
  

  

Abstract— We present new results validating the capability of 

a high-fidelity computational simulator to accurately predict the 

responses of individual patients with acute respiratory distress 

syndrome to changes in mechanical ventilator settings. 26 pairs 

of data-points comprising arterial blood gasses collected before 

and after changes in inspiratory pressure, PEEP, FiO2, and I:E 

ratio from six mechanically ventilated patients were used for this 

study. Parallelized global optimization algorithms running on a 

high-performance computing cluster were used to match the 

simulator to each initial data point. Mean absolute percentage 

errors between the simulator predicted values of PaO2 and 

PaCO2 and the patient data after changing ventilator 

parameters were 10.3% and 12.6%, respectively. Decreasing the 

complexity of the simulator by reducing the number of 

independent alveolar compartments reduced the accuracy of its 

predictions. 

Clinical Relevance— These results provide further evidence 

that our computational simulator can accurately reproduce 

patient responses to mechanical ventilation, highlighting its 

usefulness as a clinical research tool.  

I. INTRODUCTION 

Computer simulation offers a new approach to traditional 

medical research that is particularly well suited to 

investigating treatment of critical respiratory illness using 

mechanical ventilation. Critically ill patients are monitored in 

great detail, providing extensive high-quality data for model 

design, configuration and patient-matching. Models based on 

this data can incorporate very complex system dynamics that 

can be validated against responses of individual patients, for 

use as investigational surrogates. Simulation offers the 
potential to “look inside” the patient, opening up the 

possibility of rationally “designing” new mechanical 

ventilation strategies in silico by exploiting the speed, 

reproducibility, and cost-effectiveness of “virtual” patient 

trials. In contrast to trials on both animal models and human 

patients, in silico models of individualised patient and disease 

pathology are completely configurable and reproducible – 

different ventilation strategies can be applied to the same 

spectrum or subset of virtual patients, in order to 
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quantitatively compare their effectiveness in multiple 

different scenarios, and to optimise settings for different 

clinical objectives and particular patient groups or 

individuals. Such “virtual” trials could allow future clinical 

trials to be honed and directed, accelerating the achievement 

of impactful changes in clinical practice.  

The process of validating the predictive capability of 

cardiopulmonary simulators in the context of mechanical 

ventilation is complicated by the scarcity of appropriate 

patient data in the literature. Most clinical studies publish only 

statistical data reporting mean and standard deviations across 

a patient cohort, rather than individual patient data. In 

addition, vanishingly few studies report measurements of 

individual patient arterial blood gasses before, and soon after, 

changes in mechanical ventilator settings. 

The computational simulator used here has been under 

continuous development for over 25 years and has been 

applied in numerous clinical studies [1-9]. Previous studies 

evaluating its predictive validity have considered changes in 

fraction of inspired oxygen (FiO2), ventilatory frequency or 

tidal volume under volume control mode ventilation [2]. 

Here, we evaluate the simulator’s ability to predict patient 

responses to changes in FiO2, positive end expiratory pressure 

(PEEP), inspiratory pressure (Pinsp), and ratio of the duration 

of inspiratory and expiratory phases (I:E ratio), using data 

from patients under pressure control mode ventilation [10].  

A second objective of the study is to examine the effect of 

changing the complexity of the simulator on its predictive 

capability. The simulator incorporates a user-defined number 

of alveolar compartments for gas exchange, as well as 

viscoelastic compliance behaviour, interdependent blood-gas 

solubilities, and heterogeneous distributions of pulmonary 

ventilation and perfusion. The computational complexity of 

the optimisation-based model matching process is strongly 

dependent on the number of alveolar compartments, and so 

we sought to determine the trade-off between model 

complexity and predictive performance. 
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II. METHODS 

A. Patient Data 

Data previously collected from six mechanically ventilated 

patients (Draeger Evita, BiPAP) from the ICU at the Royal 

Hallamshire Hospital in the UK were used for this study [10]. 

All the patients had a primary diagnosis of acute respiratory 

distress syndrome, characterised by reduced functional 

residual capacity, reduced arterial oxygen, and reduced lung 

compliance, and had no history of asthma or other chronic 

lung disorders. All patients were fully sedated, were stable on 

the ventilator, and were undergoing the standard invasive 

monitoring procedures for that ICU.   

Four ventilator parameters were available for changes: 

inspiratory pressure (Pinsp), positive end expiratory pressure 

(PEEP), the ratio of inspiratory to expiratory time (I:E) and 

the fraction of inspired oxygen (FiO2). After a measurement 

period of 15 minutes at pre-study ventilator settings, one of 

the ventilator parameters was altered and another 15 minutes 

measurement period commenced before returning the 

ventilator parameter to its pre-study value.  

During each measurement period, cardiovascular 

parameters were continuously recorded. Measurements 

requiring manual intervention, including cardiac output, were 

taken at the bedside. Arterial and venous blood gas 

measurements were analyzed from blood samples withdrawn 

from the patient during the measurement period. From this 

database of readings and their corresponding ventilator 

settings, 26 pairs of data points were used in this investigation 

(initial ventilator settings and patient measurements at time 

T0 and subsequent ventilator settings and patient 

measurements at time T1). 

B. The Computational Simulator 

The computational simulator used in this investigation 

represents multiple interacting organ systems and 

incorporates a high level of physiological detail, including 

multiple alveolar compartments, multi-compartmental gas 

exchange, viscoelastic compliance behavior, interdependent 

blood-gas solubility and hemoglobin behavior and 

heterogeneous distributions of pulmonary ventilation and 

perfusion. 

Each model component is described as several mass 

conserving functions and solved as algebraic equations, 

obtained, or approximated from the published literature, 

experimental data, and clinical observations. These equations 

are solved in series in an iterative manner so that solving one 

equation at the current time instant determines the values of 

the independent variables in the next equation. At the end of 

each iteration, the results of the solution of the final equations 

determine the independent variables of the first equation for 

the next iteration. The iterative process continues for a 

predetermined time, with each iteration representing a ‘time 

slice’ t of real physiological time (set to 30 ms). At the first 

iteration, an initial set of independent variables are chosen 

based on values selected by the user. The user can alter these 

initial variables to investigate the response of the model or to 

simulate different pathophysiological conditions.  Subsequent 

iterations update the model parameters.  

The pulmonary model consists of the mechanical ventilation 

equipment, anatomical and alveolar deadspace, anatomical 

and alveolar shunts, ventilated alveolar compartments and 

corresponding perfused capillary compartments. The pressure 

differential created by the mechanical ventilator drives the 

flow of gas through the system. The series deadspace (SD) is 

located between the mouth and the alveolar compartments 

and consists of the trachea, bronchi and bronchioles, where no 

gas exchange occurs. Inhaled gases pass through the SD 

during inspiration and alveolar gases pass through the SD 

during expiration. No mixing between the compartments of 

the SD is assumed. Each alveolar compartment has a unique 

and configurable alveolar compliance, alveolar inlet 

resistance, vascular resistance, extrinsic (interstitial) pressure 

and threshold opening pressure. The alveolar compartments 

are arranged in parallel and interact with the series deadspace 

with respect to the movement of gases. The flow of air into 

the alveolar compartments is achieved by a positive pressure 

provided by the ventilator and the air moves along the 

pressure gradient. Figure 1 shows a diagrammatic 

representation of the model. For a complete description of the 

model and its underlying mathematical principles, the reader 

is referred to the Additional File 1 in [9].      

 
Figure 1. Diagrammatic representation of the simulator 

C. Optimization-based matching to patient data 

The model parameters were matched to each of the chosen 

data points using genetic algorithms (GAs). In recent years 

genetic algorithms have become an increasingly popular 

technique used in scenarios of small and large search 

parameters making it ideal for use in physiological modelling 

scenarios. This method allows for the parameters of each 

individual alveolar compartment to be independently adjusted 
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in order to create a level of heterogeneity that reflects the 

effects of acute respiratory disease.  

The model matching optimization problem is set up to 

minimize the difference between the model outputs for a 

given set of ventilator parameters and the corresponding 

physiological measurements from the patient. The model 

parameters determined during the optimization include 

Extrinsic Pressure (Pext), Alveolar Stiffness (kstiff), Threshold 

Opening Pressures (TOP), Pulmonary Vascular Resistance 

(Vcomp) and Bronchial Resistance (Rcomp) for each alveolar 

compartments, as well as values for Respiratory Quotient 

(RQ), Oxygen Consumption (VO2), Hemoglobin 

Concentration (Hb), Volume of Anatomical Dead Space (VD), 

Upper Airway Resistance (UBresist), anatomical shunt 

(Shuntanat) and Base Excess (BE). The optimization problem 

is formulated to find the configuration of model parameters 

(x) that minimizes the difference between the model outputs 

𝑌̂ (for a given set of ventilator parameters) and the patient data 

𝑌. This error is captured by a cost function J given by: 

min
𝑥

𝐽 = √∑ 𝑤𝑖 (
𝑌̂𝑖 − 𝑌𝑖

𝑌𝑖
)

29

𝑖=1

 (1) 

where 

𝑌 = [𝑃𝑎𝑂2, 𝑃𝑎𝐶𝑂2, 𝑉𝑇 , 𝑝𝐻𝑎, 𝐻𝐶𝑂3] (2) 

The model outputs 𝑌̂, optimized using the cost function are 

partial pressures of oxygen (PaO2), partial pressures of carbon 

dioxide (PaCO2), tidal volume (VT), arterial blood pH (pHa) 

and bicarbonate level (HCO3). Weighting factors, 𝑤𝑖, were 

implemented in the cost function to prioritize matching of 

PaO2 and PaCO2. 

The optimization algorithm returns a set of model 

parameters that optimally match the model outputs to the 

patient data for each initial set of ventilator settings (time T0). 

Using this parameterization of the model, the relevant 

ventilator setting in the simulator was changed as specified in 
the data, the simulator was run for the same amount of time 

as in the clinical setting, and the model outputs were 

compared with the new patient data (time T1).  

To investigate the effects of the complexity of the model 

on the accuracy of the model’s predictions, the global 

optimization problem was solved for each initial ventilator 

setting from the selected dataset for the model configured to 

have 100, 50, 25 and 10 alveolar compartments. The number 

of parameters to be optimized using the GA is given by  

 

𝑁𝑝 = 𝑃𝑎𝑙𝑣 × 𝑁𝑐𝑜𝑚𝑝 + 𝑃𝑝ℎ𝑦𝑠   (3) 

where 

𝑃𝑎𝑙𝑣 = 5  𝑃𝑝ℎ𝑦𝑠 = 7   (4) 

𝑃𝑎𝑙𝑣 is the number of alveolar parameters to be set in each 

alveolar compartment, 𝑁𝑐𝑜𝑚𝑝 is the number of alveolar 

compartments and 𝑃𝑝ℎ𝑦𝑠 is the number of other physiological 

parameters to be set in the genetic algorithm. Thus, the 
computational complexity of the optimization problem 

reduces significantly as the number of alveolar compartments 

reduces. 

The optimizations required for the model matching were 

performed using the global optimization toolbox and parallel 

computing toolbox in MATLAB 2020a. The code was 

implemented in the ‘Orac’ high performance computing 

cluster provided by the University of Warwick (2352 x Intel 

Xeon E5-2680 v4 2.4 GHz Broadwell cores; 28 cores per 

node; 84 nodes; 128 GB DDR4 memory per node). A 

summary of the average computation time taken for the GA 

to match the data for each number of compartments is shown 

in Table 1. Significant reductions in computation time were 

seen with the reduction in the number of alveolar 

compartments.  

Table 1. Summary of computation time to match model parameters to one 

Patient 

Number of Compartments 
Average Computation Time 

(hours) 

100 40 

50 30 

25 15 

10 9 

III. RESULTS  

A comparison of the simulator outputs for each of the 26 

pairs of patient data when using 100 alveolar compartments 

in the model is shown in Table 2. Mean absolute percentage 

errors between model outputs and patient data for PaO2 and 

PaCO2 at the initial (matched) time point T0 were 2.1% and 

3.9%, respectively. After changes to ventilator settings, mean 

absolute percentage errors between the simulator predicted 

values of PaO2 and PaCO2 and the patient data were 10.3% 

and 12.6%, respectively. As shown in Figure 2, reducing the 

number of alveolar compartments in the model from 100 to 

50, 25 and 10 resulted in progressively larger mean absolute 

prediction errors.  

IV. DISCUSSION & CONCLUSIONS 

A key requirement for computational simulators, if they are 

to be used for research into current and novel ventilation 

strategies, is that they accurately predict the responses of 

individual patients to changes in ventilator settings. Our 

results demonstrate that the cardiopulmonary simulator 

considered here responds correctly to changes in multiple 

different ventilator settings, with low errors between 

predicted values of PaO2 and PaCO2 and the values measured 

in individual patients. 

 

 A necessary condition for achieving high predictive 

accuracy is that the simulator includes a sufficiently complex 

representation of the respiratory system, and the 

pathophysiology associated with the underlying disease state. 

This is clearly demonstrated by the results in Figure 2, which 

show a significant drop in the predictive capability of the 

simulator as the number of independent alveoli included in 

the model is reduced. Given that the adult lung contains an 

average of 480 million alveoli, whose physical characteristics 

are made highly heterogeneous by ARDS, it is unsurprising  
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Figure 2. Mean average percentage error for (A) PaO2 (%) (B) PaCO2 (%) 

(C) pHa (%) and (D) HCO3 (%) at time T0 (matched, in blue) and 

T1,(predicted, in orange) versus the number of alveolar compartments.  

that a minimum level of complexity in its mathematical 

representation is required. Research is ongoing by the authors 

to further reduce the computational burden associated with 

this high-fidelity simulator so that it can be used for real-time 

applications. 
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Ventilator 

setting at T0 

Data 

PaO2 

(kPa) 

Matched 

PaO2   

(kPa) 

Absolute 

% Error 

Data 

PaCO2   

(kPa) 

Matched 

PaCO2   

(kPa) 

Absolute 

% Error 

Ventilator 

setting at T1 

Data 

PaO2   

(kPa) 

Predicted 

PaO2   

(kPa) 

Absolute 

% Error 

Data 

PaCO2   

(kPa) 

Predicted 

PaCO2   

(kPa) 

Absolute 

% Error 

PEEP = 7 14.6 14.6 0.0 6.7 7.4 10.4 PEEP = 2.5 13.1 13.6 3.8 6.2 6.0 3.2 

PEEP = 2.5 13.1 12.6 3.8 6.2 6.9 11.3 PEEP = 7.5 13.5 13.3 1.5 6.4 8.8 37.5 

PEEP = 7.5 15.6 15.9 1.9 6.5 6.7 3.1 PEEP = 2.5 13.5 13.7 1.5 5.7 5.4 5.3 

PEEP = 2.5 13.5 13.5 0.1 5.7 5.6 1.2 PEEP = 7.5 13.9 14.5 4.3 6.1 7.4 21.3 

FiO2 = 0.57 13.9 14.0 0.5 6.1 6.2 1.6 FiO2 = 0.67 18.4 16.4 10.9 6.0 6.2 3.3 

FiO2 = 0.67 18.4 18.1 1.6 6.0 6.2 3.3 FiO2 = 0.47 11.3 13.1 15.9 7.1 6.2 12.7 

FiO2 = 0.47 11.3 11.4 0.9 7.1 7.1 0.0 FiO2 = 0.57 13.8 12.4 10.1 6.7 7.1 6.0 

Pinsp = 28 13.8 13.9 0.7 6.7 6.8 1.5 Pinsp = 23 12.1 13.2 9.1 7.9 9.4 19.0 

Pinsp = 23 12.1 12.1 0.0 7.9 8.8 11.4 Pinsp = 28 14.1 11.9 15.6 6.6 6.1 7.6 

Pinsp = 25 20.0 20 0.0 4.9 4.7 4.1 Pinsp = 20 11.0 18.3 66.4 6.2 7.1 14.5 

Pinsp = 20 11.0 11.7 6.4 6.2 6.1 1.6 Pinsp = 25 14.2 11.4 19.7 5.8 4.2 27.6 

Pinsp = 25 14.2 14.7 3.5 5.8 5.6 3.4 Pinsp = 30 15.2 14.5 4.6 5.5 4.3 21.8 

Pinsp = 30 15.2 14.9 2.0 5.5 5.5 0.0 Pinsp = 25 15.1 14.9 1.3 5.5 7.5 36.4 

PEEP = 7 15.4 14.8 3.9 5.9 5.5 6.8 PEEP = 2 14.6 11.6 20.5 5.7 4.1 28.1 

FiO2 = 0.4 14.3 14.4 0.7 5.6 5.6 0.0 FiO2 = 0.45 16.7 15.8 5.4 5.7 5.6 1.8 

FiO2 = 0.60 15.7 15.7 0.0 5.4 5.6 3.7 FiO2 = 0.50 13.7 13.2 3.6 5.4 5.7 5.6 

FiO2 = 0.50 13.7 13.8 0.7 5.4 5.9 9.3 FiO2 = 0.40 12.0 12 0.0 5.5 5.9 7.3 

FiO2 = 0.4 12.0 12.1 0.8 5.5 5.7 3.6 FiO2 = 0.50 19.0 14 26.3 5.3 5.7 7.5 

Pinsp = 35 19.0 18.3 3.7 5.3 5.3 0.0 Pinsp = 40 24.2 19.3 20.2 5.0 4.1 18.0 

Pinsp = 40 24.2 23 5.0 5.0 4.8 4.0 Pinsp = 35 23.1 21.1 8.7 5.4 6.1 13.0 

Pinsp = 35 23.1 22.5 2.6 5.4 5.4 0.0 Pinsp = 30 22.7 22.5 0.9 5.7 5.4 5.3 

Pinsp = 25 19.8 19.7 0.5 7.3 7.4 1.4 Pinsp = 31 22.5 20.4 9.3 4.9 4.8 2.0 

I:E = 0.66 14.4 14.6 1.4 5.1 5.2 2.0 I:E = 0.5 14.5 14.4 0.7 4.7 5.1 8.5 

I:E = 0.5 14.5 15.3 5.5 4.7 4.2 10.6 I:E = 0.33 14.2 14.5 2.1 4.8 4.7 2.1 

I:E = 0.33 14.2 14.9 4.9 4.8 4.8 0.0 I:E = 0.5 14.6 14.2 2.7 4.9 4.8 2.0 

PEEP = 10 15.5 14.9 3.9 4.6 4.3 6.5 PEEP = 15 15.8 15.5 1.9 5.1 4.6 9.8 

Mean Absolute Percentage Error (%) 2.1   3.9    10.3   12.6 

Table 2. Model computed arterial blood gas values versus individual patient data, before and after changes in ventilator settings 
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