressure does not, because the model parameters are estimated using only726

glycerol concentration measurements which are not sufficient for complete recov-727

ery of both volume and turgor pressure. Therefore the model does not show robust728

adaptation, since the adaptation requires a careful tuning of the system parameters.729

The group of van Oudenaarden, using frequency domain analysis, identified a730

minimal model represented by a LTI system with only two dynamics variables (see731

Sect. 4.4). Then, they estimated the biological quantities corresponding to the two732

relevant variables of the LTI model and, using these results, deduced the network733

diagram of Fig. 4.10. Using biological measurements and engineering principles,734

they showed that the robust perfect adaptation of Hog1 nuclear enrichment and cell735

volume (as turgor pressure) results from one integrating mechanism that requires736

Hog1 kinase activity and regulates the glycerol synthesis (see Sect. 4.5).737

The models of Figs. 4.2 and 4.10 seem similar at a “formal” level but they are738

quite different from the system theoretical point of view. The model of the group739

of Van Oudenaarden is inferred by employing the Hog measurements (the output740

of the model) and contains one branch of control modelled with exactly one inte-741

grator. Instead, in Gennemark’s model, the Hog protein cannot be observed (it is742

not a variable of the model and the Hog controller does not have a direct biological743

correspondence) and the two branches of control are modelled using simple propor-744

tional controllers. The model could be modified by adding measurable variables, for745

example Hog1, but this would obviously increase the complexity of the model.746

Interesting additional results were recently presented in [20], where the authors747

investigated which network topologies in a generic signalling network are capable748

of robust adaptation. In particular, they used a network of three nodes as a minimal749

framework, where there is a first node that receives the input, a second that transmits750
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the output and a third that can play diverse regulatory roles. They found that all751

the networks containing one of the following two motifs achieve adaptation: neg-752

ative feedback loop with a buffering node and incoherent feedforward loop with a753

“proportioner” node.754

Despite themany striking insights that have been produced into the yeast osmoreg-755

ulation system by the above analyses, it is still not clear how the evolution of biologi-756

cal control systems of this type can result in integral feedback, and in our recent work757

we investigated a heretofore largely unexplored alternative control systemwhich also758

appears to be able to achieve perfect adaptation. In particular, we extended the pro-759

portional control model developed by [8] with the implementation of ultrasensitivity760

and found that a proportional controller implementing ultrasensitivity allows more761

precise and faster adaptation of cell volume following an osmo-shock. Further, the762

ultrasensitive controller can be tuned as a filter, where the proportional controller763

could not, and thereby allows responses to signals only above a certain threshold764

(see Sect. 4.6). These results provide new insights on the potential role of gain in765

biological systems and should be of interest to synthetic biologists attempting to766

design robust biomolecular control systems.767
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