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ABSTRACT: The use of orthogonal ribosomes in combination with dynamic
resource allocation controllers is a promising approach for relieving the negative
effects of cellular resource limitations on the modularity of synthetic gene circuits.
Here, we develop a detailed mechanistic model of gene expression and resource
allocation, which when simplified to a tractable level of complexity, allows the
rational design of translational resource allocation controllers. Analysis of this
model reveals a fundamental design trade-off: that reducing coupling acts to
decrease gene expression. Through a sensitivity analysis of the experimentally tunable controller parameters, we identify how
each controller design parameter affects the overall closed-loop behavior of the system, leading to a detailed set of design
guidelines for optimally managing this trade-off. On the basis of our designs, we evaluated a number of alternative potential
experimental implementations of the proposed system using commonly available biological components. Finally, we show that
the controller is capable of dynamically allocating ribosomes as needed to restore modularity in a number of more complex
synthetic circuits, such as the repressilator, and activation cascades composed of multiple interacting modules.
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Ensuring circuit modularity, i.e., the independent and
predictable functioning of different circuit processes,

remains a key goal in synthetic biology. If modules are
independent then they can be recombined to produce novel
functions that can be predicted from previous characterization.
This approach is commonly used in electronics and computer
science where complex functions are broken down into
independent modules, which can be assembled to form new
systems.
However, in synthetic circuits, there is often a failure of

modularity, with gene circuits based on purportedly well
characterized components needing iterative rounds of redesign
and re-experimentation to obtain functional implementations.
Modularity fails for a variety of reasons: (i) unexpected cross talk
between modules due to component reuse,1 (ii) subtle changes
in gene regulation due to unforeseen effects of combining DNA
sequences,2 (iii) retroactivity effects where the titration of a
transcription factor to a downstreammodule affects the behavior
of the upstream module,3 and, (iv) the use of a common limited
pool of resources for gene expression.4 Careful selection of
components can ameliorate the effects of (i) by ensuring
modules do not have off target effects.5 The introduction of
“insulator elements” such as ribozymes can reduce the effects of
(ii)6 and the development of buffer circuits allows loading
fracture due to retroactivity (iii) to be reduced.7 The question of
how to optimally manage the effects of cellular resource
limitations on circuit modularity, however, remains an open
problem.

During exponential growth, the concentration of RNA
polymerases (RNAP) and ribosomes in the cell remains
constant. This results in a fixed pool of gene expression
resources. While both resources are finite, numerous exper-
imental studies have shown it is the number of free ribosomes in
system that is the main limitation on gene expression.8−12 The
sharing of this fixed resource across genes leads to a
phenomenon known as gene-coupling. This results in the
emergence of nonregulatory interactions between coexpressed
genes,4 since each synthetic circuit module will utilize as many
ribosomes as possible at any one moment, as determined by
parameters such as mRNA levels or RBS strength.
To illustrate the problem mathematically, consider the

number of free ribosomes as a function of the ribosome supply
and demand as
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where Rtotal is the total number of ribosomes available and ϕ is
the demand.4,10 Upon the addition of another demand ϕ2, the
free ribosome number becomes
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As ϕ > 0 in all cases, by definition R(ϕ1, ϕ2) < R(ϕ1). This
decrease in free ribosome number reduces the rate of
downstream processes, such as mRNA-ribosome binding, as a
consequence of the law of mass action. This leads to a decrease
in other modules as a new module is induced (this is often
termed coupling4,13,15): activation of one circuit module
effectively inhibits other modules. In this case the supply of
ribosomes (the numerator) is determined by the cell and supply
is constant regardless of the demand (the denominator)i.e.,
there is no control of Rtotal.
To mitigate this decrease in free ribosomes upon the addition

of new genes, consider a system where the supply of total
ribosomes can be matched to the circuit’s demand for
ribosomes. Let this malleable ribosome pool be R′:
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Upon the addition of another gene the demand (the
denominator) increases as before:
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However, in this ideal system we can now increase the supply
of R′ (i.e., increase the numerator) to make R(ϕ1) = R(ϕ1, ϕ2).
This maintains the free ribosome pool available to the circuit and
so removes ribosome-mediated gene coupling.
In a previous work, we have experimentally realized a

prototype of a feedback controller that can dynamically allocate
more ribosomes to the circuit when required.14 Increasing total
ribosome number is not biologically feasible, so our controller
acts to dynamically allocate the translational capacity between
host and circuit genes in response to circuit demand, thus
relieving the effects of resource limitations on the circuit.14 This
is achieved by regulating the production of a pool of quasi-
orthogonal ribosomes. These specialized circuit-specific ribo-
somes can be created by expressing an orthogonal 16S rRNA
and replacement of the natural ribosome binding site in circuit
genes, or other genes of interest, with complementary synthetic

Figure 1.Development of a genetic feedback controller model. (a) Schematic of the negative feedback loop implementation. (b) Block diagram of the
controller. The process, highlighted in green, converts the input u1 into protein output p1 utilizing the o-ribosome pool R. The input into a second
process (not shown) u2 acts as a disturbance to the first process which is ameliorated by the effect of the controller. The controller protein is
constitutively expressed ( f 0 signal) so the output pf is dependent upon R. As inputs ui disturb R the level of pf changes (i.e., as ui increases, pf decreases).
As pf is a repressor the disturbance signal is inverted in the F(pf

) block. (c) Gene expression and decoupling trade-off. Expression and coupling were
calculated as defined in theMethods. The results of the multiobjective optimization where perturbed by±50% to discover the shape of the true Pareto
front. The controller results are divided by ηf.N = 107 743. OL, open loop trade-off determined by varying the values of the inputs for a circuit using the
host ribosome pool, which by definition is uncontrolled. (d−f) Controller dynamics as it decouples circuit genes using the parameters of Point 19 of
Table S1. The first gene p1 is constitutively expressed throughout, u1 = 500 nM throughout. At 12 h, u2 rises from 0 to 500 nM. (d) Protein output of the
close loop system. OL represents the coupling when the inputs are tuned in the absence of the controller to match the final protein level. (e)
Translation complexes: Changing distributions of orthogonal ribosomes across circuit and controller mRNAs. c1, c2 and cf represent the translation
complexes of the mRNAs of genes 1, 2 and the regulator f respectively. R represents the free orthogonal ribosomes. cf acts as the sensor for the
disturbance at t = 12 h. Levels are normalized by the total number of orthogonal ribosomes at t = 12 h. (f) Controller action: Changes in controller
components over time. Levels are normalized by value at t = 12. xr, o-16S rRNA gene in the transcribing state; Σ(R), number of orthogonal ribosomes;
pf, controller protein.
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ribosome binding sites. The o-16S rRNA replaces the
endogenous host 16S rRNA in a fraction of the host ribosomes
creating a separate translational resource that is targeted to
circuit genes by binding the complementary synthetic RBS
sequence. By placing the production of the o-16S rRNA under
the control of a constitutively expressed repressive transcription
factor, which itself uses the orthogonal ribosome pool for its own
translation, we created a feedback controller that produces o-
16S rRNA, and hence orthogonal ribosomes, in response to
circuit demand. As circuit genes are induced, they sequester o-
ribosomes for their own expression resulting in a fall in the
expression of the regulator. This relieves the repression of the o-
16S rRNA, resulting in increased o-16S rRNA production and
increased o-ribosome co-option. Thus, the controller imple-
ments a negative feedback loop. See Figure 1a for a schematic of
the biological implementation of this feedback loop. Of course,
the controller cannot mitigate intrinsic limitations arising from
the fact that the total number of ribosomes in the cell is finite.
Rather, the controller acts to dynamically manage the allocation
of translational activity between host and circuit genes in the
most efficient way, by increasing circuit capacity as circuit
demand requires it.
In this paper, we use the biological insights gained from the

prototype to produce simple models of the controller
architecture that can be used to inform detailed design of the
systems dynamics using control theory metrics. Using such
models, we demonstrate how improved resource allocation
controllers can be rationally designed to decouple the expression
of different genes, and develop design rules for how the tuning of
different controller design parameters can act to separately
specify either the dynamic response time or overall protein
output (i.e., gain) of the circuit. On the basis of these design
rules, we identify and evaluate a number of alternative potential
experimental implementations of the proposed translational
controllers. Finally, we demonstrate the potential of resource
allocation controllers to improve the modularity of a variety of
complex gene circuits.

■ RESULTS AND DISCUSSION

Mechanistic Model of the Resource Allocation
Controller. We initially develop a complete mechanistic
model of gene expression and the action of the controller,
before investigating how this model can be simplified for use as a
design tool. We assume that each circuit promoter (gi) can be
bound by a multimeric transcription factor (ui) to form a
promoter complex (κi) capable of recruiting a free RNA
polymerase (σ) to form a translation complex. When tran-
scription occurs, an mRNA (mi) is produced, and the original
RNAP polymerase and promoter complex are released. The
above interactions are described by the following chemical
reactions:

η κ κ σ
τ

σ κ+ · + → + +
α

α

ξ

ξ
F Fg u x x mi i i i i i i

i
i i

ri

fi

ri

fi

The mRNA is bound by a free orthogonal ribosome, R, to
form a translation complex (ci). Upon translation, a protein (pi)
is produced and the mRNA and R are released:

γ
+ → + +

β

β
Fm R c c m R pi i i

i
i i

ri

fi

Additionally, both mRNAs and proteins degrade at rates δmi

and δpi, respectively.
Applying the law of mass action we derive the following ODEs

describing the time evolution of the circuit components:

κ α α κ ξ κ σ ξ τ̇ = − − + +ηg u x xi f i i r i f i r i i ii

i
i i i (5)

ξ κ σ ξ τ̇ = − −x x xi f i r i i ii i (6)

τ β β γ δ̇ = − + + −m x m R c c mi i i f i r i i i m i
i i i (7)

β β γ̇ = − −c m R c ci f i r i i i
i i (8)

γ δ̇ = −p c pi i i p ii (9)

This represents a simple single-input-single-output (SISO)
motif and forms the basis of our model. Complex circuits can be
constructed by letting the output from one module form the
input to another.
To implement our controller we first consider the conversion

of host ribosomes (RH) into circuit-specific orthogonal
ribosomes (R). The orthogonal 16S rRNA gene promoter (gr)
recruits σ to form a translation complex (xr) which produces the
orthogonal rRNA (r):

σ
τ

σ+ → + +
ξ

ξ
Fg x x r gr r r

r
r

rr

fr

The orthogonal 16S rRNA binds host ribosomes, RH, and so
recruits ribosomes to the circuit-only orthogonal pool, R:

+
ϱ

ϱ
FR r RH

f

r

In the presence of the controller the orthogonal rRNA gene is
regulated by the repressor pf. The repressor binds the free gr
promoter and prevents the binding of RNA polymerase and
associated factors (σ in our model):

η κ+ ·
α

α
H Ioog pr f f f

f f

rr

We model expression of the regulator protein by considering
the constitutive expression of its mRNA from an unregulated
promoter, gf:

σ+
ξ

ξ
H Ioog xf f

f f

r f

We model the transcription and translation of the repressor’s
mRNA and protein in the same manner as the circuit genes, as
described above. Applying the law of mass action results in the
following ODEs describing the production of the repressor and
intermediate complexes:

ξ σ ξ τ̇ = − + +g g x xf f f r f f ff f (10)

ξ κ σ ξ τ̇ = − −x x xf f f r f f ff f (11)

τ β β γ δ̇ = − + + −m x m R c c mf f f f f r f f f m f
f f f (12)

β β γ̇ = − −c m R c cf f f r f f f
f f (13)

γ δ η α η α κ̇ = − − +η
p c p g pf f f p f f f r f f r rf r

f

r (14)
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Applying the law of mass action to the o-rRNA promoters and
ribosome species yields

ξ σ ξ τ α α κ̇ = − + + − +η
g g x x g pr f r r r r r f r f r rr r r

f

r (15)

ξ σ ξ τ̇ = − −x g x xr f r r r r rr r (16)

κ α α κ̇ = +η
g pr f r f r rr

f

r (17)

τ δ̇ = − − ϱ + ϱr x r rR Rr r r f rH (18)

̇ = −ϱ + ϱR rR Rf rH H (19)

This detailed model is highly complex, being composed of 5
species per circuit gene and the 10 species of the controller.
Additionally, some parameters, such as on and off rates, are
difficult to determine experimentally and so they are unlikely to
be available in the literature preventing design. We reduce this
model by considering the effect of time-scale separation and
species conservation (see Section S1). Additionally, we remove
the potentially confounding RNA polymerase mediated
coupling as discussed in Section S1. The tractable model is
composed of 3 ODEs describing the action of the controller and
one equation per circuit protein:

γ δ̇ = ̂ −p c R pi i i p ii (20)

γ δ η η μ κ̇ = ̂ − − ̅ + ̅
η

p c R g pf f f p f r f f f rf

f

(21)

τ δ̇ = ̅ − − ϱ + ϱr x r rR Rr r r f rH (22)

̇ = −ϱ + ϱR rR Rf rH H (23)

where c ̂ is a measure of the demand for ribosomes and includes
the quasi-steady state transcriptional dynamics. c ̂ is defined fully
in eq S10. g̅r and κ̅r are the quasi-steady state free and inhibited o-
rRNA promoter concentrations respectively (eqs S12 and S14).
The concentration of free orthogonal ribosomes is given by

=
−

+ ̂ + Σ ̂
R

R R
c c1 ( )f

N
i

total H

1 (24)

Note that this follows the same form as eq 2, with the total
number of o-ribosomes available to the circuit being the total
number of all ribosomes (Rtotal) minus the number of host
ribosomes (RH). (Note that the majority of this work is
concerned with two gene circuits and therefore N = 2.)

Model Analysis Reveals a Trade off between Gene
Expression and Level of Decoupling. We considered a
simple circuit consisting of two modules single-input-single-
output motifs. We assess the impact of the controller to reject
disturbances to one module upon activation of the second: i.e.,
we assess the change in p1 upon activation of u2. This difference
in expression of p1 due to the u2 disturbance is termed “coupling”

Figure 2. Design trade-offs between gene expression and decoupling. Designs of controllers that manage the trade-off between gene expression and
decoupling. Expression and coupling are calculated as defined in the Methods.N = 107 743. As described in the main text, controllers where ηf = 1 are
removed from the following panels for clarity. Also note that the third axis in plots (a−d) and subsequent separation serves only to aid visualization and
does not represent parameter value, which is indicated by the color as outlined in the figure legend. Points with greater fold reduction than 103 are not
shown. All these points represent complete decoupling. (a) o-rRNA transcription as determined by the gr,T/kXr

ratio. (b) Transcription of the controller

protein as determined by the gf,T/kXf
ratio. (c) Controller mRNA ribosome binding site strength as measure by mRNA-ribosome dissociation constant

kLf
. (d) Controller protein gr dissociation constant μf. (e) Parameter changes across the Pareto front (i.e., controllers where ηf = 4). The different trade-

offs between coupling and expression are divided into similarly behaving controllers (as described in theMethods). Insets show the median parameter
value and interquartile range for each set of behaviors.
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below (see Methods for quantification). We assess any impact
on protein levels by comparing the final protein outputs to the
theoretical maximum: i.e., the protein levels obtained using the
host ribosome pool for translation and assuming maximal
induction.We initially consider how tuning the circuit inputs (u1
and u2) only impacts gene expression and coupling in a circuit
translated by the host ribosome pool (and therefore in the
absence of feedback control). This demonstrates a linear trade-
off with coupling falling as expression falls. Using the reduced
five state model to design our feedback controller, we carried out
a multiobjective optimization of the experimentally tunable
controller parameters aiming to produce both high protein levels
and low gene coupling (see Methods). We sampled parameters
around the front to identify the true shape of the Pareto-optimal
front, corresponding to a controller cooperativity ηf of 4. This
identified a hard trade-off between these two objectives, with the
range of equally optimal solutions showing an inverted concave
shape, i.e., decreases in gene coupling are achieved at the expense
of decreases in gene expression (Figure 1c). Our simulations
suggest that the controller can halve coupling for only a 13%
reduction in expression (for the highest cooperativity ηf = 4); in
comparison the tuning circuit inputs requires a 48% reduction in
expression to achieve the same level of coupling. If a loss of
∼50% is acceptable then coupling can be reduced to only 5%.
The controllers give access to a higher level of gene expression
for a given level of decoupling than tuning circuit parameters
alone.
We demonstrate the functioning of the controller using Point

9 as determined by our optimization routine. This controller
design shows intermediate results with coupling falling to only
5% for a loss of 50% expression. The corresponding open loop
arrangement where the inputs u1 and u2 tuned to produce the
same final expression shows coupling of 15%. The controller
successfully insulates one gene from the induction of another
(Figure 1d), bar a short transient disturbance (<12 h). Tracking
the concentrations of the intermediate species reveals the
operation of the controller; with translation of pf falling and the
number of o-rRNA genes being transcribed increasing as the
second gene is induced (Figure 1e). This results in a net increase
in the number of orthogonal ribosomes (Figure 1f), which
means that in the long term the translation complexes producing
each protein do not change (Figure 1d).
To identify the true Pareto front and determine the

robustness of the trade-off we varied the results of our genetic
algorithm by up to 50% for each point identified. This identifies
the true Pareto front when ηf = 4. None of the designs from this
robustness analysis falls below the linear trade-off achieved by
input tuning; i.e., there are no designs where the action of the
controller reduces expression without having a beneficial effect
on gene coupling. A number of controllers provide no
improvement upon input tuning (see below). We find that a
small number of these perturbed designs show slower responses,
and we discount these from further analysis. We carried out an
additional robustness analysis allowing all parameters governing
the controller behavior to vary. This includes parameters that are
either difficult to design (e.g., controller translation rate γf) or
intrinsic properties which cannot be designed (e.g., o-rRNA
association rate, μr). All of these controllers also fall upon the
same front demonstrating that uncertainty in these values does
not preclude controller design (Figure S1).
To determine how each parameter contributes to the gene

expression and coupling trade off, we analyzed how each changes
across the front. This highlights the need for high ηf values. This

parameter represents the level of cooperativity in the system
brought about, for example, by transcription factor multi-
merization or the presences of multiple operator sites. The true
Pareto front coincides with a value of ηf = 4 (Figure 2b). Due to
the present constraint that most repressors used in synthetic
biology are derived from natural sources, it is therefore unlikely
that all combinations of multimerization (ηf), dissociation
constant (μf) and promoter kinetics (kXr

) desired will be present
in one selected repressor, and so we also consider designs based
on suboptimal dimeric and trimeric repressors (ηf = 2 and 3).
However, given the poor performance of monomeric controllers
(ηf = 1), we discount these from all further analysis. Across all ηf
values, small μf values are most often associated with controllers
which act to nearly completely decouple genes but at a
significant cost to gene expression (Figure 2d) with only μf >
1 nM giving access to moderately high levels of expression.
Similarly, small kLf values, corresponding to strong ribosomes
binding sites (low ribosome-mRNA dissociation constant), are
associated with large levels of decoupling at a high cost to gene
expression (Figure 2c). Simulations suggest kLf > 105 nM and μf
> 0.1 nM in all cases, for the simple two gene circuit example
used here. (Note that for many natural transcription factors co-
opted into synthetic gene networks μf < 0.1 nM and ηf may be
limited. We demonstrate how this can be compensated for in
controller design in the section Dynamic Resource Allocation
Controller Restores Modularity in a Range of More Complex
Gene Circuits below). A high gf,T/kXf

ratio (gf,T/kXf
> 1, produced

by expressing the regulator from a strong promoter carried on a
high copy number plasmid) results in complete decoupling and
abolition of gene expression (Figure 2b). We therefore suggest
keeping gf,T/kXf

< 1 in all instances. We find that the gr,T/kXr
ratio

governingmaximal o-rRNA transcription rate varies significantly
across all behaviors, making general guidelines difficult to
establish (Figure 2a).
To provide further specific quantitative design rules that

manage the trade-off, we divided the responses of the different
controllers based on the their decoupling ability and final circuit
expression level (Figure 2e). These represent groups of
controllers with similar behaviors, see Methods. This shows
that the key determinant of the expression-coupling trade-off is
the RBS strength (kLf) with the dissociation constant decreasing
with increased decoupling (Figure 2e, inset). (Note that for the
majority of behaviors kLf is greater than 10

8 nM. This represents
a weaker RBS strength than currently available requiring
extensive RBS engineering.) The o-rRNA transcriptional
parameters (gr,T/kXr

ratio) is between 0.1 and 1, which can be
achieved through a range of different plasmid copy number and
promoter dissociation constants (Figure 2e, inset. Figure S4).
The gene encoding the controller protein should be expressed
from a weak promoter and a low or medium copy plasmid in
order to create a gf,T/kXf

ratio of between 0.01 and 0.1 (Figure 2e,
inset). The controller dissociation constant μf can take any value
between 10 nM and ∼30 nM. For the most strongly decoupling
controllers a greater range of gf,T/kXf

and μf are tolerated, with the
greater range corresponding to a higher expression of controller
and stronger repressor binding. The same patterns are observed
across ηf = 2 and 3 (Figure S2).

Designing System Response Times by Tuning Con-
troller Parameters. Analysis of the controllers tested so far has
focused on how they are able to correct steady state errors
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brought about by gene coupling and so we have largely ignored
the system dynamics, bar excluding excessively slow controllers
(e.g., penalizing simulations which only reach steady state after
>24 h). However, a controller that decouples genes well but has
a slow response time will not be suitable for many applications in

synthetic biology. Therefore, we took the previous candidate
controllers and conducted a local sensitivity analysis around
each design point to assess the impact of each parameter on the
system’s speed of response. In addition to the controller
parameters varied so far we also varied δρ, δmf

and δpf, which

Figure 3. Tuning decay parameters allows design of system dynamics. The effect of varying the decay parameters δr and δpf and the cooperativity
parameter ηf on the response of p1 to the additional input u2. Panels (a), (b) and (c) represent the results of the sensitivity analysis around the
parameter set from the high decoupling regime (Point 1 of Table S1). Panels (d), (e) and (f) represent the results of the sensitivity analysis around a
parameter set from the intermediate decoupling regime (Point 42 of Table S1). In panels (g), (h) and (i) example controllers are shown. In each case
the nominal controller’s dynamics are designed by tuning one of the parameters above. Other parameters are changed to compensate for any loss in
expression or decoupling ability. See Table S2 for further details. (g) The impact on the circuit dynamics of increasing δr. (h) The impact on the circuit
dynamics of increasing δpf. (i) The impact on the circuit dynamics of increasing ηf.
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represent the decay of the o-rRNA, controller mRNA and
controller protein, respectively. These parameters were kept
constant in the previous design evaluations to minimize the
number of parameters in the optimization, but since decay
parameters often have significant affects on speed of response we
explicitly assess their impact here.
The o-rRNA decay constant (δr) and protein controller decay

constant (δpf) are key to determining the speed of the system
response. Increasing both parameters acts to increase the speed
of response (Figure 3). Increasing δr increases the controllers
ability to decouple circuit genes. Increasing δpf decreases
decoupling ability but increases expression. In the regions
tested, varying δr is less likely to introduce significant overshoots
into the system (as seen at low δpf values). However, a greater
range of speed-up is achievable by varying the protein decay
constant. The latter is also a more experimentally tractable
parameter. Increasing both parameters acts antagonistically,
with increases in δr decreasing gene coupling and increases in δpf
increasing it, meaning tuning both parameters may be
advantageous. We see very little impact from varying the
mRNA decay rate (δmf

). As previously discussed the value of the
controller cooperativity (ηf) is a key determinant of controller
decoupling ability. This analysis replicates this result and also
highlights that, at least in this parameter regime, increasing

cooperativity also acts to significantly increase the speed of
response (Figure 3).
Given that changing these three parameters significantly

changes the decoupling ability of the controller in addition to its
dynamics, we assessed the impact of varying additional
parameters to design controllers with increased response times
while maintaining controller function (as measured by
decoupling and expression). The changes in decoupling ability
brought about by increasing δr can be ameliorated by decreasing
the expression of the controller protein through tuning gf,T/kXf

(Figure 3g). While in Figure 3g, the time it takes for p1 to return
to steady state after induction of p2 at 12 h does not change the p2
rise time (i.e., the time it takes for p2 to rise from 10% to 90% of
its final value) falls by 30%. The loss in decoupling ability
associated with increasing the controller protein decay rate can
likewise be corrected by increasing gf,T/kXf

(Figure 3h). In Figure
3i, the dynamics are significantly improved by increasing ηf from
2 to 4 with the p1 settling time falling by 5 h. To maintain
expression levels μf of the controller protein needs to be tuned,
but this may not be possible given the reuse of natural
components as discussed above.

Potential Biological Implementations of the Con-
troller Designs. We carried out a detailed literature review to
identify potentially suitable repressors with which to implement
our system, focusing our analysis on (i) the ability of the

Figure 4. Comparison of biological implementations based on orthogonal repressors. Simulations of implementations based on the repressors in
different plasmid confirmations and with degradation motifs. (a) The positions of the prototype controllers in the coupling-expression space. Inset,
expansion of the main figure around point (0, 100). Point colors represent the regulator protein and point style denotes copy number as follows: Same
plasmid, gr,T = gf,T = 100 nM; Chromosomal, gr,T = 500 nM and gf,T = 10 nM. Decay tag, gr,T = 500 nM, gf,T = 10 nM, δpf = 3 h

−1≈ t1/2 = 8min, equivalent
to LVA tag.22
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repressor to be expressed in bacterial hosts (i.e., repressors from
bacteria or bacteriophage), (ii) orthogonality (i.e., repressors
that are not used in fundamental host processes), (iii) the
presence of a known promoter architecture (which could be
used to infer the dissociation constant of the RNA polymerase,
see Section S2) and (iv) detailed characterization of binding
kinetics (ideally dissociation constants measured in a bio-
chemical assay, rather than a constant inferred from device
function such as by fitting a Hill function to induction−
fluorescence curves, as is often the case). We identified six
repressors from this literature search, including the commonly
used LacI,16 TetR17 and cI18 repressors. We also identified
putative controller candidates Cro and RstR from bacterioph-
ages PY54,19 CTXφ20 and LmrR, a global regulator of antibiotic
resistance from Gram positive Lactococcus lactis.21

Using the results of our sensitivity analysis and additional
biological constraints we identified a number of feasible
biological implementations. We considered two gene expression
systems: (i) where the o-rRNA and regulator having the same
medium copy number (mimicking placement in the same
plasmid, such as ColE1) and (ii) a high copy number o-rRNA
gene, carried on for example a pUC vector, and a chromosomally
integrated regulator. Note that we did not assess the potential
designs requiring the o-rRNA and regulator to be carried on

different copy number plasmids, as these would result in high
burden on the cells and significantly decreased growth rate as
these cells would need to carry at least three plasmids, one
containing circuit genes and one each for the o-rRNA gene and
regulator. We explored the potential impact of engineering the
o-rRNA promoter strength by multiplying the reported
dissociation constant (as reported in the literature or calculated
see Section S2) by 0.25 (representing a 4-fold strengthening of
the promoter) and 2 (representing a 2-fold weakening of the
promoter). We simulated three different controller promoter
strengths representing strong (200 nM), medium (500 nM) and
weak (1000 nM) promoters. We also assessed the impact of
varying RBS strength. We also assessed the impact of fusing
degradation tags to the controller protein. The small amino acid
motifs acts to target proteins for degradation and hence increase
δpf. These simulations of potential controller designs shows that
by selecting different biological components all levels of the
trade-off are accessible. (Figure 4).
These different implementations have a wide range of

dynamics. Selecting those controllers with high decoupling
ability (i.e., where coupling was greater than −0.15), we ranked
them by the length of time it took p1 to return to steady state
after the disturbance caused by u2 and selected the fastest
responding implementation for each repressor (Figure 5). See

Figure 5.Dynamic responses of potential biological implementations. Characterization of the response of p1 to the disturbance caused by u2. Designs
are available in Table S5. (a) Circuit dynamics showing the normalized levels of protein 1. Inset, steady state output at t = 48 h. (b) p1 settling time. The
number of hours from the induction until p1 returns to steady state. (c) p1 steady state error. The difference between p1 (t = 48) and p1 (t = 12). (d) p1
disturbance. The percentage fall in p1 upon u2 induction. (e) p2 rise time. The time it takes for p2 to increase from 10% of its steady state to 90% of its
steady state.
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Table S5 for details of the designs shown. All these
implementations have similar p2 rise times of approximately 3
h and show similar disturbances to p1 upon induction of u2
(Figure 5, e). The putative controllers based on the tetramers
LacI and RstR show the fastest respond times with p1 settling
with 10 h of p2 induction (Figure 5b). The designs based on

dimers show the greater outputs, with a concurrent increase in
coupling between 7 and 14% depending upon the controller
design (Figure 5c).

Dynamic Resource Allocation Controller Restores
Modularity in a Range of More Complex Gene Circuits.
Having successfully demonstrated the ability of the proposed

Figure 6.The controller rescuesmodularity in a variety of circuit contexts A range of common circuits were simulated in both the open and closed loop
confirmations. All y-axes are normalized output. (a) The controller successfully renders a gene invulnerable to the induction of many additional genes
at 100 h intervals. Other genes not shown. (b)Maintaining repressilator behavior in the presents of an induced gene. The repressilator (protein p1 to p3,
only p1 is shown) is simulated before an additional gene p4 with a stronger RBS is induced. Upper panels: Open loop (no controller). Lower panels:
Closed loop (with controller). Left and center panels: Function of the individual modules alone. Right: Function of the twomodules in one circuit. p4 is
induced at 24 h. (c) The controller removes resource limitation-induced failure in the design of an activation cascade (u1→ p1→ p2). In the absence of
the controller (dashed line) some prototype designs do not show the monotonically increasing output of p2 to u1 as desired in an activation cascade.
The controller removes these resource limitations allowing the circuit to function as expected across all prototype designs.
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approach to decouple two independent modules, we analyze the
ability of the controller to remove resource dependent failure in
a variety of more complex gene circuits (Figure 6).
We initially simulate multiple SISO modules with new

modules being activated at different intervals. In the absence of
the controller, activation of each additional module has an
impact on the previously activated modules. For example, the
expression of the first module p1 falls by over 50% as three
additional genes are induced. As shown in Figure 6a, the
controller successfully eliminates this coupling, making p1
relatively insensitive to the induction of over 10 additional
genes (although note that the rise time and settling time increase
slightly with the induction of each additional gene).
A key aim of synthetic biology is that previously characterized

components or devices can be introduced into the same cell to
form a complex circuit. Here we assess the effect of introducing
two separately characterized devices into one complex circuit;
i.e., we want to investigate what is the effect of introducing an
additional resource consumer on a previously characterized
device. As the production of robust genetic oscillators to create
clocks for temporal processes functions is of fundamental
importance in synthetic circuit design, we consider designs for
the repressilator clock and an additional SISO module. These
modules are first simulated separately, as shown in (Figure 6b,
upper panel). Upon linking these separate devices through a
common pool of resources, i.e., coupled through their
competition for ribosomes, we see that p4 induction destroys
the oscillations of the repressilator (Figure 6b, upper right
panel). If, however, we consider the design of these two devices
in the presence of the controller and then introduce them into
the same resource pool as before, we see that circuit function is
nowmaintained (Figure 6b, lower panels). Note that while there
is still a small loss in repressilator amplitude upon induction of p4
this is significantly reduced, thus staying closer to the original
device behavior.
It has previously been shown that resource limitations can

change the input-output response of a simple genetic activation
cascade.4 The authors show that if the upstream module has a
stronger ability to sequester ribosomes than the downstream
module (a small kL1-to-kL2

ratio) then the expected response
determined from simple Hill-function type modeling (i.e., an
increasing output to increasing input in a step-like fashion) can
become biphasic or even invert (Figure 6c, dotted open loop
lines). We simulate a range of prototype activation cascades in
the absence and presence of our controller. In the absence of the
controller, no additional resources are available as demand
increases, and so we see the activation cascade failing in the same
manner as found in Qian et al. In the presence of the controller,
the desired behavior of the activation cascade is restored, as
translational capacity is directed to the circuit as demand
increases. The controller acts to remove the resource limitation,
thus allowing simpler models, which often do not account for
limited cellular resources, to be used to produce circuit designs
that then function as expected in vivo.

■ CONCLUSIONS

Numerous genetic components and devices have been
developed to ensure predictable gene expression or dampen
the effect of loading in genetic circuits. However, to date, little
attention has been paid to developing genetic devices that are
capable of relieving cellular resource limitations. Controllers for
orthogonal transcriptional activity based on phage RNA

polymerases have been developed,23,24 and we have previously
implemented a prototype translational controller.14 Here, we
develop a detailed mechanistic model of gene expression and
resource allocation, which when simplified to a tractable level of
complexity, allows the rational design of optimal translational
controllers. We demonstrated that this new model allows the
design of controllers that can dynamically allocate orthogonal
ribosomes to synthetic circuits within reasonable timeframes
(<12 h). Using our model, we identify a fundamental trade-off in
controller design: that reducing coupling acts to decrease gene
expression. We determined how each controller design
parameter affects the overall closed-loop behavior of the system,
leading to a detailed set of design guidelines for optimally
managing this trade-off. We find that both controller
cooperativity and RBS strength are key parameters in
determining the level of decoupling that can be achieved. On
the basis of our designs, we identified and evaluated a number of
alternative potential experimental implementations of the
proposed system using commonly available biological compo-
nents. Finally, we showed that our controller is capable of
dynamically allocating ribosomes as needed to restore
modularity in a number of more complex synthetic circuits,
such as the repressilator, and activation cascades composed of
multiple interacting modules.

■ METHODS

Numerical Simulations. All models were implemented in
either MATLAB 2016b and 2017a (The MathWorks Inc., MA,
USA) and simulated using the in-built stiff solvers ode15s and
ode23s using increased tolerances (Relative 10−6 and Absolute
10−6). Simulations were deemed to have reached steady state
when the maximum of the calculated derivative was less than
10−2 (relaxed) or 10−3 (strict). Additional specialist functions as
needed were utilized from the Optimization Toolbox (Version
7.4) and Parallel Computing Toolbox (Version 6.8 or 6.10).

Assessment of Controller Function. The behavior of
controllers was characterized by simulating the action of a simple
two gene circuit. Initially, the behavior of one gene p1 is
simulated before its response is assessed to the induction of a
second gene p2 at time t = θind. Coupling and expression are
normalized:

θ θ θ= = − = =p t p t p tcoupling ( ( ) ( ))/ ( )1 ind 1 ss 1 ind

(25)

θ= = −p t p pexpression ( ( ) )/2 ss target target (26)

We calculate the fold reduction in expression by taking:

=
− | |

fold reduction in expression
1

1 expression (27)

Optimization. The multiobjective optimization was carried
out using the inbuilt function gamuliobj with a population size of
200 individuals and with a Pareto fraction of 0.25 from the
Optimization Toolbox. kX values were set to 1 allowing the x̂
ratios to be investigated by varying gr,T and gf,T only. See Section
S2 for a discussion of permissible parameter bounds. The
parameters varied (and their scale and bounds) were gr,T/kXr

ratio (log10 scale, 10−2−102), kLf (log10 scale, 103−108), ηf
(integers values only to represent the number of required
monomers in the DNA binding complex, 1−4), μf (log10 scale,
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10−2−103) and gr,T/kXr
ratio (log10 scale, 10−2−102). The

optimization routine aims to minimize:

χ θ θ= = − =p t p t( ( ) ( ))1 1 ss 1 ind
2

(28)

χ θ= = −p t p( ( ) )2 2 ss target
2

(29)

where θind is the time of the induction of p2 and θss is the last time
point, tmax. If the simulation is not at steady state at tmax then the
result is given the poorest fitness. ptarget is calculated by
simulating the action of the circuit in a model utilizing the
host ribosome pool for gene expression.
Selection of Controller Parameters for Design Guide-

lines. Coupling and expression scores were calculated for each
controller as outlined above for all the results of robustness
analysis. These results were then scaled by their maximum
absolute values to ensure both axes are between 0 and 1 (note
that for calculating the distance metric we can ignore signs):

= +
| |

= +
| |

x

y

1
coupling

max( coupling )

1
expression

max( expression )

scaled

scaled (30)

Given the curved nature of the Pareto front, we recast the
Euclidean coordinates into polar coordinates:

θ= + =r x y x r( ) arccos( / )scaled
2

scaled
2

scaled (31)

We divide the Pareto front into segments (“behaviors”) by the
corresponding angle θ using the inbuilt MATLAB function
discretize. This determines parameter regimes for the given
behavior.
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