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ABSTRACT: Crop disease leads to significant waste world-
wide, both pre- and postharvest, with subsequent economic
and sustainability consequences. Disease outcome is deter-
mined both by the plants’ response to the pathogen and by the
ability of the pathogen to suppress defense responses and
manipulate the plant to enhance colonization. The defense
response of a plant is characterized by significant transcrip-
tional reprogramming mediated by underlying gene regulatory
networks, and components of these networks are often
targeted by attacking pathogens. Here, using gene expression
data from Botrytis cinerea-infected Arabidopsis plants, we
develop a systematic approach for mitigating the effects of
pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system
identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining
susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test
perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can
be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate
and compare two approaches for implementing such a controller biologicallydirect implementation of the genetic feedback
controller, and rewiring the regulatory regions of multiple genesto achieve the network motif required to implement the
controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants
with enhanced resilience to environmental stress.

KEYWORDS: plant synthetic biology, plant−pathogen interaction, synthetic gene circuits, feedback control, network rewiring,
plant defense response

Unfavorable environmental conditions during the growth of
crop plants can cause significant yield loss and reduction in

quality. These conditions include abiotic stresses, such as
drought and extreme temperature, as well as the biotic stresses
of disease and herbivory. Climate change is driving increasingly
unpredictable and variable weather, and bringing associated
change in pathogen (and hence disease) prevalence and
incidence.1,2 It is therefore important to develop crops that are
resilient to varying conditions and able to maintain yield in
suboptimal environments.3 The introduction and/or removal of
single genes via genetic engineering has led to plants with
enhanced tolerance to particular abiotic and biotic stresses;4

however, often such approaches have unintended consequences
on other plant responses,5 and in the case of disease resistance
they may not be durable. Recent increased understanding of how
plant responses to different environmental conditions are
controlled and integrated, together with the development of
systems biology approaches, has opened up the possibility of
designing stress resilient crops using engineering principles. In
this work, we have focused on transcriptional regulation, as

transcriptional reprogramming is a significant component of
plant stress responses6−8 and a point of cross-talk between
responses to different stresses.9

In this paper we focus on the regulation of the defense
response induced in Arabidopsis by the fungal pathogen, Botrytis
cinerea.10 When pathogens infect plants, disease is the result of
dynamic interactions between the two organisms. Pathogens
secrete a range of proteins, small RNAs and metabolites to
disrupt host defense and manipulate the extra- and intracellular
environment to aid colonization.11−14 This is thought to explain
why some positive regulators of defense are downregulated
during infection, for example expression of TGA3 decreases
during B. cinerea infection of Arabidopsis, yet plants lacking
TGA3 expression are more susceptible to this pathogen.10 In this
study, we use a control engineering approach to counteract such
potentially pathogen-mediated perturbations of positive regu-
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lators of defense. Constitutive overexpression of such positive
regulators would be an obvious approach, but this brings
significant drawbacks; the positive regulator of defense may have
other roles in the plant which are disrupted due to constitutively
high levels of expression, and constitutive activation of plant
defense responses is known to often impact on growth.15 Our
proposed approach, which seeks to dynamically respond to
perturbations of expression over the time-course of infection,
should overcome these drawbacks.
From the perspective of control engineering, this scenario can

be naturally formulated mathematically as a disturbance
attenuation problem. For such problems, control engineers
have developed a variety of powerful theoretical tools and
techniques that allow the design of feedback controllers that can
attenuate the effects of external perturbations on the functioning
of a system or network (see ref 16 and references therein). The
application of these tools to the analysis and design of complex
biological networks is now attracting significant interest within
the synthetic biology community.17,18 To date, however, the
potential usefulness of such approaches for engineering more
resilient plants has not been investigated.
Here, we explore how combining control engineering design

tools19−21 with synthetic biology techniques could be used to
enhance resistance against B. cinerea in Arabidopsis by preventing
downregulation of a positive regulator of defense during
infection. We design and test our controller using a model of
the Arabidopsis gene regulatory subnetwork underlying the
transcriptional response to B. cinerea infection. This network
model is formulated using ordinary differential equations
(ODEs) and constructed from experimental data using network
inference and system identification techniques. It is then
validated against different time-series transcriptome data sets
capturing the response of the plant’s regulatory network to
pathogen attack. Simulation results show the capability of the
proposed approach to significantly reduce the perturbation of a
positive regulator of plant defense in response to infection. We
propose a novel strategy for implementing the controller
experimentally, which avoids the need for the incorporation of
any exogenous synthetic control circuitry. This strategy is based
on the insight that the network motif required for the controller
can be implemented by rewiring the regulatory regions of
existing genes in the plant’s stress-response network. We show
how this can be done through the addition of gene coding
sequences under the control of alternative regulatory regions.

■ RESULTS
Inferring the Regulatory Subnetwork Containing a

Positive Regulator of Defense. We previously generated a
high-resolution time series of the Arabidopsis transcriptome
during the first 48 h after inoculation by the pathogen B. cinerea.10

Nearly 10 000 genes were identified as being differentially
expressed in infected leaves compared tomock-inoculated leaves,
including 883 TFs (Supplementary File S1a). We used the time-
series transcriptome data for the differentially expressed TFs as
input for network inference algorithms, to generate causal
directed network models of the regulatory events underlying
changes in expression of these TF genes. The algorithms chosen
for this purpose (GENIE3,22 TIGRESS23 and Inferelator24),
were highly ranked in a recent assessment of network inference
algorithms.25 GENIE3 approaches network inference as a tree-
based regression problem and came first in the DREAM4 in silico
multifactorial network inference challenge.25 Inferelator and
TIGRESS both use feature selection and least angle regression to

rank the potential regulators of a gene. The outputs from these
three algorithms were used to generate a consensus network
model, as a robust way of generating high confidence networks.26

A threshold (edges ≤10 times the number of nodes) was applied
to this consensus network to limit it to 8830 edges. Furthermore,
only the top three regulators of each node were kept based on the
highest probability score. From this final network, we looked for
subnetworks surrounding positive regulators of defense against
B. cinerea that were downregulated during infection. This led us
to focus on a 9-gene regulatory network, termed 9GRN (see
Figure 2) containing the TF CHE, which includes predicted
upstream regulators of CHE.

CHE Is a Positive Regulator of Defense against
B. cinerea. Expression of the transcription factor (TF) CCA1
HIKING EXPEDITION (CHE) is downregulated during
B. cinerea infection (ref 10 and Figure 1a). Rhythmic expression
of CHE is clear in the mock-inoculated samples (reflecting the
role of CHE within the circadian clock27) with downregulation
due to infection beginning around 22 h post inoculation. A
mutant with significantly reduced expression of CHE, che-1,27

Figure 1. Expression and role of CHE during infection with B. cinerea
(a) Expression of the TF CHE is downregulated during B. cinerea
infection of Arabidopsis leaves. Leaves were drop-inoculated with
B. cinerea spores or mock-inoculated, and genome-wide gene expression
determined every 2 h for both mock treatment (blue) and B. cinerea
infection (red). Open circles are the average of four biological repeats
with bars representing standard deviation. This data is extracted from
Windram et al.10 (b) CHE is a positive regulator of defense against
B. cinerea. Lesion size ofArabidopsis leaves (n = 17) drop-inoculated with
B. cinerea spores were measured 36 and 72 h post infection. che-1 is an
Arabidopsis mutant with significantly reduced CHE expression. WT is
the wildtype Col-0 Arabidopsis accession. Error bars represent standard
deviation, ** represents p ≤ 0.01 and *** represents p ≤ 0.001.
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shows increased susceptibility to B. cinerea compared to wildtype
indicating CHE plays a positive role in defense against this
pathogen (Figure 1b). In addition toCHE, two other genes in the
9GRN are important in defense against B. cinerea:ORA59 and at-
ERF1.ORA59 is a positive regulator of defense28 and at-ERF1 is a
negative regulator of defense (Figure S1).
Validating Edges in the 9GRN Model. To increase our

confidence in the validity of the inferred 9GRN subnetwork
model, we used yeast-1-hybrid (Y1H), a partial Arabidopsis
cistrome map,29 and gene expression data from RAP2.6L
overexpressors30 to test regulation predicted by the model. A
set of pairwise Y1H had been carried out testing binding of 75
TFs to the promoter regions of 34 of the same TFs. Within this
set, there were 4 edges in our model (RAP2.6L to ANAC055;
ANAC055 to RAP2.6L, ANAC055 to ORA59 and at-ERF1 to
ORA59) that had been tested. For two of these edges, strong
binding was seen in the Y1H experiments; RAP2.6L could bind
to the promoter of ANAC055 and at-ERF1 could bind to the
promoter of ORA59 (Figure S2). In addition, the Y1H data
suggested two additional edges that weremissing from ourmodel
(RAP2.6L to ORA59, and ORA59 to ANAC055), however,
expression data from RAP2.6L overexpressors30 and knockout
mutant of ORA5928 do not show any evidence for these
regulatory edges. Additional interactions in the 9GRN were
verified using data from an Arabidopsis cistrome map.29 The
cistrome is the complete set of cis-elements or TF binding sites in
an organism, and a partial map was generated by O’Malley et al.29

using DNA affinity purification sequencing (DAP-seq) to
identify TF binding sites for 349 TFs (including CHE,
ORA59, ANAC055 and MYB51 from our network). This
analysis revealed that ANAC055 can bind to the promoters of
ORA59 and RAP2.6L. Finally, the RAP2.6L overexpressing
mutant showed increased expression of AT1G79150, providing

evidence for this regulatory interaction.30 Edges with supporting
experimental data are shown in green in Figure 2.

A Validated Dynamic Model of the CHE Regulatory
Subnetwork. The network inference algorithms used to infer
the large consensus network model are able to predict regulatory
relationships between the genes in the 9GRN but the type of
regulation (i.e., activating or inhibiting) cannot be determined.
Since these are essential features of any model that can be used
for controller design, we next determined the direction of the
regulatory edges in the 9GRN using standard four-step system
identification techniques: data collection, model structure
selection, parameter estimation and model validation (see
chapters 1 and 7 of ref 31). Previous studies that utilized this
technique to identify regulation types in GRNs used linear
models,32−34 and there is now strong evidence that the
underlying dynamics of GRNs can be accurately described
using such models (we define accurate as a model able to
recapitulate experimental data within a single standard deviation
of error).35,36 Moreover, as the model is subsequently to be used
to design perturbation mitigation strategies, a linear model
facilitates the use of linear control design techniques that are
more established than their nonlinear counterparts. In system
identification terminology, black box models refer to a set of
ready-made models with no physical structure or biological
interpretation. On the other hand, gray box models refer to
models that are tailor-made given some prior information about
the system. Since we have prior knowledge of the direction of
regulation between the genes obtained from the inferred network
above, we use a linear gray boxmodel comprising nine ODEs (eq
4 in the Methods section) for the 9GRN, and thus only need to
identify the regulation type and dynamics within the 9GRN.
The values of the model parameters were estimated from the

available mRNA time-series data10 using a nonlinear least-

Figure 2. Network model of gene regulatory events mediating transcriptional response to Botrytis cinerea. The nine-gene network (9GRN) is a
subnetwork of the initial network model inferred from time series transcriptome data. The direction of regulation is indicated by the arrow. Red stars
represent unmodeled regulation (e.g., direct regulation from B. cinerea, noise and other unidentified regulation, see also Section S5 of the Supporting
Information). The yellow circle represents circadian regulation. Green edges represent interactions that are supported by experimental data. The
regulation types (arrow-head and bar-head) in 9GRN are identified through system identification.
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squares algorithm37,38 (eq 5 in Methods section) and the
estimated parameters are given in Table 3 inMethods section. As
these mRNA time-series measurements are normalized using an
intensity-dependent normalization method,39,40 the resulting
measurements are dimensionless and are reported as relative
expression. Figure 2 indicates the regulation types identified in
the 9GRN subnetwork, where positive and negative values of
production rate given in Table 3 in the Methods section denote
transcriptional activators and inhibitors, respectively. In addition,
all the estimated degradation rates had the expected negative
sign, and had numerical values within the range expected.41 We
validated the dynamic model by comparing its response against
another mRNA time-series data set (see Methods section) that
was not used in the parameter estimation process as well as two
mutant behaviors. As shown in Figures 3 and S3, the identified
model is able to accurately predict the expression behavior of the
network. Additionally, the model shows good predictive
capability against two mutant data sets (see Figure S4).
Design of a Feedback Controller for Perturbation

Mitigation. As outlined above, our control objective is to
employ feedback to prevent the reduction in CHE levels when
the plant is subjected to pathogen attack. There are several
frameworks available for designing genetic controllers.19,21,42 In
refs 19 and 42, the authors proposed and extended a framework
for implementing an integral controller using a negative feedback
of a two-promoter gene network. In ref 21, the authors analyzed

the dynamics of gene regulation using frequency domain tools
from control theory and proposed the implementation of a
genetic phase lag controller. Here, we based our design on the
framework proposed in Harris et al.,21 where the proposed
genetic controller is made up of a combination of genes and the
regulatory relationships between them. In ref 21, these gene
regulations are modeled using nonlinearMichaelis−Menten type
functions and these functions are then linearized such that the
controller design and analysis can be done using standard
frequency domain methods. In this study, since we have used a
linear model to describe the 9GRN, we also model the gene
regulations in the controller using linear functions.
Figure 4a shows the genetic circuit diagram of the proposed

feedback controller. The controller architecture is modified from
the framework suggested in ref 21, whereby for the purposes of
implementation in plants we replace the protease degradation
component with a transcriptional inhibitor component. The
modified circuit contains three genes and their associated
proteins: genes X, Y and E giving proteins X, Y and E.
Let X denote an arbitrary gene that can be regulated by E, and

its translated protein X denotes the TF that can regulate the
output gene, Y, whose levels we ultimately want to control. E
denotes the protein whose function is to regulate gene X and
calculate the error signal. Here the error signal is the difference
between the desired reference level and the output signal Y (see

Figure 3. Validation of the linear model against an experimental data set that was not used in the parameter estimation exercise. The experimental data
sets in ref 10 are composed of two time series, onemock-inoculated and one B. cinerea-inoculated. Here, these two time series are joined (denoted by the
vertical dashed line) to illustrate a transition from pre- to postinfection, with B. cinerea infection starting at time 48 h. There are four sets of such joined
time-series data; we used the average of the first three data sets for parameter estimation (see Figure S3), leaving the fourth data set for model validation
shown above. We have also included the unmodeled regulation, W described by eq S5.1. Line with dots: Experiment data, Solid line: Linear model.
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Section S1 of the Supporting Information). The ODE for the
regulation of X by E is given by

α β= − +X
t

E X b
d
d X E X S X, , (1)

Here, α, β and bS represent production rate, degradation rate and
basal expression level, respectively. With Y being the output of
the process that we want to control, then the ODE describing the
regulation of Y by X and E can be written as

α α β= + − +Y
t

X E Y b
d
d Y X Y E Y S Y, , , (2)

Taking Laplace Transforms of eqs 1 and 2, and after some
algebraic manipulation, we obtain the following transfer function
(see Section S1 of the Supporting Information):

β α α α
β

α
β

=
+ +

+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Y s

E s

s

s s
( )
( )

( / )X X E Y X Y E

X

Y E

Y

, , , ,

(3)

Eq 3 is the open-loop transfer function from E to Y. In control
theory, an open-loop transfer function is defined as the ratio of
the output signal to the input signal in the absence of feedback
and it is usually composed of the product of the transfer functions
of the controller and the process. In a transfer function, the
solutions making the numerator to zero are called the zeros of the
system while the solutions making the denominator zero are
called the poles of the system. Since Y is the output of the process,
its transfer function is given by (αY,E/(s + βY)). Thus, the transfer
function of the controller is then given by (s + βX+(αX,EαY,X/
αY,E))/(s + βX), where the zeros and poles of the controller are z
=−((βX + (αX,EαY,X))/αY,E) and p =−βX, respectively. Since |p| <
|z|, we obtain a phase lag controller. In control engineering, phase
lag controllers are commonly used to improve disturbance

Figure 4. Perturbationmitigation using a genetic phase lag controller. (a) Genetic circuit of the proposed controller. X is the output of the controller, Y is
the output of the process and E computes the error signal. This genetic circuit is equivalent to a coherent feedforward loop type-I with feedback network
motif that yields the transfer function of a phase lag controller plus process dynamics. (b) Implementation of the phase lag controller motif for
perturbation mitigation in the 9GRN. (c) Simulation results of phase lag controller in mitigating perturbation in the 9GRN. The solid black line is the
desired average expression ofCHE, the solid yellow line is the expression ofCHE during infection withB. cinereawithout any control action, and the solid
blue lines represent gene expression during infection with B. cinerea with control action. The gray shaded regions represent the expression level with
uncertainty obtained through Monte Carlo simulation. In our simulations, the parameter values for the phase lag controller are αX,E = 3.00, αY,X = 5.00,
αY,E = 5.00, βX = 0.026, while the parameter values for the error computation are bS,E = 6.21 and γ = βE = 0.50. For more details on the choice of these
values, see Figures S6−S8.
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rejection and reduce steady-state error,43 and thus they are well
suited to our control objective of achieving perturbation
mitigation. Interestingly, based on the schematic diagram of
the phase lag controller as shown in Figure 4a, we note that this
controller structure is equivalent to a coherent feedforward loop
type-I network motif,44,45 but with an added feedback loop. The
role of this network motif in natural biological systems has been
subjected to extensive studies and one of its key roles includes
perturbation attenuation.46,47

We illustrate here in simulation the use of the genetic phase lag
controller in mitigating the perturbation affecting CHE in the
9GRN. The configuration for perturbation mitigation using the
genetic phase lag controller is shown in Figure 4b. In 9GRN, the
output gene Y is CHE and the feedback is delivered by CHE’s
transcriptional repressor activity on gene E. As with standard
perturbation mitigation strategies in feedback control theory,
when a perturbation causes the output level to deviate from its
desired level, the controller upon detecting this deviation will
react in order to restore the output to its desired level.
As CHE is a circadian gene, its expression level is not constant

but oscillatory (ATML1 is also light regulated). In the absence of
perturbations, the CHE expression levels oscillate around the
relative expression value of 12.44 (black line in Figure 4c). In our
simulations, the perturbation (B. cinerea inoculation) is
introduced at time 120 h. Upon infection by B. cinerea, the
average expression level of CHE drops from 12.44 to 9.77 as
indicated by the yellow solid line in Figure 4c. The phase lag
controller upon detecting this drop in the expression level of
CHE should exert an appropriate control action to restore the

level of CHE to its original level. When the phase lag controller is
implemented (blue solid line), the controller almost completely
attenuates the effect of the perturbation with the level of CHE
oscillating around 12.33.Moreover, this control strategy is shown
to be robust against variation in model and controller parameters
through a Monte Carlo simulation (see Methods section), where
we randomly varied the parameters within 20% of their nominal
values.
It is known from control theory that to exactly restore the

output to the desired reference level after a step disturbance
requires an integral-type controller.48 In terms of the controller
transfer function, an integral-type controller has a pole at s = 0.
The transfer function of the phase lag controller given in eq 3 has
a pole at s = −βX, and therefore the slower the degradation rate
for X (which corresponds to a longer mRNA half-life), the more
closely the controller will implement an integral-type control
action that exactly restores the output to the desired reference
level after a disturbance. In Arabidopsis, the longest half-life
reported for mRNAs is approximately 26 h,41 which corresponds
to a degradation rate of 0.026/hour (calculated using the
standard equation for exponential decay, β = ln(2)/T), and
therefore, we have used this value in our simulations (blue solid
line in Figure 4c). Full details of all the equations and parameter
values underlying the simulations shown in Figure 4c can be
found in Section S2.1 of the Supporting Information.

Controller Implementation Using Regulatory Network
Rewiring. The direct implementation of the proposed
controller in Arabidopsis presents a number of challenges, largely
due to the choice of TFs for E and X and associated binding

Figure 5. Simulation results for genes in the 9GRN with proposed network rewiring. Black line: reference value, Blue line: gene expression level in
response to B. cinerea infection after rewiring. Yellow line: gene expression level in response to B. cinerea infection without network rewiring.
Perturbation (inoculation) is given at time 120 h. (a) Rewiring a controller by adding activation ofCHE byMYB51 andORA59 and inhibition ofMYB51
expression by CHE. (b) Addition of positive autoregulation to ORA59. (c) Addition of feedforward component; inhibition of MYB51 by ANAC055.
The gray shaded regions represent the expression level with uncertainty obtained through Monte Carlo simulation.
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sequences. In ref 21, the suggested genes for E and X are RhaS (E
in Figure 4a) and XylS (X in Figure 4a). RhaS activates the
production of XylS and CHE through a coherent feedforward
loop, and XylS also acts as a regulator for the production of CHE.
However, orthogonal TFs may not function in plants while using
endogenous TFs is likely to have unintended consequences on
other processes.
To get around these problems we propose an alternative

approach for implementing the proposed controller, based on
network rewiring. As shown in Figure 4a, (and Section S6 of the
Supporting Information) the structure of a genetic phase lag
controller is composed of a coherent feedforward loop type I
motif with negative feedback. Thus, if we are able to realize this
network motif through the rewiring of the 9GRN, we can obtain
a genetic phase lag controller without the need to introduce new
nonendogenous genetic circuitry.
For the 9GRN network shown in Figure 2, there are 46

potential rewiring combinations that can realize the network
motif of a phase lag controller. However, not all genes within the
9GRN can be used in the rewiring exercise, due to functional
constraints. Genes ATML1, LOL1 and AT1G79150 are not
suitable for rewiring, as during B. cinerea infection, their
expression levels decrease and to use them as part of the positive
regulation of the network motif would lead to further decrease in
the level of CHE. Another constraint is due to the gene at-ERF1,
which is a negative regulator of plant defense (see Figure S1), and
hence we would not wish to increase its expression further. Using
at-ERF1 as part of the positive regulation of the network motif,
however, would lead to an increase in its expression. In addition,
the gene ORA59 is a positive regulator of defense, so decreasing
its levels would negatively affect the defense response to
B. cinerea. The gene RAP2.6L is highly responsive to stress
hormones,30,49 and while its involvement in infection with
B. cinerea has not been conclusively proven, we have also chosen
to discard rewiring combinations that decrease its levels. Taking
these constraints into account, we are left with 11 possible
rewiring combinations (see Section S3 of the Supporting
Information). Further analysis of these 11 rewiring combinations
(see Section S3 of the Supporting Information) reveals that the
rewiring strategy that requires the least amount of experimental
modification involves the pathway from MYB51 (E) to ORA59
(X) to CHE (Y). Note that we have included the equivalent
function of the genetic phase lag controller in brackets.
Figure 5a shows the rewiring configuration using the pathway

fromMYB51 toORA59 to CHE. To realize the required network
motif, CHE must inhibit expression ofMYB51, and MYB51 and
ORA59 must activate CHE expression. Implementing this in
simulation, with the perturbation introduced at time 120 h, we
notice only a small recovery in the expression level of CHE from
around 9.77 to 10.31 after the perturbation (Figure 5a). Why is
the increase in the level of CHE small given that we have
implemented a phase lag controller through network rewiring?
From eq 3, we note that the pole of the phase lag controller is
given by the degradation rate of X, and in this network motif, this
corresponds to the degradation rate ofORA59. FromTable 3, the
value of the degradation rate of ORA59 is 38.0062, which
corresponds to placing the pole at s = −38.0062. From our
previous discussion, it is desirable to have the pole of the
controller to be as close to 0 in order for the controller to restore
the output to its desired reference level. To move the pole
associated with ORA59 closer to 0, we use positive
autoregulation,19,21,50 i.e., we further rewire the network so that
ORA59 activates itself. As expected, with the addition of

autoactivation of ORA59, we observe that the expression level
of CHE begins to show a significant increase at around 140 h.
However, instead of returning to its original level, it increases by
an extra 15% compared to its original value (Figure 5b). A
detailed look at the plot of MYB51 reveals that the error
computed by MYB51 is higher than expected. The reason for the
incorrect error computation is that there is unmodeled regulation
affecting MYB51 (see eq 4 in Methods section and Section 5 of
Supporting Information). As a result, the controller “sees” a
larger error than actually exists, and thus exerts a higher control
action to mitigate this error, resulting in the observed further
increase in the expression level of CHE.
To address this issue, a mechanism to negate the effect of

unmodeled regulation on MYB51 is required. This can be
achieved by rewiring another gene, for example ANAC055, to
regulateMYB51 (see Section S4 in the Supporting Information).
As the negation is independent of the process output, this is
equivalent to using a feedforward controller. With the addition of
autoregulation and feedforward control, the simulation results in
Figure 5c show that the phase lag controller implemented via
rewiring is now able to significantly attenuate the effect of the
perturbation on CHE and return it to its original expression level.
Additionally, the Monte Carlo simulations (see Methods
section) show that the proposed strategy is robust against
parameter variations. The details of the equations and parameter
values underlying the simulations shown in Figure 5c can be
found in Section S2.2 of the Supporting Information.

■ DISCUSSION
We have presented a novel strategy, based on the use of feedback
control, for mitigating the effects of pathogen attack on plant
gene regulatory networks, and demonstrated via simulation the
ability of this approach to restore the levels ofCHE, a key defense
gene in Arabidopsis, after infection by B. cinerea. The use of
simple rewiring such as negative autoregulation of CHE and
direct regulation from ANAC055 was found to be insufficient for
restoring the level of CHE, therefore we employed a coherent
feedforward type I motif with negative feedback. In order to
develop the strategy, we employed system identification
techniques to build and validate a new dynamical model of the
infected gene regulatory subnetwork that accurately predicts the
type of regulation between each node of the network. Then,
using this model, we designed perturbation mitigation strategies
using feedback control theory. In the proposed approach, we
applied a combination of two positive and one negative
regulatory interactions to implement genetic circuitry realizing
a phase lag controller. Phase lag controllers are widely used in
engineering systems to reduce the effects of disturbances on
system performance, and have been proposed as a useful motif
for implementing synthetic biological control systems.21 To date,
however, practical strategies for implementing such controllers in
vivo remain to be elucidated. Here, based on the observation that
this control architecture resembles a coherent feedforward loop
type-I with negative feedback, we propose a novel controller
implementation strategy based on identifying groups of genes
within the 9GRN whose regulation can be rewired to realize this
network motif. Within the 9GRN, rewiring the pathway from
MYB51 to ORA59 to CHE was shown to provide the most
straightforward implementation of the phase lag controller.
When suitably augmented with rewired autoregulation and
feedforward components, this implementation of the controller
was shown to deliver almost perfect perturbation mitigation
without the need for any nonendogenous synthetic circuitry.
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The regulatory network rewiring described above can be
carried out experimentally through the insertion of constructs
expressing the desired TF from the appropriate promoter region
or TF binding sites combined with a minimal promoter
sequence. Given that there are multiple TF binding sites in a
typical promoter sequence (see, e.g., ref 51), it is preferable to use
specific TF binding regions. For the rewiring we propose for the
9GRN, regulation of MYB51 by CHE, CHE by ORA59, and
ORA59 regulation of its own expression, could be achieved using
specific promoter regions that have been shown to confer the
necessary regulation to drive expression of copies of the target
TF coding sequence. CHE binds to the promoter of its target
gene CCA1 at the sequence GGTCCCAC.27 Both the region
−363 to −192 bp of the CCA1 promoter encompassing this
sequence and a trimer of the CHE binding sequence have been
shown to be bound by CHE.27 ORA59 binds to two GCC boxes
(GCCGCC and GCAGCCGCT) in the PDF1.2 promoter and a
tetramer of one of these boxes is sufficient for ORA59 activation
of expression.52 The other regulatory edges required for rewiring
(MYB51 activation of CHE expression and ANAC055 inhibition
of MYB51) would currently require using the full length
promoter sequences and potentially fusion of transcriptional
repression domains. Rewiring using full-length promoter
sequences could be achieved relatively quickly (1−2 years) and
methods to insert multiple gene constructs into Arabidopsis are
available (for example, Golden gate cloning53). However, the site
of insertion of the necessary transgenic constructs (which is not
controlled) may also influence resulting levels of expression and
hence further optimization/selection of lines with appropriate
levels will no doubt be necessary.
The main premise of this paper is to demonstrate potential

application of the phase lag controller motif in preventing
pathogen-induced perturbations of gene expression. Our 9GRN
model is used to demonstrate how a phase lag controller could
function. We have provided some evidence for edges in our
network, but the presence of additional edges we have not
modeled or false positive edges could have a significant impact on
the performance of this controller in vivo. Strategies such as DAP-
seq29 are making significant improvements in our knowledge of
plant TF-promoter interactions but, particularly given the
expansion of TF families in plants,54 greater mapping of plant
gene regulatory networks under multiple environmental and
developmental conditions will be necessary to drive successful
plant synthetic biology strategies. Clearly, in all nonorthogonal
rewiring strategies the new edges may have unintended
consequences on plant physiology through changing regulatory
interactions. In our in silico implementation, the controller is only
triggered by a significant reduction in CHE levels (such as that
driven by pathogen infection, not the daily circadian oscillations),
and levels of CHE and MYB51 quickly return to normal. The
intention of the controller is to maintain oscillating expression
levels of CHE given its key role in the circadian clock (regulating
CCA1, a core transcriptional regulator27). We also ensured that
expression of positive regulators of defense was not compro-
mised. However, the genes with new rewired links (MYB51,
ORA59 and ANAC055) are involved in response to other
environmental conditions. For example, MYB51 promotes
expression of indolic glucosinolate biosynthetic genes55 in
response to mechanical stimuli and ANAC055 is induced by
drought, salt and abscisic acid stress.56 Changes in the expression
of these genes due to other stimuli could prevent the controller
from operating during B. cinerea infection (for example,
induction of ANAC055 would lower levels of MYB51 and

indicate a lower level of error to the controller, leading to the
controller not reacting properly). Our controller is not designed
to handle more than one perturbation (environmentally induced
shift in gene expression), and this limitation raises another key
challenge in plant systems biology. The development of novel
approaches to model and simulate dynamic networks of
sufficient size to capture environmental stress cross-talk will
significantly improve our ability to rationally engineer stress
resilient plants.

■ METHODS
Transgenic Arabidopsis Line. The CHE T-DNA insertion

line, SALK_143403c, was obtained from the SALK collection57

and confirmed to be homozygous. Expression of CHE in this line
is significantly reduced compared to wildtype (Col-0).27 The
coding region of at-ERF1 was cloned into the pB7WG2 vector58

and stable transgenic Arabidopsis lines generated in a Col-4
background. The coding region of at-ERF1 was cloned into the
pB7WG2 vector58 and stable transgenic Arabidopsis lines
generated in a Col-4 background.

InfectionAssay.Arabidopsis plants were grown andB. cinerea
strain pepper59 cultured as described in ref 10. Leaves from 5-
week-old plants were detached and placed on 0.8% agar in
propagator trays. Each leaf was inoculated with a single 10 μL
droplet of B. cinerea inoculum, or a 10 μL droplet of sterile grape
juice diluted in a 1:1 ratio with sterile water. Each tray contained
9 control leaves and 81 infected leaves, with control and infected
leaves in each row. The trays were covered with lids and kept in a
growth cabinet under a 16:8 h light:dark cycle at 22 °C, with 90%
humidity. Lesion area was assessed from photographs using
ImageJ. Mean lesion area of leaves from WT and T-DNA
insertion lines were compared using a Student’s two-tailed t test,
which assumed equal variance.

Yeast-1-Hybrid Assay. Yeast-1-Hybrid assays were per-
formed as previously described.51 Three overlapping promoter
regions (of approximately 400 bp) spanning 800 to 1200 bp
upstream of the transcription start site were used as bait for
transcription factors fused to a GAL4 activation domain in
pDEST22 (Invitrogen). Yeast strain AH109 (Clontech) was
transformed with these individual TF clones. The promoter
fragments were amplified using two-step PCR and cloned into a
pDonrZeo vector (Invitrogen) using Gateway cloning. Yeast
strain Y187 (Clontech) was transformed with the individual
vectors to create the bait strain. The promoter strain was spotted
onto YPDA (yeast, peptone, dextrose, adenine) plates, overlaid
with the TF strain, and incubated for 24 h at 30 °C. The diploid
cells were replica plated onto selective plates and incubated
overnight. This was followed by replica-cleaning and incubation
for 4 days, after which growth was scored. Each interaction was
tested twice. Primer sequences for the promoter fragments are
given in Table 1.

Accession Numbers. Arabidopsis gene names and AGI locus
codes referred to in this article are shown in Table 2.

Generating the TF network. An Arabidopsis TF list was
generated by combining lists from ThaleMine,60 DATF,61 ref 62,
and homology searches using DNA binding domains, followed
by manual curation of genes only identified in one list. The final
list of 2534 genes is given in Supplementary File S1b. The list of
Arabidopsis genes differentially expressed during B. cinerea
infection was obtained from ref 10, which included 883
differentially expressed TFs (Supplementary File S1a).

Generating a Dynamic Model of the CHE Regulatory
Subnetwork. Traditionally, a model of a gene regulatory
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network comprises both transcription and translation mecha-
nisms. However, in our case, given that only mRNA
accumulation time-series data are available,10 the following two
assumptions are made in building the 9GRN model. First, the
translation of the protein from mRNA follows a linear
relationship and second, the behavior of the translated protein
follows its mRNA closely. With these two assumptions, we can
group together the protein translation rate with the mRNA
transcription rate resulting in the entire 9GRN being modeled
using only mRNA data. Based on the above assumptions, the
model of the 9GRN shown in Figure 2 can be described by the
following ODEs:
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where αi,j∈ (−∞,+∞), βi > 0, γCHE > 0, bS,i∈ (−∞,+∞), and ci∈
(−∞,+∞) are the unknown parameters that represent the
production rate, degradation rate, scaled light effect, basal level
and effect of the unmodeled regulation, respectively, with i and j
denoting the appropriate indices describing the parameters given
in eq 4. Ni represents the gene. W represents the effect of the
unmodeled regulation (e.g., direct regulation as a result ofT
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Table 2. Associated AGI to Arabidopsis Gene Names

gene name AGI

ORA59 AT1G06160
MYB51 AT1G18570
LOL1 AT1G32540
AT1G79150 AT1G79150
ANAC055 AT3G15500
at-ERF1 AT4G17500
ATML1 AT4G21750
CHE AT5G08330
RAP2.6L AT5G13330
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B. cinerea infection, noise and other regulations not identified by
the network inference algorithms), whereW = 0 (respectivelyW
= 1) is used when the effect is absent (respectively present). In
the experiments from which our data were generated,10 the time-
series data from the control and infected experiments are treated
as a continuous data set where the infection starts at the halfway
point, i.e., time 48 h. Thus, the transition ofW from 0 to 1 is not
modeled as an instantaneous change but as a gradual increase. L
represents the effect of light and CHE follows a sinusoidal
rhythm as known.27 For details on the mathematical
representation for W and L see Section S5 of the Supporting
Information.
The values of the model parameters were estimated from the

available mRNA time-series data using a nonlinear least-squares
algorithm and the estimated parameters are given in Table 3.

All the simulations of the ODE models, phase genetic
controller and network rewiring are done using MATLAB
built-in solver ode45, and the initial condition for each gene to
solve the ODE is the first data point of the mRNA time-series for
each respective gene. For the simulation using the genetic phase
lag controller (eq S2.1), the initial conditions for solving the
ODEs for X and E are set to 0.
Parameter Estimation. For the 9GRN linear model, the

values of the unknown parameters are estimated from the
available mRNA time-series using nonlinear least-squares, given
by

∑ ∑θ θ̂ = − ̂
θ ψ∈ =N

N t N targ min
1

[ ( ) ( , )]
L i t

N

i i
1

2
L

(5)

where θ = [αi, βi, bS,i, ci] with i ∈ ψ = [ORA, MYB, LOL, AT1,
ANA, ERF, ATM, CHE, RAP], NL is the length of the time-series
data, N̂ is the simulated data from eq 4 andN is the experimental
data, which are the mRNA time-series taken from ref 10. There
are four sets of mRNA time-series and we use the average mRNA
expression from the first three sets for parameter estimation and
use the fourth data set as an independent data set for validating
the ODE model. Eq 5 is solved using MATLAB function
fminsearch which uses the Nelder−Mead simplex algorithm.
As a quantitative measure of the model performance, we

compute the Mean Square Error (MSE) for each gene between
the experimental data and the model given by eq 4. The MSE for
each gene is computed as follows:

∑ θ= − ̂
=N

N t N tMSE
1

[ ( ) ( , )]
L t

N

1

2
L

(6)

The total MSE, MSET is computed by summing the MSE for
all nine genes in the 9GRN. Table 4 shows the MSE values for
both the training and validation data sets.

Performance and Robustness Analysis. To analyze the
performance and robustness of the proposed strategies, we
perform a Monte Carlo simulation where we randomly draw all
the parameters from a uniform distribution. Then, we vary the
parameters within ranges of 20%, around their nominal values.
Mathematically, we have p(1 + ΔP(x)), where p denotes the
model and the controller parameters, P(x) is the probability
distribution and Δ = 0.2. Using the Chernoff bound and
associated guidelines for Monte Carlo simulation, a total number
of 1060 simulations is required to achieve an accuracy level of
0.05 with a confidence level of 99%.63,64
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Table 3. Estimated Parameters of the Linear Model

gene name values

ORA59 αORA,1 = 14.3800, αORA,2 = −0.7359, αORA,3 = 21.5714, βORA =
−38.0062, bS,ORA = 15.2355

MYB51 βMYB = −0.6658, bMYB = 5.6277, cMYB = 1.1890
LOL1 βLOL = −0.0485, bS,LOL = 0.4874, cLOL = −0.1241
AT1G79150 αAT1,1 = 0.7577, αAT1,2 = −0.7408, βAT1 = −2.4088, bS,AT1 =

23.863, cAT1 = 0.91809
ANAC055 αANA,1 = 25.6935, βANA = −28.4685, bS,ANA = 0.0517, cANA =

82.5415
at-ERF1 βERF = −0.2051, bS,ERF = 1.8699, cERF = 0.8735
ATML1 αATM,1 = −0.7945, βATM = −1.1142, bS,ATM = 19.3684, cATM =

0.0040, γATM = 0.5000
CHE αCHE,1 = 24.5024, αCHE,2 = 3.3801, αCHE,3 = 17.6771, βCHE =

−40.1258, bS,CHE = 3.7167, γCHE = 16.8001
RAP2.6L αRAP,1 = 0.4186, βRAP = −0.7933, bS,RAP = 3.7046, cRAP = 0.0045

Table 4. MSE for Both Training and Validation Data Sets

gene name MSE (training) MSE (validation)

ORA59 0.7730 1.9828
MYB51 0.3910 0.6949
LOL1 0.3703 0.6582
AT1G79150 0.1829 0.3587
ANAC055 0.9889 2.3849
at-ERF1 0.4394 1.0583
ATML1 0.3746 0.6682
CHE 0.8759 1.0819
RAP2.6L 0.3452 0.6366
MSET 4.7410 9.5245
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