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Preface

The field of Systems Biology encompasses scientists with extremely diverse
backgrounds, from biologists, biochemists, clinicians and physiologists to math-
ematicians, physicists, computer scientists and engineers. Although many of
these researchers have recently become interested in control-theoretic ideas
such as feedback, stability, noise and disturbance attenuation, and robust-
ness, it is still unfortunately the case that only researchers with an engineering
background will usually have received any formal training in control theory.
Indeed, our initial motivation to write this book arose from the difficulty we
found in recommending an introductory text on feedback control to colleagues
who were not from an engineering background, but who needed to understand
control engineering methods to analyse complex biological systems.

This difficulty stems from the fact that the traditional audience for control
textbooks is made up of electrical, mechanical, process and aerospace engi-
neers who require formal training in control system design methods for their
respective applications. Systems Biologists, on the other hand, are more in-
terested in the fundamental concepts and ideas which may be used to analyse
the effects of feedback in evolved biological control systems. Researchers with
a biological sciences background may often also lack the expertise in physical
systems modelling (Newtonian mechanics, Kirchhoff’s electrical circuit laws,
etc) that is typically assumed in the examples used in standard texts on feed-
back control theory. The type of “control applications” in which a Systems
Biologist is interested are systems such as metabolic and gene-regulatory net-
works, not aircraft, robots or engines, and the type of mathematical models
they are familiar with are typically derived from classical reaction kinetics,
not classical mechanics.

Another significant problem for Systems Biologists is that current under-
graduate books on control theory (which introduce the basic concepts at great
length) are uniformly restricted to linear systems, while nonlinear systems
are usually only considered by specialist post-graduate texts which require
advanced mathematical skills. Although it will always be appropriate to in-
troduce basic ideas in control using linear systems, biological systems are
in general highly nonlinear, and thus a clear understanding of the effects of
nonlinearity is crucial for Systems Biologists.

To address these issues, we have tried to write a text on feedback control
for Systems Biologists which:

• is self contained, in that it assumes no prior exposure to systems and
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2 An Introduction to Feedback Control in Systems Biology

control theory,

• focuses on the essential ideas and concepts from control theory that have
found applicability in the Systems Biology research literature, including
basic linear introductory material but also more advanced nonlinear
techniques,

• uses examples from cellular and molecular biology throughout to illus-
trate key ideas and concepts from control theory, and

• is concise enough to be used for self-study or as a recommended text
for a single advanced undergraduate or postgraduate module on feed-
back control in a course on Biological Science, Bioinformatics, Systems
Biology or Bioengineering.

During the time we have spent preparing this book we have also been struck
by the constantly increasing interest among control engineers in biological
systems, and thus a second goal of this text has been to provide an overview of
how the many powerful tools and techniques of control theory may be applied
to analyse biological networks and systems. Although we do assume that
the reader has some familiarity with basic modelling concepts for biological
systems, such as mass-action and Michaelis Menten kinetics, we have provided
introductory descriptions of many of the biological systems considered in the
book, in the hope of enticing many more control engineering researchers into
Systems Biology.

The book is made up of eight chapters. Chapter 1 provides an introduction
to some basic concepts from feedback control, discusses some examples of bio-
logical feedback control systems, and gives a brief historical overview of previ-
ous attempts to apply feedback control theory to analyse biological systems.
Chapters 2 and 3 introduce a number of fundamental tools and techniques
for the analysis of linear and nonlinear systems, respectively. Fundamental
concepts such as state-space models, frequency domain analysis, stability and
performance are introduced in the context of linear systems, while Chapter 3
discusses more advanced notions of stability for nonlinear systems, and also
provides an overview of numerical optimisation methods for the analysis of
complex nonlinear models. Chapter 4 focusses on the role of negative feed-
back in biological processes, and introduces notions of robustness, integral
control and performance tradeoffs. Chapter 5 considers the rich variety of
dynamics which arise due to positive feedback, and introduces tools such as
bifurcation diagrams, monotone systems theory, and chemical reaction net-
work theory, which can be used to analyse bistable and oscillatory systems.
Chapter 6 focusses on the issue of robustness, and provides an overview of the
available robustness analysis methods, such as sensitivity analysis, µ-analysis,
sum-of-squares polynomials, and Monte Carlo simulation, which may be used
to assist in validating or invalidating models of biological systems. A range
of techniques for the reverse-engineering of biological interaction networks is
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described in Chapter 7. These techniques, which are rooted in the branch of
control engineering known as system identification, appear to have huge po-
tential to complement and augment the statistical approaches for network in-
ference which currently dominate research on biological interaction networks.
Finally, Chapter 8 provides an introduction to the analysis of stochastic bio-
logical control systems, and points out some exciting new research directions
for control theory which are directly motivated by the particular dynamic
characteristics of biological systems.

A key feature of the book is the use of biological case studies at the end
of each chapter, in order to provide detailed examples of how the techniques
introduced in the previous sections may be applied to analyse realistic bio-
logical systems. Each case study starts with an introductory section which
provides a simple explanation of the relevant biological background, so that
readers from the physical sciences can quickly understand the key features of
the chosen system.

By its very nature, this book cannot pretend to provide an exhaustive
treatment of all aspects of control theory. It does, however, represent a first
attempt to arrange in a pedagogical manner the methods and applications
of control theory that pertain to Systems Biology. Our aim has been to pin-
point the most important achievements to date, provide a useful reference for
current researchers, and present a sound starting point for young scientists
entering this exciting new field.
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“The footsteps of Nature are to be traced, not only in her ordinary course,
but when she seems to be put to her shifts, to make many doublings and
turnings, and to use some kind of art in endeavouring to avoid our discovery.”

- Robert Hooke, Micrographia, 1665.

“Nessuno effetto è in natura sanza ragione; intendi la ragione e non ti
bisogna sperienzia.”

- Leonardo da Vinci (1452–1519).
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Introduction

In this chapter, we introduce some general concepts from control engineering,
and describe a number of biological systems in which feedback control (often
referred to as “regulation” in the biological literature) plays a fundamental
role. We discuss the history of applying control theoretic techniques to the
analysis of biological systems, and highlight the recent renewed interest in
this area as a result of the explosive growth in the modelling of biological
processes in current Systems Biology research.

1.1 What is feedback control?

A control system may be defined as an interconnection of components forming
a configuration that provides a desired response. In an open-loop control
system, as shown in Fig. 1.1, a controller C sends a signal to an actuating
device (or actuator) A which can modify the state of a process P to obtain the
desired output response. In the case of engineering systems, the process to be
controlled (often called a plant in control engineering terminology) is generally
taken as fixed, while the controller represents that part of the system which
is to be designed by the engineer. For example, in the design of an aircraft
flight control system, the plant P would represent the dynamics of the aircraft,
the actuator would correspond to the aerodynamic control surfaces (rudders,
ailerons and flaps) and the controller would be the computerised autopilot
whose function is to maintain a steady flight trajectory.

If the dynamics of the plant are perfectly known (i.e. there existed a “per-
fect” model of its dynamics), and the control system is not subject to any
environmental disturbances, then the output of the plant y could in theory be
made to perfectly track any desired reference signal r using open-loop control
simply by setting C = (PA)−1 so that y = (PA)Cr = (PA)(PA)−1r = r. In
practice, however, neither of the above conditions ever hold, since even the
most advanced model of the dynamics of the plant and actuators will always
deviate to some extent from their actual behaviour (which may also change
over time) and almost all real control systems are subject to significant distur-
bance inputs from their environments which alter their dynamic behaviour.
As shown in Fig. 1.2, the effect of such plant uncertainty ∆ and disturbances

7
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C
r y

A P

FIGURE 1.1: Open-loop control system

+

+

+

+

r
C

∆

A P ∑ ∑

d

y

FIGURE 1.2: Open-loop control system with plant uncertainty and distur-
bances

d is to make y = d + (PA + ∆)Cr. Since both ∆ and d are unknown, it is
thus not possible to design an open-loop controller C to make y = r. It is
the inevitable presence of uncertainty in both the dynamics of the process to
be controlled, and the environment in which it operates, that necessitates the
use of feedback control.

As shown in Fig. 1.3, a closed-loop feedback control system uses a sensor
S to continuously “feed back” a measurement of the actual output of the
system. This signal is then compared with the desired output to generate
an error signal - this error signal forms the input to the controller which in
turn generates a control signal which is input to the plant. Large error signals
result in large control inputs which tend to bring the output of the plant closer
to its desired state, in turn reducing the error. Now consider the effects of
plant uncertainty and disturbances on this system, as shown in Fig. 1.4. The
output of the closed-loop system is given by:

y = d + (∆ + PA)C(r − y)

= d + (∆ + PA)Cr − (∆ + PA)Cy

⇒ y[1 + (∆ + PA)C] = d + (∆ + PA)Cr

⇒ y =
1

1 + (∆ + PA)C
d +

(∆ + PA)C

1 + (∆ + PA)C
r

Notice that the controller C is now able to directly attenuate the effects of
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+
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∑
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FIGURE 1.3: Closed-loop feedback control system

uncertainty on y - indeed as C → ∞ then y → r for any finite values of
d and ∆. Of course, our analysis here is extremely simplistic since we are
neglecting transient dynamics, the fact that measurement sensors are not
perfect (i.e. S 6= 1) as well as a host of other limitations imposed by the
particular dynamical properties of the plant and controller. The fundamental
point remains, however, that it is the power of feedback to combat uncertainty
(ensure robustness) which makes it so useful for the purposes of control.

+

+

+

+

+

-
∑ C A P

r
e

∆

S

d

y
∑ ∑

FIGURE 1.4: Closed-loop feedback control system with plant uncertainty and
disturbances

The vast majority of engineered control systems are negative feedback sys-
tems of the type shown in Fig. 1.4, i.e. the feedback signal is subtracted from
the reference signal to generate the error signal for the controller. These types
of control systems are generally employed to maintain systems at a particular
set-point or to track dynamic reference signals. Many biological systems have
evolved to also exploit positive feedback, for the purposes of signal amplifica-
tion, noise suppression and to generate complex dynamics such as bistability
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and oscillations - these applications of feedback will be considered in detail in
Chapter 5.

1.2 Feedback control in biological systems

In common with engineering systems, biological systems are also required to
operate effectively in the presence of internal and external uncertainty (e.g.
genetic mutations and temperature changes, respectively). It is thus not sur-
prising that evolution has resulted in the widespread use of feedback, and
research over the last decade in Systems Biology has highlighted the ubiquity
of feedback control systems in biology, [1]-[7]. Due to the scale and com-
plexity of biology, the resulting control systems often take the form of large
interconnected regulatory networks, in which it is sometimes difficult to dis-
tinguish the “process” that is being controlled from its regulatory component
or “controller”.

Two remarks are in order here. First, it should be appreciated that, al-
though feedback control theory typically assumes the existence of a separate
plant and controller, most theoretical results and analysis tools do not require
such a separation and can be formulated in terms of the open-loop or closed-
loop transfer functions of the system. Secondly, there can often be significant
advantages in attempting to conceptually separate the different components
of a biological control system into functional modules with clearly defined
roles, as this allows subsequent analysis of the system’s dynamics to more
clearly identify the role of the network structure in delivering the required
system-level performance, [8].

Consider, for example, the different effects on phenotypic responses that
may arise due to variations in the structure of a biological network versus
changes in its “parameters” from their normal physiological values. An exam-
ple of structural perturbation is the elimination of autoregulatory loops during
transcription, which has been demonstrated to cause an increased variance in
the in vivo protein expression resulting in phenotypic variability, [3]. On the
other hand, a mutation in one copy of the NF1 gene constitutes an example
of a parametric perturbation which results in higher incidences of benign tu-
mours due to an increased noise-to-signal ratio caused by haploinsufficiency,
[9, 10]. Understanding the structural design principles of such biological sys-
tems will be crucial to the development of effective therapeutic strategies to
counteract disease, as well as to the design of novel synthetic circuits with
specified functionality, and a fundamental first step in this direction is to
identify the design components of the network that are essential for the in
vivo physiological response. In the following, we give three examples from the
recent Systems Biology literature of complex cellular control systems whose
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functionality has been effectively elucidated by this kind of analysis.

1.2.1 The tryptophan operon feedback control system

Tryptophan is one of the 20 standard amino acids, as well as an essential amino
acid in the human diet. An operon is a set of structural genes which are closely
situated together, functionally related and jointly regulated. Tryptophan is
produced through a synthesis pathway from the amino acid precursor cho-
rismate with the help of enzymes which are translated from the tryptophan
operon structural genes trpE, D, C, B and A. The dynamics of the trypto-
phan operon are regulated by an exquisitely complex feedback control system
which has been the subject of numerous experimental and modelling studies
over recent years, see [11, 12, 13, 14] and references therein.

Transcription of tryptophan is initiated by the binding of the RNA poly-
merase to the promoter site, and this process is regulated by two feedback
mechanisms. The activated aporepressor, which is bound by two molecules of
tryptophan, interacts with the operator site and hence represses transcription
[15]. The process of transcription can also be attenuated by binding of the
tryptophan molecule to specific mRNA sites. The transcribed mRNA encodes
five polypeptides that form the subunits of the enzyme molecules, which in
turn catalyse the synthesis of tryptophan from chorismic acid, [14]. The third
feedback mechanism results from the binding of the tryptophan molecule to
the first enzyme in the tryptophan synthesis pathway, namely anthranilate
synthase, thereby inhibiting its activity.

From a control engineering point-of-view, the tryptophan system in Es-
cherichia coli can be conceptualised as a three-processes-in-series system,
namely transcription, translation and tryptophan synthesis (P1, P2 and P3

in Fig. 1.5, respectively), [8]. Accurate control of tryptophan concentration
in the cell is achieved by three distinct negative feedback controllers, namely
genetic regulation, mRNA attenuation and enzyme inhibition (C1, C2 and C3
in figure 1.5, respectively). Applications of this kind of parallel or distributed
control architecture are widespread both in engineering, [16], and in biological
networks. For example, the phosphotases synthesised through high osmolar-
ity glycerol (HOG) activation regulate multiple upstream kinases to modulate
the osmotic pressure in Saccharomyces cerevisiae, [17]. Another well-known
example is the hormonal response in the insulin signalling pathway, [18], in
which the phosphorylated Akt and Pkc interact with serially arranged up-
stream components, namely insulin receptor, insulin receptor substrates, and
upstream phosphotases, to constitute multiple feedback loops. A similar mul-
tiple feedback loop mechanism also exists in p53 regulation of cell-cycle and
apoptosis, [19], in which Cdc25 interacts at multiple points of the upstream
processes arranged in series. Using this conceptual framework, a number of
recent studies have elucidated many of the fundamental design principles of
the tryptophan control system, in particular revealing the separate (and non-
redundant) roles played by each feedback loop in ensuring a fast and robust
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FIGURE 1.5: Tryptophan operon regulatory system in E. coli viewed as a dis-
tributed feedback control system: tryptophan is the product of three processes
in series, namely transcription P1, translation P2 and tryptophan synthesis
P3, controlled by three distinct negative feedback controllers, namely genetic
regulation C1, mRNA attenuation C2 and enzyme inhibition C3.

response of the tryptophan operon to variations in the level of tryptophan
synthesis required by the cell, [13, 20, 8].

1.2.2 The polyamine feedback control system

Polyamines are essential, ubiquitous polycations found in all eukaryotic and
most prokaryotic cells. They are utilised in a wide range of core cellular
processes such as binding and stabilising RNA and DNA, mRNA transla-
tion, ribosome biogenesis, cell proliferation and programmed cell death, [21].
Polyamine depletion results in cell growth arrest [22], whereas their over-
abundance is cytotoxic, [23, 24]. Thus, homeostatically regulating polyamine
content within a relatively narrow non-toxic range is a significant regulatory
challenge for the cell.

Ornithine decarboxylase (ODC) is the first and rate limiting enzyme in
the biosynthetic pathway which produces the polyamines. The key regulator
of ODC in a wide range of eukaryotes is the protein antizyme, [25]. There
is a single antizyme isoform in S. cerevisiae, Oaz1, [26]. Antizyme binds to
and inhibits ODC, and targets it for ubiquitin-independent proteolysis by the
26S proteasome, [27, 28]. Antizyme synthesis is in turn dependent upon a
polyamine-stimulated +1 ribosomal frameshift event during translation of its
mRNA. Polyamines also inhibit the degradation of antizyme by the ubiquitin
pathway, [26]. Polyamines thus regulate their homeostasis via a negative
feedback system - a greater concentration of polyamines in the cell increases
the rate of antizyme production by stimulating the ribosomal frameshift (and
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FIGURE 1.6: Polyamine feedback control system in S. cerevisiae: a process P
(the biosynthetic pathway), affected by an actuator A (the protein antizyme)
driven by a feedback controller C (the translational frameshift)

also reduces the rate of antizyme degradation), and a higher concentration of
antizyme acts to reduce polyamine levels by increasing the inhibition of ODC.

In control engineering terms, polyamine regulation can be conceptualised
as a process P (the biosynthetic pathway), which is affected by an actuator A
(the protein antizyme) under the control of multiple negative feedback loops,
Fig. 1.6. In this representation, the translational frameshift event plays the
role of a feedback controller C, and a recent study has developed and validated
a detailed computational model of the dynamics of this controller in yeast,
[29].

To define how each of the polyamines individually and jointly stimulate the
frameshifting event at the antizyme frameshift site in vivo, a novel quadru-
ple yeast gene knockout strategy was devised in which de novo synthesis and
metabolic interconversion of supplied polyamines is prevented. Using this
experimental tool, this study was able to produce data showing that pu-
trescine, spermidine and spermine stimulate antizyme frameshifting in qual-
itatively and quantitatively different ways. For example, the effect of pu-
trescine on frameshifting was very weak compared to that of spermidine and
spermine, while an analysis of polyamine frameshift responses revealed that
although spermidine stimulates frameshifting with a hyperbolic (Michaelis-
Menten type) function, in contrast, putrescine and spermine each appear to
bind to the ribosome in a co-operative manner.

Using this data, a mathematical function employing both Hill functions
and Michaelis-Menten type enzyme kinetics with competing substrates was
developed to capture the complex individual and combinatorial effects of the
three polyamines on the ribosomal frameshift. This model of the polyamine
controller was developed using single and pair-wise polyamine data sets, but
was subsequently able to accurately predict frameshift efficiencies measured in
both the wild-type strain, and in an antizyme mutant, each of which contained
very different (triple) polyamine combinations, [29].
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1.2.3 The heat shock feedback control system

Cells in living organisms are routinely subjected to stress conditions arising
from a variety of sources, including changes in the ambient temperature, the
presence of metabolically harmful substances, and viral infection. One of the
most harmful effects of these types of stress conditions is to cause partial
or complete unfolding and denaturation of proteins. Changes in a protein’s
three-dimensional folded structure will often compromise its ability to function
correctly, and as a result widespread unfolding or misfolding of proteins will
eventually result in cell death. Natural selection has therefore caused regula-
tory systems to evolve to detect the damage associated with stress conditions
and to initiate a response that increases the resistance of cells to damage and
aids in its repair.

One of the most important of these protective systems is the heat shock
response, [30], which consists of an elaborate feedback control system which
detects the presence of stress-related protein damage, [31], and produces a
response to attenuate this disturbance through the synthesis of new heat-
shock proteins which can refold denatured cellular proteins, [30, 31, 32, 33].
In E. coli, the heat shock response is implemented through a control system
centered around the heat shock factor σ32, which regulates the transcription
of the heat shock proteins under normal and stress conditions. The enzyme
RNA polymerase, bound to the regulatory sigma factor σ32, recognises the
heat shock genes that encode molecular chaperones such as DnaK, DnaJ,
GroEL, and GrpE, as well as proteases such as Lon and FtsH. Chaperones are
responsible for refolding denatured proteins, while proteases degrade unfolded
proteins, [32].

The first mechanism through which σ32 responds to stress conditions corre-
sponds to an open-loop control system. At low temperatures, the translation
start site of σ32 is occluded by base pairing with other regions of the σ32

mRNA, so that there is little σ32 present in the cell and, hence, little transcrip-
tion of the heat shock genes. When E. coli are exposed to high temperatures,
this base pairing is destabilised, resulting in a “melting” of the secondary
structure of σ32, which enhances ribosome entry, leading to an immediate
increase in the translation rate of the mRNA encoding σ32, [34]. Hence, a
sudden increase in temperature, sensed through this mechanism, results in a
spike of σ32 and a corresponding rapid increase in the number of heat shock
proteins.

In addition, regulation of σ32 is also achieved via two feedback control loops,
[32]. The first of these involves the chaperone DnaK and its cochaperone
DnaJ. The main function of these chaperones is to perform protein folding,
but they can also bind to σ32, therefore limiting the ability of σ32 to bind to the
RNA polymerase. When the number of unfolded proteins in the cell increases,
more of the DnaK/J are occupied with the task of protein folding, and fewer
of them are available to bind to σ32. This allows more σ32 to bind to RNA
polymerase, which in turn causes an increases in the transcription of DnaK/J
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FIGURE 1.7: Heat shock feedback control system in E. coli: a process P
(transcription and translational of heat shock proteins) controlled by an open-
loop feedforward controller C1 (synthesis of σ32), and two feedback controllers
C2 (sequestration of σ32) and C3 (degradation of σ32).

and other chaperones. The accumulation of high levels of heat shock proteins
leads to the efficient refolding of the denatured proteins, thereby decreasing
the pool of unfolded protein, and freeing up DnaK/J to again sequester σ32

from RNA polymerase. The activity of σ32 is thus regulated through a se-
questration negative feedback loop that involves competition between σ32 and
the unfolded proteins for binding with the free DnaK/J chaperone pool.

σ32 is rapidly degraded (t1/2 = 1 min) during steady-state growth, but is
stabilised for the first five minutes after an increase in temperature. The chap-
erone DnaK and its cochaperone DnaJ are required for the rapid degradation
of σ32 by the heat shock protease FtsH. σ32 which is bound to RNA poly-
merase, on the other hand, is protected from this degradation. Furthermore,
the synthesis rate of FtsH, a product of the heat shock protein expression,
is proportional to the transcription/translation rate of DnaK/J. Therefore,
as the number of unfolded proteins increases due to heat shock, the rate of
σ32 degradation decreases, since fewer DnaK/J are now available in the free
chaperone pool and thus more of the σ32 will be bound to RNA polymerase.
This in turn leads to the production of more DnaJ/K chaperones and more
FtsH protease, which brings the σ32 degradation rate back up. The activity
of σ32 is therefore also controlled through a second FtsH degradation negative
feedback loop.

After the initial rapid increase in response to heat shock, the concentra-
tion of σ32 settles to a new steady-state, whose value is determined by the
balance between the temperature-dependent positive effects on translation of
the σ32 mRNA and the negative feedback effects of the heat shock protein
chaperones and proteases. The heat shock regulatory system can thus be rep-
resented, as shown in Fig. 1.7, as a process P (transcription and translational
of heat shock proteins) controlled by an open-loop feedforward controller C1
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(synthesis of σ32), and two feedback controllers C2 (sequestration of σ32) and
C3 (degradation of σ32). A recent analysis of this system using control en-
gineering methods revealed that the complexity of the hierarchical modular
control structures in the heat shock system can be attributed to the necessity
of achieving a balance between robustness and performance in the response
of the system, [32]. In particular, it was shown that while synthesis of σ32 is
a powerful strategy that allows for the rapid adaptation to elevated temper-
atures, it cannot implement a robust response if used by itself in open-loop.
On the other hand, the negative feedback loops in the system increase its ro-
bustness in the presence of parametric uncertainty and internal fluctuations,
but limit the yield for production of heat shock proteins and hence the fold-
ing of heat-denatured proteins. Furthermore, the use of degradation feedback
implements a faster response to a heat disturbance and reduces the effects of
biochemical noise [35, 36].

1.3 Application of control theory to biological systems:

a historical perspective

“Engineers have produced many machines that are able to receive and react
to information and to exert control by using feedback .... Evidently these ma-
chines work very much like living things and we can recognise a great number
of feedback systems in the body .... It should be possible to use the precise
language developed by the engineers to improve our understanding of those
feedback systems that produce the stability of our lives. It cannot be said
that physiologists have been able to go very far with this method. The living
organism is so complicated that we seldom have enough data to be able to
work out exactly what is happening by means of the mathematics the engineer
uses. Up to the present, the general ideas and terminology used by these en-
gineers have been of more use to biologists than have the detailed application
of their techniques.”
J.Z. Young, Doubt and Certainty in Science : A biologist’s reflections on the
brain, The B.B.C. Reith lectures, Oxford University Press, 1950.

As is clear from both the date and content of the above quotation, the idea
that control theory could be used to understand the functioning of biological
systems is almost as old as control theory itself. Indeed, one of the first books
on control theory by a pioneer of the field focussed explicitly on parallels be-
tween biological and engineered control systems, [37]. As also noted above,
however, difficulties in obtaining sufficient quantities of data meant that for
many years the application of control engineering methods in biology would be
restricted to the realm of physiology, [38, 39, 40, 41]. Collaborations between
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control engineers and physiologists led to much fruitful research on systems
including the respiratory and cardiovascular systems, [42, 43]; thermoregula-
tion, [40]; water exchange control [39, 44]; blood glucose control, [45]; and
pupillary reactions, [46].

The advent over the last decade of high-throughput measurement tech-
niques which can generate -omics level data sets has made possible the simulta-
neous monitoring of the activity of thousands of genes and the concentrations
of proteins and metabolites. This data, and its analysis using sophisticated
bioinformatics tools, makes possible for the first time the study of microscopic
dynamic interactions among cellular components at a quantitative level. Al-
though much of this data is still of extremely poor quality (when compared
to the data on physical systems that control engineers have traditionally had
access to), these new measurement technologies have opened the door for the
application of control theory to the study of cellular feedback systems, and
it is safe to assume that both the quantity and quality of the biological data
available will continue to increase over the coming years.

Motivated by the unique dynamical characteristics of cellular systems, con-
trol engineers have also begun to develop novel theory which is specifically
focussed on biological applications. This situation is clearly an example of
a positive feedback loop, in which the successful application of control the-
ory to biological systems spurs the development of new and more powerful
theory. As a result, Systems Biology is rapidly becoming one of the most
important application areas for control engineering, as evidenced by the con-
stantly increasing number of sessions dedicated to biology at the major control
conferences, and by the number of review papers, special issues of leading con-
trol journals and edited volumes on Systems Biology which have appeared in
recent years, [47]-[58]. There seems little doubt that future generations of bi-
ologists will collaborate closely with control engineers who are as comfortable
dealing with ribosomes and genes as their predecessors were with amplifiers
and motors.
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2

Linear Systems

2.1 Introduction

The dynamics of biological systems are generally highly nonlinear - what then
is the justification for using linear control system analysis techniques to study
such systems? The answer to this question will be familiar to any engineer-
ing undergraduate, since it is a fact that while almost all real-world control
systems display nonlinear dynamics to some extent, the vast majority of the
methods used in their design and analysis are based on linear systems theory,
from the flight control system on the Airbus A380 to the controller for the ser-
vomotor which accesses the hard disk on your computer. Essentially, we have
a trade-off: control engineers will, in certain cases, accept the level of approxi-
mation involved in modelling the process as a linear system in order to exploit
the power, elegance and simplicity of linear analysis and design methods. The
key point to remember is that when we model or analyse the dynamics of a
particular system we are usually interested only in certain aspects of that
system’s dynamics - if these may be approximated to a reasonable level of
accuracy as a linear system, then there are huge advantages in doing so. The
only caveat is that we then need to be careful in interpreting the results of
our analysis, as these will hold only within the limitations of the underlying
assumptions regarding linearity.

In this chapter, we introduce a number of fundamental techniques for
analysing the dynamics of linear systems, and illustrate how they may be
used to provide new insight into the design principles of some important bi-
ological systems. We discuss the concept of system state and state space
models before introducing the frequency response, which is derived from the
time response of a linear time-invariant (LTI) system to a sinusoidal input.
Extending the class of input signals considered to exponential functions of
time leads to the concept of transfer function, which proves to be a particu-
larly useful tool with which to model and analyse the input–output behaviour
of a linear system. The subsequent introduction of the Fourier and Laplace
transforms , along with their related properties, provides the theoretical basis
for frequency domain analysis of linear systems. We introduce the notion of
stability for linear systems, before describing the characteristic parameters of
the time and frequency response of a linear system. Finally, we show how in-
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terconnected systems may be conveniently represented using block diagrams,
as per standard practice in control engineering.

2.2 State space models

A state space representation is a mathematical model of a system as a set
of input, output and state variables related by first-order differential equa-
tions. The state variables of a system can be regarded as a set of variables
that uniquely identifies its current condition. For mechanical systems, typical
state variables include values of the system’s position and velocity, while, for
thermodynamic systems the states may include temperature, pressure, en-
tropy, enthalpy and internal energy. In Systems Biology, state variables are
typically just the concentrations of the different molecular species which are
changing over time, e.g. mRNA, proteins, metabolites, ligands, receptors, etc.
Given a state space model, the knowledge of the state at time t0 allows the
computation of the system’s evolution for all t > t0, even in the absence of
any information about the inputs at time t < t0.

State space models are commonly used in control engineering because they
provide a convenient and compact way to model and analyse high-order sys-
tems∗ with multiple inputs and outputs. Also, unlike the frequency domain
representations to be introduced later in this chapter, the use of state space
models is not limited to systems with linear components and zero initial con-
ditions. Consider the following differential equation model of a system with
input u(t) and output y(t)†:

d3y(t)

dt3
+

5d2y(t)

dt2
+

3dy(t)

dt
+ 4y(t) = u(t) (2.1)

To write this system as a state space model, we must first define the state
variables for the system. The minimum number of state variables required to
model a system is equal to the order of the corresponding differential equation
model. In this case, therefore, we have three state variables given by

x1 = y

x2 = ẏ = ẋ1

x3 = ÿ = ẋ2

∗Systems whose governing equations involve derivatives of high-order.
†Note that in the future, for convenience, we usually drop the explicit dependence of inputs,
outputs and states on time in the notation
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In terms of the state variables, we can write the original differential equation
model (Eq. 2.1) as:

ẋ1 = x2

ẋ2 = x3

ẋ3 = −4x1 − 3x2 − 5x3 + u

Note that we have thus converted a third order differential equation model
into a model consisting of three first order differential equations. One great
advantage of this formulation is that we can use matrix/vector notation to
represent the system in a highly compact form. Writing





ẋ1

ẋ2

ẋ1



 =





0 1 0
0 0 1
−4 −3 −5









x1

x2

x3
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0
0
1
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y =
(

1 0 0
)





x1

x2

x1





if we now define the state vector x as

x =





x1

x2

x3





then the state space model can be simply written as

ẋ = Ax + Bu (2.2a)

y = Cx + Du (2.2b)

The state space model is thus completely defined by specifying the state vector
x and the values of the four matrices A, B, C and D, which in this case are
given by:

A =





0 1 0
0 0 1
−4 −3 −5



 , B =





0
0
1



 , C =
(

1 0 0
)

, D = 0 (2.3)

Note that the set of state variables is not unique: infinitely many state-space
representations can be generated for a given system by applying the linear
transformation z = Tx (where z is the new state vector and T is invertible)
and these representations are all equivalent in terms of their input–output
behaviour. Another great advantage of state space models is that they can
easily represent both single-input single-output (SISO) and multi-input multi-
output (MIMO) systems. Consider a system with two inputs u1 and u2 and
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two outputs y1 and y2, whose dynamics are given by the differential equations

d3y1

dt3
+

5d2y1

dt2
+

3dy1

dt
+ 4y1 = u1

d3y2

dt3
+

d2y1

dt2
+

4dy2

dt
+ 2(y1 + y2) = u2

The state variables of this system are given by

x1 = y1 x4 = y2

x2 = ẏ1 = ẋ1 x5 = ẏ2 = ẋ4

x3 = ÿ = ẋ2 x6 = ÿ2 = ẋ5

If we now define the input, output and state vectors for this system as

u =

(

u1

u2

)

, y =

(

y1

y2

)

, x =

















x1

x2

x3

x4

x5

x6

















then the state space model can again be simply written in the form of Eq. (2.2),
where now we have

A =

















0 1 0 0 0 0
0 0 1 0 0 0
−4 −3 −5 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1
−2 0 −1 −2 −4 0

















, B =

















0 0
0 0
1 0
0 0
0 0
0 1

















,

C =

(

1 0 0 0 0 0
0 0 0 1 0 0

)

, D =

(

0 0
0 0

)

. (2.4)

2.3 Linear time invariant systems and the frequency re-

sponse

It may seem entirely natural to describe dynamical systems, whose inputs,
outputs and states vary with time, using time domain models such as differen-
tial equations or state space representations. In control engineering, however,
it has long been recognised that the time domain approach is sometimes not
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ideal for the analysis of signals and systems, due to the inherent complexity
of the theoretical and numerical machinery needed to deal with differential
equation-based problems. Moreover, in many applications (e.g. telecommuni-
cations) one is more interested in the harmonic content of a signal, and how
this is modified when it is passed through a given system (in this case the
system is usually termed a filter), rather than the temporal evolution of the
signal. Likewise, for biological systems where the processing of information
through cellular signalling cascades may occur over a wide range of time scales
(e.g. fast ligand-receptor dynamics versus the much slower response of gene
expression changes), analysing and characterising the dynamics of a system
in the frequency domain can provide deep insight into the dominant processes
which dictate the overall response of the system.

The class of systems that will be considered in this chapter is characterised
by the linearity of the response and by the fact that the system dynamics
do not change over time. More precisely, given a system with input u(t) and
output y(t, u(t)), we say that it is linear if the following condition is satisfied:

y (t, αu1(t) + βu2(t)) = αy (t, u1(t)) + βy (t, u2(t)) , ∀α, β ∈ R . (2.5)

The above condition states that a linear combination of two (or more) inputs
yields a linear combination of the corresponding outputs with the same coef-
ficients. This property is usually referred to as the Superposition Principle.
It is straightforward to recognise that Eq. (2.5) implies

y (t, αu(t)) = αy (t, u(t)) , ∀α ∈ R ,

that is, scaling the input by α produces a scaling of the output by the same
factor.
Note that, in the general case, the system response y explicitly depends on
the time (in this case the system is said to be time–varying): this entails
that, if we subject the system to two identical inputs at two different points
in time, the outputs will be different. A time–invariant system, instead, has
the nice property of always producing the same output when subject to the
same input, independently of the time at which the input is applied. This
property can be stated mathematically as

y (t1, u(t)) = y (t2, u(t)) , ∀t1, t2 ∈ R . (2.6)

Let us consider a Linear Time–Invariant (LTI) system with input u and output
y. Under certain conditions‡, if we subject this system to a sinusoidal input
signal

u(t) = A sin(ωt + θ) ,

‡The system must be asymptotically stable; the concept of stability is formally defined in
Section 2.6.
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FIGURE 2.1: Outputs (solid lines) of an LTI system subject to two sinusoidal
inputs (dashed lines) of different frequencies.

with amplitude A, frequency ω (in rad/s) and phase θ (in rad), after an initial
transient we will obtain a steady-state sinusoidal output signal with the same
frequency

y∞(t) = M(ω)A sin(ωt + θ + ϕ(ω)) . (2.7)

It is important to realise that this property does not hold in the general
case (i.e. when the system is nonlinear and/or time-varying). Note also that
the amplitude scaling factor and the additional phase term are functions of
the frequency of the sinusoidal input; therefore, we can define the frequency
response function

H(ω) : ω ∈ R 7→M(ω)eiϕ(ω) ∈ C . (2.8)

Example 2.1

Let us consider the simple first-order model

ẏ + 2y = u .

Fig. 2.1 shows the response of the system to the sinusoidal inputs

u1(t) = sin(t) , u2(t) = sin(5t) .
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FIGURE 2.2: Representation of a frequency response through Bode plots.

Although both inputs have unit amplitude and null phase, the response of
the system to u1 (upper subplot) exhibits a greater amplitude and a smaller
phase lag than the response to u2 (lower subplot).

The standard form used for representing the frequency response of a sys-
tem in control engineering is through Bode plots. Bode plots consist of two
diagrams, which give the values of the magnitude and phase of H(ω) as a
function of ω. A logarithmic (base 10) scale is used on the ω-axis, since one
is typically interested in visualising with uniform precision the behaviour of
the system over a wide range of frequencies. The magnitude or gain of the
system is given in decibels, computed as

|H(ω)|dB = 20 log10 |H(ω)| ,

whereas a linear scale is used for the phase ϕ(ω), which is measured in de-
grees. Figure 2.2 shows an example of a Bode plot for an LTI system: the
frequency response is plotted over the range of frequencies ω ∈

[

10−2, 103
]

.
Correspondingly, the gain varies between −25 and 25 db (0.00316 to 316 on
a linear scale, i.e. five orders of magnitude). Note that the Bode plots are
displayed only for positive frequency values and the point ω = 0 is located
at −∞ on the horizontal axis; moreover, the gain is always positive (negative
dB values correspond to magnitudes less than unity). Note also that, since
the gain is given on a logarithmic scale, the plot of the product of two dif-
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TABLE 2.1

Common input signals

Constant k = ke0t

Real-valued exponential keαt

Sinusoid sin(ωt) = 0.5
(

eiωt − e−iωt
)

Growing/Decaying Sinusoid eαt sin(ωt) = 0.5
(

e(α+iω)t − e(α−iω)t
)

ferent functions of ω may be obtained by just summing their values on their
respective Bode plots at each frequency, that is

|H1(ω)H2(ω)|dB = 20 log10(|H1(ω)||H2(ω)|)
= 20 log10(|H1(ω)|) + 20 log10(|H2(ω)|)
= |H1(ω)|dB + |H2(ω)|dB

Finally, we define a decade on the x-axis of a Bode plot as the interval defined
by two frequency values which differ by a factor of 10 (e.g. [2, 20]).

If we now consider input signals belonging to the class of complex exponen-
tial functions, that is

u(t) = est , s = α + iω ∈ C ,

the arguments above can be generalised to a broader class of signals. To
understand the practical usefulness of complex functions, recall that

e(α+iω)t = eαteiωt = eαt (cos(ωt) + i sin(ωt)) .

Many types of real-valued input signals may be written as a linear combina-
tion of complex exponential functions by exploiting the above relations, (see
Table 2.1). Therefore, if we know how to compute the response of an LTI sys-
tem to a complex exponential input, the response to a wide variety of signals
can be readily derived by applying the superposition principle.

Avoiding the mathematical derivation (which can be found in any linear
systems textbook), we can state that the response of an LTI system to an
exponential input§, u(t) = est, takes the form

y(t) = ỹ(t) + y∞(t)

= CeAt
(

x(0)− (sI −A)−1B
)

+
(

C(sI −A)−1B + D
)

est , (2.9)

where A, B, C, D are the matrices of a state-space model of the system in
the form of Eq. (2.2), with state vector x(t), for all values of s, except those
corresponding to the eigenvalues of A (see below). The first term, ỹ(t), which

§For notational convenience, we consider only values of t ≥ 0 and assume that the input is
applied at time t = 0.
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FIGURE 2.3: Outputs (solid lines) of an LTI system subject to different
exponential inputs (dashed lines).

is proportional to the matrix-valued exponential eAt, is denoted the transient
response of the system to signify that, in those cases when eAt → 0 as t→∞,
this term eventually converges to zero. The second term, y∞(t), denoted the
steady–state response, is independent of x0 and proportional to the input and
thus exhibits the same exponential form. Note that in general it is possible
to find an initial condition x0 that nullifies the transient response, yielding
only the steady–state response, i.e. the response remaining after the initial
transient has died away.

Example 2.2

In order to illustrate the property of LTI systems subject to exponential
inputs, we compute the responses of the system

ẏ(t) + 2y(t) = 3u(t) (2.10)

to several inputs, namely a constant signal, a decaying exponential, and de-
caying and growing sinusoids (see Table 2.1). The signals are assumed to be
null for t < 0 and the initial conditions of the ODE are zero, that is y(0) = 0,
ẏ(0) = 0. In all of these cases we can note (see Fig. 2.3) that the output, after
an initial transient, assumes the same shape as the input.
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From the above discussion, it is possible to define the Transfer Function

G(s) : s ∈ C 7→ C (sI −A)−1 + D ∈ C , (2.11)

of a system which maps the generalised frequency s to the steady–state re-
sponse of an LTI system to the input est. The transfer function can also
be defined as the ratio of the steady–state output signal and the exponential
input signal, that is

G(s) =
y∞(t)

est
.

It is important to remark that the arguments above only hold when s 6=
λj(A), j = 1, . . . , n, the eigenvalues of A; indeed, this guarantees that (sI−A)
is nonsingular and can be inverted. In the case s = λj(A), the response takes
the form

y∞(t) = (c0t
r + · · ·+ cr−1t + cr) eλjt ,

where r + 1 is the algebraic multiplicity¶ of the eigenvalue λj , and c0, . . . , cr

are constants.

The transfer function is closely connected to the frequency response in
Eq. (2.8), indeed the latter can be obtained from the former by restricting
s to belong to the imaginary axis

H(ω) = G(s)|s=iω , (2.12)

under the hypothesis that ℜ(λj) < 0, ∀j = 1, . . . , n.

2.4 Fourier analysis

The results given in the previous section for sinusoidal inputs constitute the
basis for a more general treatment of the input–output behaviour of linear
systems. This generalisation is based on the fact that the vast majority of
signals of practical interest can be written as the sum of a (finite or infinite)
set of sinusoidal terms, named the harmonics of the signal. This fact, along
with the assumption of linearity (which implies the superposition of multiple
effects), enables us to interpret the time–response of a system in terms of its
frequency response, that is the sum of the responses to each harmonic of the
input signal.

¶An eigenvalue with algebraic multiplicity r appears r times as a root of the characteristic
polynomial of the system - see Section 2.5.
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A fundamental result in Fourier analysis is that any periodic function f(t)
with period T can be written as

f(t) = F0 +

∞
∑

n=1

[Fcn cos(nω0t) + Fsn sin(nω0t)] ,

where ω0 = 2π/T , and

F0 =
1

T

∫

T

f(t)dt ,

Fcn =
2

T

∫

T

f(t) cos(nω0t)dt , Fsn =
2

T

∫

T

f(t) sin(nω0t) .

Note that F0 is the average value of f(t) over a single period.

Example 2.3

Consider the square wave signal

Pw(t) =

{

1 if 0 < t ≤ T/2
0 if T/2 < t ≤ T

Using the formula above we can easily compute the Fourier coefficients

F0 =
1

2
, Fcn = 0 ∀n ∈ N , Fsn =

{

2
nπ if n is odd
0 if n is even

.

Therefore, the square wave can be written

Pw(t) =
1

2
+

2

π
sin(ω0t) +

2

3π
sin(3ω0t) +

2

5π
sin(5ω0t) + · · · (2.14)

Figure 2.4 shows different approximations of a square wave signal, obtained
using the average value plus an increasing number of harmonics.

The previous example shows that a periodic signal can often be well ap-
proximated by the sum of a small number of sinusoidal terms. However, if
such a periodic signal is used as an input to an LTI system, then even the use
of more than one or two harmonics might be redundant: since the output is
made up of the sum of the responses to each sinusoidal term and the magni-
tude scaling factor at the frequency nω0 is usually decreasing as n increases‖,
in the sum we can in practice often neglect the terms with high n. In the
general case, in order to compute a good approximation we have to consider
both the Fourier coefficients and the bandwidth of the frequency response of
the system, which will be defined in Section 2.9.

‖Furthermore, many systems exhibit a so called low–pass frequency response, that is the
magnitude of H(ω) decreases when ω → ∞.
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FIGURE 2.4: Approximation of a square wave with the average value plus
(a) one harmonic, (b) two harmonics, (c) five harmonics.

Example 2.4

Let us consider the system whose transfer function is

G(s) =
1

s2 + s + 1
(2.15)

and assume we want to compute its steady–state response to the square wave
Pw(t) with period T = 2π. In theory, we could compute it as the sum of
the steady-state responses to each of the terms appearing in Eq. (2.14). In
practice, looking at the amplitude of the Fourier coefficients of the harmonics
and the magnitude frequency response of the system shown in Figure 2.5,
we can readily recognise that the amplitude of the response associated with
the first harmonic will be much greater than the others, thus dominating
the overall response. Indeed, the amplitude of each harmonic of the output
signal can be computed by summing the two graphs at each frequency. For
example, the second harmonic at 3 rad/s has one third the amplitude of the
first harmonic; moreover, the value of M(ω) at 3 rad/s is about one tenth
of its value at 1 rad/s. Hence, in the output signal, the amplitude of the
second harmonic will be 1/30 of the first harmonic and higher harmonics will
be attenuated even further.

To confirm the result of the frequency domain analysis, in Figure 2.6 we
show that the outputs of system (2.15) subject to the square wave and with
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FIGURE 2.5: (a) Magnitude frequency response of system (2.15) and (b)
magnitude of the first five Fourier coefficients of the square wave input.

just the first two terms of the Fourier expansion (2.14) are practically identical.

As we will see later, an important consequence of the above result is that
the frequency response of a system, i.e. the response of a system to sinu-
soidal signals of different frequencies, can often be approximately evaluated
by applying square wave inputs, which are much easier to produce in typical
experimental conditions.

So far in this section, we have assumed that the signals whose effect on a
system we wish to analyse are periodic. In this case, the frequency spectrum
(the coefficients of the Fourier series) of the signal is discrete (i.e. it is defined
only at certain frequencies). When the signal is aperiodic, we can think of
it as a periodic signal with period T = ∞. Thus, the interval between two
consecutive harmonics nω0 = n2π/T tends to zero and the frequency spectrum
becomes a continuous function of ω (i.e. defined for all frequency values).
Formally, given an aperiodic signal f(t), it can be analysed in the frequency
domain by applying the Fourier transform, defined as

F(ω) =

∫ ∞

−∞
f(t)e−jωtdt . (2.16)
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FIGURE 2.6: Outputs of system (2.15) subject to the square wave (dashed)
and with the first harmonic approximation (solid) signals shown in Fig-
ure 2.4(a).

2.5 Transfer functions and the Laplace transform

Given an LTI system, described by an input–output ODE model in the form

y(n)(t) + a1y
(n−1)(t) + · · ·+ any(t) =

= b0u
(n)(t) + b1u

(n−1)(t) + · · ·+ bmu(t) , (2.17)

the computation of the corresponding transfer function is straightforward.
Indeed, as discussed above, if we apply the input u(t) = est at t = 0, the
steady–state response takes the form y∞(t) = y0e

st. By substituting into
Eq. (2.17) we get

(

sn + a1s
n−1 + · · ·+ an

)

y0e
st =

(

b0s
n + b1s

n−1 + · · ·+ bn

)

est ,

which yields

G(s) =
y∞(t)

u(t)
=

b0s
n + b1s

n−1 + · · ·+ bn

sn + a1sn−1 + · · ·+ an
=

N(s)

D(s)
. (2.18)

Note that we have implicitly assumed D(s) 6= 0. D(s) is the characteristic
polynomial of the ODE (2.17) and its roots coincide with the eigenvalues of



Linear Systems 37

the matrix A in Eq. (2.9), hence D(s) 6= 0 is equivalent to s 6= λj . Such
values are also named the poles of the transfer functions, whereas the roots of
the numerator of Eq. (2.18) are the zeros. The number n is the order of the
system, therefore a system of order n has n poles, which can assume either
real or complex conjugate values∗∗.

The transfer function can be exploited not only for computing the steady–
state response to exponential inputs, but also the response to a generic signal
(assuming zero initial conditions, i.e. x(0) = 0 in Eq. (2.9)). In order to illus-
trate this, it is convenient to introduce a particular operator, which enables
the transformation of signals from the time domain to the generalised fre-
quency domain (or s-domain). Given a real-valued function f(t), the Laplace
Transform, L, maps f(t) to a complex-valued function F (s)

f : t ∈ R
+ 7→ f(t) ∈ R

L
−→
←−
L−1

F : s ∈ C 7→ F (s) ∈ C (2.19)

through the relation

F (s) =

∫ ∞

0

f(t)e−stdt . (2.20)

To be rigorous, we must say that the Laplace transform can be applied only if
the function f exhibits certain mathematical properties, although practically
speaking these are almost always satisfied by the signals commonly of inter-
est in real-world applications. Note also that f is defined only for positive
time values. Despite its apparent complexity, the practical application of the
Laplace transform is straightforward, due to some special properties:

a) The Laplace transform is linear, i.e. if we consider two functions, f(t)
and g(t), we get

L (k1f(t) + k2g(t)) = k1Lf(t) + k2Lg(t) .

b) The derivative operator with respect to time corresponds to a multipli-
cation by s in the s–domain

Ldf(t)

dt
= sLf(t)

.

c) Analogously, the integral operator with respect to time corresponds to
a division by s in the s–domain

L
∫ t

0

f(τ)dτ =
1

s
Lf(t)− f(0) .

∗∗This stems by the fact that the denominator D(s) is a polynomial of order n with real-
valued coefficients.
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These and other properties allow us to readily transform differential equa-
tions in the time domain into algebraic equations into the s–domain using
the Laplace transform. The advantage is evident: it is much easier to solve
algebraic equations than differential ones. Once we have found the solution
in the s–domain, we can obtain the time domain solution by applying the
inverse Laplace transform (or antitransform), L−1. In practice, signals can
be easily transformed and antitransformed, without performing any involved
calculations, by using readily available tables of Laplace transforms (see, for
example, page 799 of [1]).

At this point, we can introduce an equivalent alternative definition of the
transfer function of a system as the ratio of the Laplace transforms of the
output and input signals, i.e. for an LTI system with zero initial conditions

G(s) =
Y (s)

U(s)
=
Ly(t)

Lu(t)
. (2.21)

Note that the input signal can assume any form (not only exponential) and y
denotes the total response (not only the steady–state term).

Example 2.5

Assume we want to compute the response of the system (2.10) to the input
u(t) = (2 + cos(10t)) applied at time t = 0. Instead of solving the differential
equation, we compute the transfer function (using Eq. (2.17)–(2.18))

G(s) =
3

s + 2

and the Laplace transform of the input

U(s) =
2

s
+

s

s2 + 100
,

to derive the Laplace transform of the output

Y (s) = G(s)U(s) =
9 s2 + 600

s (s2 + 100) (s + 2)
.

The time response can then be computed by first decomposing Y (s) into a
sum of elementary fractional terms, of the same type as those appearing in
standard Laplace transform tables, that is

Y (s) =
3

s
− 3.058

s + 2
+

0.0577s + 2.885

s2 + 100
.

Exploiting the linearity of the Laplace transform, we can now readily derive
the time response as the sum of the antitransform of each term

y(t) =
[

3− 3.058 e−2 t + 0.294 cos (10 t− 1.373)
]

1(t) .
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FIGURE 2.7: Time response (solid line) of system (2.10) to the input u(t) =
(2 + cos(10t)) (dashed line).

The time courses of the input and output are shown in Fig. 2.7. The steady–
state response is the sum of the first and third terms, indeed the second term
goes to zero as t → ∞. The same result can be found by exploiting the
relations illustrated in Section 2.3, and individually computing the steady–
state responses to the two terms composing the input, that is u1(t) = 2 · 1(t)
and u2(t) = cos(10t)1(t), which yields

y1∞ = 2 G(i0) = 3 ,

y2∞ = |G(i10)| cos (10 t + ∠G(i10)) = 0.294 cos (10 t− 1.373) .

2.6 Stability

The previous example highlights the fact that the response of an LTI sys-
tem heavily depends on the value of the poles of the transfer function. In
particular, the sign of the real part of the poles determines the sign of the
exponent of the exponential terms which, in turn, yield a convergent (if they
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are all negative) or divergent (if there is at least one positive) response. More
precisely, we will distinguish between three classes of systems, namely

• Asymptotically Stable: the system poles all have negative real parts. A
bounded input (e.g. a step) will produce a bounded output; moreover
the output will asymptotically (i.e. for t → ∞) tend to zero when the
input is set back to zero.

• Stable: the poles all have nonpositive real parts, or there is at most one
pole at the origin, or there is at most one pair of poles on the imagi-
nary axis. For this class of systems, bounded inputs produce bounded
outputs, however, if the input is set back to zero, the output does not
necessarily converge to zero.

• Unstable: there is at least one pole with a positive real part or at least
two poles at the origin, or there are at least two pairs of poles on the
imaginary axis. The output of the system can diverge to infinity even
when subject to a bounded input signal.

The stability of a linear system may also be evaluated by computing the
eigenvalues of the A matrix (known as the state transition matrix) in the
system’s state space model. To see this, we first make explicit the relation
between the state-space representation of a single-input single-output (SISO)
linear system and its transfer function. Starting with the state space model

ẋ = Ax + Bu (2.22a)

y = Cx + Du (2.22b)

and assuming zero initial conditions, taking the Laplace transform gives

sX(s) = AX(s) + BU(s) (2.23a)

Y (s) = CX(s) + DU(s) (2.23b)

Solving for X(s) in the first of these equations gives

(sI −A)X(s) = BU(s) (2.24)

or
X(s) = (sI −A)−1BU(s) (2.25)

where I is the identity matrix. Now substituting Eq. 2.25 into Eq. 2.23b gives

Y (s) = C(sI −A)−1BU(s) + DU(s)

=
[

C(sI −A)−1B + D
]

U(s) (2.26)

Thus, the transfer function G(s) of the system may be defined in terms of the
state space matrices as

G(s) =
Y (s)

U(s)
= C(sI −A)−1B + D

= C
adj(sI −A)

det(sI −A)
B + D (2.27)
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Now, recall that the eigenvalues of a matrix A are those values of λ that
permit a nontrivial (x 6= 0) solution for x in the equation

Ax = λx (2.28)

Writing the above equation as

(λI − A)x = 0 (2.29)

and solving for x yields
x = (λI −A)−1 0 (2.30)

or

x =
adj(λI −A)

det(λI −A)
0 (2.31)

Thus, for a nontrivial solution for x we require that

det(λI −A) = 0 (2.32)

and the corresponding values of λ are the eigenvalues of the matrix A. Com-
paring Eq. 2.32 with Eq. 2.27, we can now see clearly that the eigenvalues of
the state transition matrix A are identical to the poles of the system’s transfer
function. Noting that all of the above development also holds for multiple-
input multiple-output (MIMO) systems, we see that checking the stability
of a system represented in state space form simply requires us to check the
location of the eigenvalues of the system’s A matrix on the s-plane.

Note carefully that all of the above results hold only in the case of LTI
systems - both the definition and analysis of stability is significantly more
complex in the case of nonlinear systems, as will be discussed in detail in the
next chapter.

2.7 Change of state variables and canonical representa-

tions

For LTI systems, input–output representations in the time and frequency do-
main can be put in a one to one correspondence in view of Eq. (2.17)–(2.18).
In the case of input–state–output (ISO) representations, in the previous sec-
tion we have seen how the transfer function of an LTI system can be readily
derived from a state space model. The question naturally arises as to whether
it is possible to derive a state space model from an assigned transfer function,
which is the problem known as realisation in systems theory.

Recall that the set of state variables is not uniquely determined: if we con-
sider a generic state space model in the form of Eq. (2.22a), infinitely many
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other state space representations can be generated for the same system by
changing the state variables using the linear transformation z = Tx (where
z is the new state vector and T is invertible). These alternative representa-
tions are all equivalent in terms of their input–output behaviour: applying the
transformation to system (2.22a), for example, we obtain the generic trans-
formed system

ż = TAT−1z + TBu (2.33a)

y = CT−1z + Du (2.33b)

and, computing the transfer function of the transformed system, that is

CT−1
(

sI − TAT−1
)−1

TB + D = C (sI −A)
−1

B + D , (2.34)

we see that it is identical to that of the original system.
Therefore, given a certain transfer function, it is not possible to uniquely

derive one equivalent state space representation. However, among the infinite
possible state space representations there are some that have a special struc-
ture that greatly simplifies the realisation problem. One of these canonical
state space forms is known as the observability form, which transforms the
transfer function (2.18) (or the IO time–domain model (2.17)) to the state
space model

ẋ =















0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2

...
...

. . .
...

...
0 0 0 . . . 1 −an−1















x +

















b̂0

b̂1

b̂2

...

b̂n−1

















u (2.35a)

y =
(

0 0 0 . . . 0 1
)

x + b̂nu (2.35b)

with
b̂n = bn, b̂i = bi − aibn, i = 0, . . . , n− 1 .

As we shall see in Case Study I, using this canonical form can greatly facilitate
the analysis of the internal dynamics of a system, since the measurable output
can then be assumed to coincide with one of the state variables.

2.8 Characterising system dynamics in the time domain

In this section, we give a brief description of some of the most important
measures used in control engineering for characterising time domain dynam-
ics, since these measures can be very useful in evaluating and comparing the
performance of different biological control systems.
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The dynamics of a control system may be characterised by considering the
nature of its response to particular inputs. Since there is an infinite number
of different input signals which could be applied to any system, it is usual to
consider a subset of the most important, useful or common types of signals
which the system is expected to encounter. The most common types of input
signals used to evaluate performance in control engineering are impulse, step
and ramp signals. Here, we focus on the response to step inputs, since this
reveals the limitations of performance of a system when it is subject to rapidly
changing inputs, e.g. the response of a receptor network to changes in ligand
concentration.

For a first order system with transfer function

G(s) =
K

τs + 1
(2.36)

the step response has a simple exponential shape as shown in Fig. 2.8, and the
important measures of performance are the time constant τ which corresponds
to the time taken for the output to reach 63% of its final value, and the steady-
state value K.
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FIGURE 2.8: Step response of a first order system for different values of the
time constant

Now consider the simple closed-loop control system shown in Fig. 2.9 with
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reference input r(t), output y(t) and

G(s) =
K

s(s + p)
.

The closed-loop transfer function for this system is given by

G(s) =
Y (s)

U(s)
=

G(s)

1 + G(s)

=
K

s2 + ps + K
(2.37)

and thus this is a second order system. Adopting the generalised notation of

Σ
+

-

G(s)
r(t) y(t)

FIGURE 2.9: Closed-loop control system

Section 2.9, we can write the above equation as

Y (s) =
ω2

n

s2 + 2ζωns + ω2
n

R(s) (2.38)

where ωn =
√

K and ζ = p

2
√

K
. For a unit step input R(s) = 1

s , we thus have

Y (s) =
ω2

n

s(s2 + 2ζωns + ω2
n)

(2.39)

Inverse Laplace transforming gives the output y(t) in the time domain as

y(t) = 1− 1

β
e−ζωntsin(ωnβt + θ) (2.40)

The step response of this second order system is shown in Fig. 2.10. On
the figure are shown three of the most important time domain performance
measures for feedback control systems - the rise time, the overshoot and the
settling time. Note that the overall speed of response of the system is deter-
mined by the natural frequency ωn, since this also determines the bandwidth
of the system. However, the tradeoff between the initial speed of response
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FIGURE 2.10: Characteristic parameters of the step response of a second
order system.

of the system (as defined by the rise time) and the accuracy of the response
(as defined by the overshoot and settling time) is encapsulated in the value
of a single parameter, the damping factor ζ. For ζ < 1 the system is under-
damped, and as the damping factor decreases the system exhibits a faster, but
more oscillatory response, with larger initial overshoot of its target value and
a longer settling time. For ζ > 1, the system is termed overdamped, with no
overshoot but with an increasingly sluggish response as ζ increases. A value
of ζ = 1 (termed critical damping) represents the optimal tradeoff between
the conflicting objectives on speed and accuracy of the response (i.e. it gives
the maximum speed of response for which no overshoot occurs). The step
response of a second order system for different values of the damping factor
is shown in Fig. 2.11.

Note that the above limitations on performance hold exactly only in the
case of second order linear systems, and more complex systems incorporating
nonlinear or adaptive behaviour may be able to get around them. However,
they have been observed to hold at least approximately in very many types
of systems traditionally studied in the field of control engineering, including
at least one biological example which would appear on first glance to involve
much more than second order dynamics (consider the steering response of a
car driver at different speeds - as the speed of response required of the driver
increases, so does the overshoot and settling time, until eventually instability



46 An Introduction to Feedback Control in Systems Biology

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [sec]

M
ag

n
it

u
d
e

Decreasing ζ

FIGURE 2.11: Step response of a second order system for different values of
the damping factor.

may be encountered!). Whether these tradeoffs are as widely conserved in
biological systems as they appear to be in physical ones is an interesting open
question that is just starting to be elucidated by current Systems Biology
research. In any case, the performance measures introduced above are entirely
generic, and may be applied to evaluate and compare the response of any type
of dynamical system.

2.9 Characterising system dynamics in the frequency

domain

In this section, we introduce some of the most important measures for charac-
terising frequency domain dynamics, since these measures can provide valu-
able insight into the dominant processes underlying the response of biological
systems to stimuli over different time scales. Following standard practice in
control engineering, we focus on second-order systems, which may be con-
sidered a reliable idealisation of many different types of systems with more
complex dynamics. In control engineering, a general second order system with



Linear Systems 47

input u, output y and differential equation given by

aÿ + bẏ + cy = Ku (2.41)

is typically written in the following standard form:

ÿ + 2ζωnẏ + ω2
ny = ω2

nKu (2.42)

with transfer function

G(s) =
ω2

nK

s2 + 2ζωns + ω2
n

(2.43)

In the above expressions, ωn is called the natural frequency of the system, and
ζ is called the damping factor. Putting s = jω, we can compute the frequency
response of this system as

G(jω) =
ω2

nK

ω2
n − ω2 + j2ζωnω

=
K

1− (ω/ωn)2 + j2ζ(ω/ωn)
(2.44)

Bode plots of the normalised gain and the phase of the frequency response as
a function of dimensionless frequency ω/ωn for different values of the damping
factor ζ are shown in Fig. 2.12. From this figure the key characteristics of
the frequency response are immediately apparent:

• The magnitude of an input signal of a given frequency will either be
amplified or attenutated by the system, depending on whether the mag-
nitude of G(jω) at that frequency is greater than or less than 0 dB on the
Bode magnitude plot . Harmonics of the input signal with frequencies
close to the natural frequency will be most strongly amplified.

• The steady–state response of the system, i.e. its response to constant
input signals, is given by the values of the magnitude and phase on the
extreme left of the Bode plot.

• The roll–off rate denotes the rate at which the attenuation of input
signals increases with increasing frequency, and is calculated by deter-
mining the change in the bode magnitude over one decade of frequency,
e.g. -20dB/decade.

• phase lag denotes the time-lag between the input signal and the response
of the system, and can be read from the Bode phase plot. From Fig.
2.12 we can see that for smaller values of the damping factor, the phase
lag approaches 180◦ at lower and lower frequencies. The combination
of large phase lags and strong signal amplification in lightly damped
systems can easily lead to instability when these systems are subject to
closed-loop feedback control.
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FIGURE 2.12: Bode plots of the normalised gain and the phase of the fre-
quency response as a function of dimensionless frequency

• The bandwidth of the system denotes the range of input signal frequen-
cies that can produce a significant response from the system. In control
engineering, this is usually taken as being the range of frequencies where
the frequency response lies within 3 dB of the peak magnitude.

2.10 Block diagram representations of interconnected sys-

tems

Another advantage of the type of frequency domain models described above
is that they greatly simplify the computation of models of interconnected
systems through the use of block diagram algebra. Although such intercon-
nection schemes could in principle exhibit any topology, in practice we can
identify some basic motifs, which will be presented next.

In a block diagram scheme, a variable (usually assumed to be scalar) is
represented as a line ending in an arrow and a system is represented by a
box with the transfer function written inside it; other basic elements are the
sum node and the branch point. A common problem is, given a certain block
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diagram scheme, to calculate the transfer function between two signals in the
scheme. In order to do this, we start with the basic interconnection schemes,
namely the series, parallel and feedback schemes.

Series connection.
Two systems G1 and G2 are connected in series (or in cascade) when the
output of the first system coincides with the input of the second one (see
Fig. 2.13), so that

Y2(s) = G2(s)Y1(s) = G2(s)G1(s)U1(s) .

Thus, if we take as input U1 and as output Y2, the transfer function will be
G(s) = G2(s)G1(s).

G (s) G (s)1 2
G (s)1 G (s)2·

FIGURE 2.13: Series connection of two systems.

Parallel connection.
Two systems are connected in parallel (Fig. 2.14) if they have the same input
and the total output is the sum of their outputs. In this case, the transfer
function is

Y (s) = Y1(s) + Y2(s) = G1(s)U1(s) + G2(s)U2(s) = (G1(s) + G2(s)) U(s) .

Thus, the transfer function of the equivalent system is G(s) = G1(s) + G2(s).

Σ

G (s)1

G (s)2

+

+

G (s)1 G (s)2+

FIGURE 2.14: Parallel connection of two systems.

Feedback connection.
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The standard feedback connection is shown in Fig. 2.15 and the scheme is
also referred to as a closed–loop system. The transfer function can be easily
derived from the relation

Y (s) = Y1(s) = G1(s) (U(s)− Y2(s)) = G1(s) (U(s)−G2(s)Y1(s)) ,

which yields

Y (s) =
G1(s)

(1 + G1(s)G2(s))
U(s) .

Note that the scheme in Fig. 2.15 is a negative feedback loop, since the output
of the second system is subtracted from the total input. Negative feedback
is typically used in control systems when regulating some value to a desired
level. As we shall see in future chapters, other systems, which may be designed
to generate sustained oscillations or exhibit switch like behaviour, are often
based on positive feedback (Fig. 2.16), in which case the transfer function
reads

Y (s) =
G1(s)

(1−G1(s)G2(s))
U(s) .

Σ

G (s)2

+

-

G (s)1

G (s)1 G (s)21+

G (s)1

FIGURE 2.15: Negative feedback connection of two systems.

Σ

G (s)2

+

+

G (s)1

G (s)1 G (s)21-

G (s)1

FIGURE 2.16: Positive feedback connection of two systems.
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The next example shows how to exploit the basic rules illustrated above
to derive the transfer function between two signals in a more involved block
diagram.

Example 2.6

Given the block diagram in Fig. 2.17a, we want to derive the transfer function
of the represented system. Note that, in this block diagram it is not possible
to distinguish series, parallel or feedback interconnections that can be isolated
and reduced by applying the rules given above. Therefore, we first perform a
little manipulation, by moving G2 upstream of the first sum node, to derive
the equivalent block diagram reported in Fig. 2.17b. Then, noting that the
order of the sum nodes can be inverted and using the parallel and series
interconnection rules we find the block diagram shown in Fig. 2.17c. Finally,
using the feedback and series interconnection rules, we find the input-output
transfer function of the system, that is

G(s) =
G1(s)G3(s) + G2(s)G3(s)

1 + G2(s)G3(s)G4(s)
.
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2.11 Case Study I: Characterising the frequency depen-

dence of osmo–adaptation in Saccharomyces cere-

visiae

Biology background: Osmosis is the diffusion of water through a semi-
permeable membrane (permeable to the solvent, but not the solute), from
the compartment containing a low concentration (hypotonic) solution to
the one at high concentration (hypertonic). The movement of fluid, while
decreasing the concentration difference, increases the inner pressure of the
hypertonic compartment, thus producing a force that counteracts osmosis;
when these two effects balance each other, the osmotic equilibrium is
reached. Osmosis is particularly important for cells, since many biological
membranes are permeable to small molecules like water, but impermeable
to larger molecules and ions. Osmosis provides the primary means by
which water is transported into and out of cells; moreover the turgor
pressure of a cell (i.e. the force exerted outward on a cell wall by the
water contained in the cell) is largely maintained by osmosis between the
cell interior and the surrounding hypotonic environment.
Osmotic shocks arise due to a sudden rise or fall in the concentration of
a solute in the cell’s environment, resulting in rapid movements of wa-
ter through the cell’s membrane. These movements can produce dramatic
consequences for the cell - loss of water inhibits the transport of substrates
and cofactors into the cell, while the uptake of large quantities of water
can lead to swelling, rupture of the cell membrane or apoptosis. Due
to their more direct contact with their environment, single-celled organ-
isms are generally more vulnerable to osmotic shock. However, cells in
large animals such as mammals also suffer similar stresses under certain
conditions, [2].
Osmo–adaptation is the mechanism by which cells cope with large changes
in the concentration of solutes in the environment, to avoid the aforemen-
tioned harmful consequences. Organisms have evolved a variety of mech-
anisms to respond to osmotic shock. To properly control gene expression,
the cell must be able to sense osmotic changes and transmit an appro-
priate response signal to the nucleus. Typically, cells use surface sensors
to gather information about the osmolarity of their surroundings; these
sensors generate signals which activate signal transduction networks to
coordinate the response of the cell, [3]. Recent experimental research indi-
cates that most eukaryotic cells use the mitogen-activated protein (MAP)1
kinase pathways for this purpose, [4].
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2.11.1 Introduction

Building an exhaustive mechanistic mathematical model of the osmotic shock
response would currently entail a significant research effort, notwithstand-
ing the fact that at present this goal is hindered by our incomplete knowl-
edge of the reactions and parameters involved. Even though the system dy-
namics emerge from an intricate network of interactions, their main features
can be often ascribed to a limited number of important molecular regulatory
mechanisms. A feasible approach to derive a concise description of these ba-
sic mechanisms is to analyse the dynamics of the system in the frequency
domain, especially since, in this case, the various subprocesses act at very
different time–scales, e.g. ligand binding/unbinding, phosphorylation, diffu-
sion between compartments and transcription of genes. As we shall see, the
slow subprocesses predominantly dictate the dynamic evolution of the sys-
tem, while the fast ones can be assumed to be constantly at the equilibrium
(this assumption is often referred to as Quasi Steady–State Approximation in
biochemistry).

In this Case Study, we apply the frequency–domain analysis concepts in-
troduced in the previous sections, in order to develop a concise model of the
high-osmolarity glycerol (HOG) mitogen–activated protein kinase (MAPK)
cascade in the budding yeast Saccharomyces cerevisiae. Our treatment is
based on the results presented in [5].

2.11.2 Frequency domain analysis

In S. cerevisiae, after a hyperosmotic shock, membrane proteins trigger a
signal transduction cascade that culminates in the activation of the MAPK
Hog1. This protein, which is normally cytoplasmic, is then imported into the
nucleus, where it activates several transcriptional responses to osmotic stress.
Hog1 is deactivated (through dephosphorylation) when the osmotic balance
is restored, thus allowing its export back to the cytoplasm.

As a first step towards model construction, we must determine the input(s)
and output(s) of the system we want to analyse: in this case the input is chosen
to be the extracellular osmolyte concentration and the output is the concen-
tration of active (phosphorylated) Hog1. In the experiments presented in [5],
the input is manipulated by varying the salt concentration of the medium
surrounding the cells, whereas the output is measured by estimating the lo-
calisation of Hog1 in the nucleus through fluorescence image analysis. Thus,
the relative activity of Hog1 is measured as the nuclear to total Hog1 ratio
in the cell, R(t), averaged over the 50–300 cells observed in the microscope’s
field of view.
The cells have been shocked by supplying a medium with pulse–wave (as in
the dashed signal in Fig. 2.4) changes in concentration of period T0, alter-
nating the concentration level between 0.2 and 0 M NaCl. The experiments,
repeated with different values of T0, ranging from 2 to 128 min, show that
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the steady–state response is approximately sinusoidal, with period T0. Re-
call that, as shown in Example 2.4, a sinusoidal input can be approximated
reasonably well by a pulse–wave, which is much easier to reproduce experi-
mentally: using a first harmonic approximation, the experimental input can
therefore be written

u(t) ≈ 0.2

(

1

2
+

2

π
sin(ω0t)

)

.

This, on the basis of the arguments illustrated in Section 2.3, suggests that the
system behavior can be approximately described by means of a linear model,
at least over the time–scale reported above. Therefore, we can assume that
the steady–state response R∞(t) takes the form

R∞(t) = M ′(ω0) sin (ω0t + ϕ(ω0)) + R0 , (2.45)

where M ′(ω) = M(ω) 0.4/π, and R0 is an offset term. The values M ′(ω0) and
ϕ(ω0) for different values of ω0 can be computed by fitting the parameters
in Eq. (2.45) to the experimental time response, as shown in Fig. 2.18 for
ω0 = 2π/8 rad/min. The resulting sampled frequency response is shown on
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FIGURE 2.18: The function R∞(t) in Eq. (2.45) (solid line), fitted to the
experimental measurements of nuclear Hog1 enrichment (circles), obtained
with a pulse–wave of period T0 = 8 min.
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FIGURE 2.19: Frequency response of the osmo–adaptation system: experi-
mental data (two measurements at each frequency) with wild type (circles)
and underexpressed Pbs2 mutant (squares) strain. For each cell type, the
figure shows the frequency response of system Eq. (2.46) with the parameters
optimised through fitting against experimental data.

the Bode plots in Fig. 2.19. In order to gain further insight into the operation
of the underlying regulatory mechanisms, we now proceed to develop an LTI
model of the process: to this end, we can define a parametric transfer function
G(s) with n zeros and n poles (taking the form of Eq. (2.18)) and try to fit the
associated frequency response G(jω) to the experimental points for different
values of n. Through this procedure we see that a satisfactory interpolation
can be obtained with a second–order system, exhibiting a zero in the origin
and a pair of complex conjugated poles

G(s) = K
ω2

ns

s2 + 2ζωns + ω2
n

. (2.46)

The parameters K, ζ, ωn can be computed by fitting the frequency response
G(jω) to the experimental points, as shown in Fig. 2.19. The best–fit param-
eters are shown in Table 2.2.
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FIGURE 2.20: Time domain response of the osmo–adaptation system to a
step change in concentration of amplitude 0.2 M NaCl: comparison of the
responses predicted by the linear models developed in the frequency domain
vs the experimental measurements.

2.11.3 Time domain analysis

In order to assess the quality of the models, they have been used to predict
the response of the two yeast strains to a step change in the input concen-
tration of amplitude 0.2 M NaCl. The predicted responses of the models are
compared with the experimental measurements in Fig. 2.20: the responses of
the linear systems are offset by a constant value (1.23 M NaCl), which is the
experimentally measured basal activity level of Hog1. The two models show
a good qualitative match to the different sets of data for the two yeast strains
(of course we do not expect a perfect match, since these are linear models

TABLE 2.2

Best–fitting parameters for
model (2.46)

K ωn ζ

wild type 4.238 0.2787 0.5144

low Pbs2 6.978 0.2131 2.398
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of a process that will clearly also involve some nonlinear dynamics). Note
that the wild type model exhibits a pair of complex conjugated poles (ζ < 1),
and therefore the response is oscillatory, with a larger overshoot and a faster
response than the low Pbs2 model, as expected from the experimental data.
Indeed, the latter has two real poles (ζ > 1), and thus exhibits a limited initial
overshoot, a fast initial rise (due to the pole with small time constant) and a
slow decay (caused by the large time constant associated with the other real
pole).

The identified model can be translated into the state space canonical form
(

ẋ1

ẋ2

)

=

(

0 −ω2
n

1 −2ζωn

)(

x1

x2

)

+

(

0
Kω2

n

)

u (2.47a)

y = x2 (2.47b)

Since the second state variable coincides with the observable output of the
system, it can be readily associated with a physical quantity of the process
(the level of Hog1 activity), and thus it is convenient to leave it unchanged.
However, the hidden state variable x1 can be arbitrarily substituted with a
new one, denoted by x′

1, using the linear transformation
(

x1

x2

)

=

(

α β
0 1

)(

x′
1

x2

)

which is parameterised with respect to α and β. Letting α = −1, we obtain
the new state space representation

(

ẋ′
1

ẋ2

)

=

(

−β ω2
n + β2 − 2βζωn

−1 β − 2ζωn

)(

x′
1

x2

)

+

(

βKω2
n

Kω2
n

)

u (2.48a)

y = x2 (2.48b)

which corresponds to the block diagram in Fig. 2.21. The transformation
has been chosen such that the hidden variable is directly compared with the
(scaled) input in the block diagram of the system (Fig. 2.21). This enables
us to assign a physical meaning also to this quantity: since the input is the
external pressure (or, equivalently, the osmolyte concentration in the external
environment), x1 represents the internal pressure (or, equivalently, the cel-
lular osmolyte concentration). This representation provides some interesting
insights into the inner mechanisms of the hyperosmotic shock response: the
model structure tells us that the response is partly mediated by the Hog1
MAPK pathway and partly by a second pathway, which is independent of
Hog1. Since Hog1 is activated by Pbs2, we can derive useful insight by com-
paring the responses of the wild type strain with the mutant strain (in which
pbs2 is underexpressed). This comparison suggests that the feedback action
provided by the Hog1 pathway is stronger, producing a faster response.

The hyperosmotic shock response has been thoroughly studied in the bio-
logical literature, therefore it is also interesting to see if the quantitative de-
scription derived above is in agreement with the available qualitative models
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FIGURE 2.21: Block diagram representation of system (2.48). The values of
the gain blocks a12 and a22 are equal to the corresponding entries of the A
matrix of the state space representation (2.48).

and experimental results. The biological literature states that the regulation
of the hyperosmotic shock response in S. cerevisiae is actually implemented
through two distinct mechanisms:

a) The activity of the membrane protein Fps1 is regulated so as to decrease
the glycerol export rate; this mechanism is Hog1–independent and is
activated in less than 2 minutes.

b) A second pathway, dependent on the activation of Hog1, increases the
expression of Gpd1 and Gpp2 which, in turn, accelerate the production
of glycerol; this response is known to be significantly slower than the pre-
vious one, causing an increase in the intracellular glycerol concentration
after ∼ 30 minutes.

Looking at both the model predictions and the experimental data, we note
that the peak times of the responses of both the wild type and mutant strain
are less than ten minutes. Thus, in both cases the response is much faster
than the characteristic dynamics of gene expression involved in the regulatory
mechanism b). Therefore, the difference in the responses of the two strains
has to be ascribed to changes at the protein–protein interaction level. This
suggests that the MAPK Hog1 plays a role not only in the transcriptional
regulation of glycerol producing proteins, but also in the control of rapid
glycerol export, as supported also by experimental studies [6].
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2.12 Case Study II: Characterising the dynamics of the

Dictyostelium external signal receptor network

Biology background: Dictyostelium discoideum are social amoebae
which live in forest soil and feed on bacteria such as Escherichia coli
that are found in the soil and in decaying organic matter. Dictyostelium
cells grow independently, but under conditions of starvation they initiate
a well-defined program of development [7]. In this program, the individual
cells aggregate by sensing and moving towards gradients in cAMP (cyclic
Adenosine Mono-Phosphate), a process known as chemotaxis. As they
move along the cAMP gradient, the individual cells bump into each other
and stick together through the use of glycoprotein adhesion molecules, to
form complexes of up to 105-cells.
Subsequently, the individual cells form a slime mold which eventually be-
comes a fruiting body which emits spores. The early stage of aggregation
in Dictyostelium cells is initiated by the production of spontaneous oscilla-
tions in the concentration of cAMP (and several other molecular species)
inside the cell. The oscillations in each individual cell are not completely
autonomous, but are excited by changes in the concentration of exter-
nal cAMP, which is secreted from each cell and diffused throughout the
region where the cells are distributed. Many of the processes employed
by Dictyostelium to chemotax are shared with other organisms, including
mammalian cells.
Chemotaxis occurs to some extent in almost every cell type at some time
during its development and it is a major component of the inflamma-
tory and wound-healing responses, the development of the nervous sys-
tem as well as tumor metastasis. Chemotaxis and signal transduction
by chemoattractant receptors play a key role in inflammation, arthritis,
asthma, lymphocyte trafficking, and also in axon guidance. For this rea-
son, Dictyostelium is a very useful model organism for the study of signal
transduction mechanisms implicated in human disease.
Recent examples of Dictyostelium-based biomedical research include the
analysis of immune-cell disease and chemotaxis, centrosomal abnormalities
and lissencephaly, bacterial intracellular pathogenesis, and mechanisms
of neuroprotective and anti-cancer drug action, [8]. Other advantages of
Dictyostelium as a model organism include the fact that they can be easily
observed at organismic, cellular, and molecular levels, primarily because
of their restricted number of cell types, behaviors, and their rapid growth.
The entire genome of Dictyostelium has been sequenced and is available
online in a model organism database called dictyBase.
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2.12.1 Introduction

In cellular signal transduction, external signalling molecules, called ligands,
are initially bound by receptors which are distributed on the cell surface. The
ligand-receptor complex then initiates various signal transduction pathways,
such as activation of immune responses, growth factors, etc. Inappropriate
activation of signal transduction pathways is considered to be an important
factor underlying the development of many diseases. Hence, robust perfor-
mance of ligand and receptor interaction networks constitutes one of the cru-
cial mechanisms for ensuring the healthy development of living organisms.
In a recent study, [9], a generic model structure for ligand/receptor interac-
tion networks was proposed. Analysis of this model showed that the ability
to capture ligand together with the ability to internalise bound-ligand com-
plexes are the key properties distinguishing the various functional differences
in ligand/receptor interaction networks. From the perspective of control en-
gineering, it is also tempting to speculate that nature will have evolved the
dynamic behaviour in such structural networks to deliver robust and optimal
performance in relaying external signals into the cell [10, 11].

In this Case Study, we show that the ligand/receptor interaction network
employed to relay external cAMP signals in aggregating Dictyostelium dis-
coideum cells appears to exhibit such generic structural characteristics. We
also use both frequency and time domain analysis techniques of the kind
described earlier in this chapter to investigate the underlying control mecha-
nisms for this system. We show that the network parameters for the ligand
bound cell receptors which are distributed on the outer shell of Dictyostelium
discoideum cells are highly optimised, in the sense that the response speed is
the fastest possible while ensuring that no overshoot occurs for step changes
in external signals. We also show that the bandwidth of the network is just
above the minimum necessary to deliver adequate tracking of the type of os-
cillations in cAMP which have been observed experimentally in Dictyostelium
cells during chemotaxis. Our treatment follows that of [12].

2.12.2 A generic structure for ligand/receptor interaction
networks

In [9], a generic structure was proposed for cellular ligand/receptor interaction
networks of the following form:

L + R
kon−−⇀↽−−
koff

C, QR −→ R, f(t) −→ L, (2.49a)

R
kt−→ ∅, C

ke−→ ∅ (2.49b)

where L is the concentration of ligand, R is the number of external cell re-
ceptor molecules, C is the number of ligand-receptor complex molecules, kon

is the forward reaction rate for ligands binding to receptors, koff is the re-
verse reaction rate for ligands dissociating from receptors, kt is the rate of
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internalisation of receptor molecules, and ke is the rate of internalisation of
ligand-receptor complexes. QR is equal to RT × kt, where RT is the steady-
state number of cell surface receptors when C = 0 and L = 0, ∅ is the null
species of either the receptor or the complex, f(t) is some input signal and t
is time - see Fig. 2.22. The corresponding differential equations are given by

kon

kt

ke

f(t)

QR

koff

V

L

R

C

FIGURE 2.22: A generic model for ligand/receptor interactions, [9]

d

dt





R
C
L



 =





−konRL + koffC− ktR + QR

konRL− koffC− keC
(−konRL + koffC) / (NavVc) + f(t)



 (2.50)

where Nav is Avogadro’s number, 6.023× 1023, and Vc is the cell volume in
liters. In normalised form, the above equation can be written as

d

dt∗





R∗

C∗

L∗



 =





−R∗L∗ + C∗ − α(R∗ − 1)
R∗L∗ − C∗ − βC∗

γ (−R∗L∗ + C∗) + u



 (2.51)
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where t∗ = koff t, R∗ = R/RT, C∗ = C/RT, L∗ = L/KD, u = f(t)/koff/KD

and KD is the receptor dissociation constant, i.e., KD = koff/kon. In the
normalised model, α is a quantity proportional to the probability of internal-
isation of unbound receptors, β is a quantity proportional to the probability
of internalisation of captured ligand by receptors before dissociation of the
ligand from the receptors, and γ represents the level of sensitivity of the re-
ceptors to the external signals [9]. By assuming that the number of receptors
is much larger than the number of ligands, i.e. dR/dt ≈ 0 (R ≈ RT), the
following simplified ligand and ligand/complex kinetics are obtained:

d

dt∗

[

C∗

L∗

]

=

[

− (1 + β) 1
γ −γ

] [

C∗

L∗

]

+

[

0
1

]

u (2.52)

where β and γ are given by

β =
ke

koff
, γ =

KaRT

NavVc
, (2.53)

and Ka = 1/KD = kon/koff is the association constant.

2.12.3 Structure of the ligand/receptor interaction network
in aggregating Dictyostelium cells

We now show how a ligand/receptor interaction network displaying the generic
structure given above may be extracted in a straightforward manner from a
model for the complete network underlying cAMP oscillations in Dictyostelium
published in [7, 13], and shown in Fig. 2.23. In this network, cAMP is pro-
duced inside the cell when adenylyl cyclase (ACA) is activated after the bind-
ing of extracellular cAMP to the surface receptor CAR1. Ligand-bound CAR1
activates the mitogen activated protein kinase (ERK2) which in turn inhibits
the cAMP phosphodiesterase RegA by phosphorylating it. When cAMP ac-
cumulates internally, it activates the protein kinase PKA by binding to the
regulatory subunit of PKA. ERK2 is inactivated by PKA and hence can no
longer inhibit RegA by phosphorylating it. A protein phosphatase activates
RegA such that RegA can hydrolyse internal cAMP. Either directly or in-
directly, CAR1 is phosphorylated when PKA is activated, leading to loss-
of-ligand binding. When the internal cAMP is hydrolysed by RegA, PKA
activity is inhibited by its regulatory subunit, and protein phosphatase(s) re-
turns CAR1 to its high-affinity state. Secreted cAMP diffuses between cells
before being degraded by the secreted phosphodiesterase PDE. For more de-
tails of the experimental results upon which the various interactions in the
above network are based, the reader is referred to [7].

The dynamics of the network shown in Fig. 2.23 can be expressed as a set
of nonlinear differential equations with kinetic constants k1−14. The activity
of each of the seven components in the network is determined by the balance
between activating and inactivating enzymes which is then reflected in the
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Intracellular
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PKA

RegARegAERK2

FIGURE 2.23: The model of [7] for the network underlying cAMP oscillations
in Dictyostelium. The normal arrows and the broken arrows represent activa-
tion and self degradation, respectively. The bar arrows represent inhibition.

equations in the form of an activating and deactivating term. The model thus
consists of a set of nonlinear differential equations in the following form:

d ACA

dt
= k1CAR1− k2ACA PKA

d PKA

dt
= k3cAMPi− k4PKA

d ERK2

dt
= k5CAR1− k6PKA ERK2

d RegA

dt
= k7 − k8ERK2 RegA (2.54)

d cAMPi

dt
= k9ACA− k10RegA cAMPi

d cAMPe

dt
= k11ACA − k12cAMPe

d CAR1

dt
= k13cAMPe− k14CAR1

where cAMPi and cAMPe are internal and external cAMP, respectively. The
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ligand-receptor interaction network for this model can be extracted as follows:

d

dt

[

CAR1
cAMPe

]

=

[

−k14 k13

0 −k12

][

CAR1
cAMPe

]

+

[

0
k11

]

ACA (2.55)

Note that in the above, CAR1, cAMPe and ACA are concentrations in units
of µM, and k11, k12, k13 and k14 are reaction constants in units of 1/min. To
transform the unit of CAR1 concentration into the number of molecules, we
use the relation, C = CAR1 NavVc, and hence derive the following:

dC

dt
= −k14 CAR1 NavVc + k13cAMPe NavVc

= −k14C + k13NavVcL (2.56)

where L = cAMPe. In addition,

dL

dt
= −k12L + k11ACA (2.57)

With the normalised states,

dC∗

dt∗
= − k14

koff
C∗ +

k13NavVc

RTkon
L∗ (2.58)

Then,

dC∗

dt∗
= − k14

koff
C∗ + L∗∗ (2.59)

where L∗∗ = L∗KL and KL = (k13NavVc)/(RTkon). Note that KL is multi-
plied by L∗ to make the coefficient equal to one as in Eq. (2.52). Similarly,

dL∗∗

dt∗
= − k12

koff
L∗∗ + u (2.60)

This can be written in a compact form as:

d

dt

[

C∗

L∗∗

]

=







− k14

koff
1

0 − k13

koff







[

C∗

L∗∗

]

+

[

0
1

]

u (2.61)

Comparing Eq. (2.61) with Eq. (2.52), we notice that the only difference
in the structure of the two equations is due to the effect of the koffC term in
Eq. (2.50). However, in the case of the Dictyostelium network, it is reasonable
to assume that the magnitude of the koffC term in Eq. (2.50) is negligible
compared to the other terms, i.e. the rate of dissociation of the ligand from the
receptor is very low. This is because efficient operation of the positive feedback
loop involving external cAMP is crucial in maintaining the stable oscillations



66 An Introduction to Feedback Control in Systems Biology

in cAMP that are required for aggregation of the individual Dictyostelium
cells. Under this assumption, Eq. (2.52) can be rewritten as follows:

d

dt∗

[

C∗

L∗∗

]

=

[

−β 1
0 −γ

] [

C∗

L∗∗

]

+

[

0
1

]

u (2.62)

with

β =
k14

koff
, γ =

k12

koff
, u =

k11KL ACA

KDkoff
(2.63)

and thus we see that the Dictyostelium receptor network displays the same
generic ligand-receptor interaction structure proposed in [9].

The values of the constants in the above equations are given as follows:
k11 = 0.7 min−1, k12 = 4.9 min−1, k13 = 23.0 min−1, k14 = 4.5 min−1,
RT = 4×104, [14, 13], and koff = 0.7×60 min−1 and kon = 0.7×60×107 M−1

min−1 [15]. Hence, β = 0.107 and γ = 0.117. In [16], the average diameter
and volume of a Dictyostelium cell are given by 10.25 µm and 565 µm3. To
calculate Vc, we consider an approximation for the shape of a Dictyostelium
cell as a cylinder, and calculate the effective volume such that the maximum
number of ligand-bound CAR1 molecules is about 1% of the total number of
receptors, to give a value of Vc equal to 1.66× 10−16 liters, [12].

2.12.4 Dynamic response of the Dictyostelium ligand/receptor
interaction network

In this section we investigate the time and frequency domain performance
of the Dictyostelium ligand/receptor interaction network, using the analysis
techniques introduced earlier in this chapter. Differentiating both sides of
Eq. (2.59) with respect to the normalised time, t∗, we get

d2C∗

dt∗2
=
−k14

koff

dC∗

dt∗
+

dL∗∗

dt∗

=
−k14

koff

dC∗

dt∗
− k12

koff

(

dC∗

dt∗
+

k14

koff
C∗
)

+ u (2.64)

In a compact form, this can be written as

C̈
∗

+
k12 + k14

koff
Ċ

∗
+

k12k14

k2
off

C∗ = u (2.65)

where the single and the double dot represent d(·)/dt∗ and d2(·)/dt∗2, respec-
tively.

Since the above equation is simply a second-order linear ordinary differential
equation, we can define the natural frequency, ωn, and the damping ratio, ζ
in the standard way as follows:

C̈
∗

+ 2ζωnĊ
∗

+ ω2
nC∗ = u (2.66)
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Comparing Eq. (2.65) with Eq. (2.66) we have that

ωn =

√
k12k14

koff
, ζ =

k12 + k14

2
√

k12k14

(2.67)

Substituting the appropriate values for the Dictyostelium network, we find
that ωn is equal to 0.112 and ζ is equal to 1.001. Note that the overshoot,
Mp, and the settling time, ts, for a step input are given by [17]

Mp =

{

e−πζ
√

1−ζ2

, for 0 ≤ ζ < 1

0, for ζ ≥ 1
(2.68)

ts =
− ln 0.01

ζωn
(2.69)

Thus, the kinetics of the Dictyostelium ligand/receptor network produce a
system with a damping ratio almost exactly equal to 1, i.e. the critical damp-
ing ratio. As noted earlier in this chapter, the critical damping ratio is the
optimal solution for maximising the speed of a system’s response without
allowing any overshoot:

ζ∗ = argminJ(ζ) = ts (2.70)

subject to Mp = 0 and Eq. (2.65). Thus, it appears that Dictyostelium cells
may have evolved a receptor/ligand interaction network which provides an
optimal trade-off between maximising the speed of response and prohibiting
overshoot of the response to external signals. Using the generic structure for

TABLE 2.3

Kinetic parameters for EGFR, TfR and VtgR [9]

ke koff Ka [1/M] RT Vc

EGFR 0.15 0.24 109/2.47 2×105 4×10−10

TfR 0.6 0.09 109/29.8 2.6×104 4×10−10

VtgR 0.108 0.07 109/1300 2×1011 4×10−10

ligand/receptor interaction networks proposed in [9], the speed of response of
the Dictyostelium ligand-receptor kinetics may be compared with that of some
other ligand-receptor kinetics, such as the epidermal growth factor receptor
(EGFR), the transferrin receptor (TfR) and the vitellogenin receptor (VtgR).
These receptors are involved in the development of tumours, the uptake of iron
and the production of egg cells, respectively, see [18, 19, 20] for details. Using
the definitions in Eq. (2.53) and the values given in Table 2.3, the damping
factors for EGFR, TfR and VtgR may be calculated as follows: ζEGFR = 2.14,
ζTfR = 24.68 and ζVtgR = 10.21. Thus, for each of the above ligand-receptor
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kinetics, the responses are overdamped and thus the possibility of overshoot
is completely prohibited. Indeed, in the case of the Dictyostelium network,
the response cannot be under-damped for any combination of the kinetic
parameters. This can be seen by considering the fact that

ζ =
k12 + k14

2
√

k12k14

≥ 1⇒ (k12 + k14)
2 ≥ 4k12k14

⇒ k2
12 − 2k12k14 + k2

14 ≥ 0⇒ (k12 − k14)
2 ≥ 0

(2.71)

for all k12 > 0 and k14 > 0. Hence, the overdamped dynamical response
appears to stem from the network structure itself, rather than being dependent
on any particular values of the kinetic parameters. The step responses with
k12 and k14 perturbed by up to ± 50% are shown in Fig. 2.24.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (min)

C
*
(t
)/
C
*
(∞

)

FIGURE 2.24: Step responses with the perturbed parameters k12 and k14.
Each kinetic parameter is perturbed by up to ±50%. The response is nor-
malised by the value of each steady-state.

For this level of uncertainty in the kinetic parameters, the settling times
vary between 35 min and 105 min (for the nominal parameter values the
settling time is about 52 min).

One significant difference between the Dictyostelium network and the other
ligand-receptor networks considered above is its relatively fast response time.
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FIGURE 2.25: Bode plots for the Dictyostelium, EGFR, TfR and VtfR net-
works, where the magnitude is normalised by the magnitude at the lowest
frequency for comparison. The region inside the two dashed vertical lines
corresponds to oscillations with periods between 5 and 10 mins, which is the
range of cAMP oscillations observed experimentally in the early stages of
aggregation of Dictyostelium.

Since aggregating Dictyostelium cells exhibit oscillatory behaviour, rather
than converging to a constant steady-state, the ligand/receptor interaction
network may have evolved to maximise the speed of response, in order to
ensure the generation of robust and stable limit cycles in the concentration of
cAMP. This can be more clearly seen in the Bode plots for the responses of
the different networks, which are shown in Fig. 2.25. The bandwidth of the
Dictyostelium ligand-receptor kinetics is about 3 rad/min, which is just above
the minimum necessary to facilitate the oscillations in cAMP with a period
of 5 to 10 min observed in Dictyostelium during chemotaxis.
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3

Nonlinear systems

3.1 Introduction

Nonlinearity appears to be a fundamental property of biological systems. One
reason for this may be the inherent complexity of biology - in the physical
world, linear equations such as Newton’s, Maxwell’s and Schroedinger’s are
immensely successful descriptions of reality, but they are essentially equations
of forces in a vacuum. Nonlinearity is fundamental in generating qualitative
structural changes in complex phenomenon such as the transition from laminar
to turbulent flow, or in phase changes from gas to liquid to solid. Whenever
there are phase changes, whenever structure arises, nonlinear dynamics are
often responsible, and the very fact that biological phenomena have for many
years been successfully described in qualitative terms indicates the importance
of nonlinearity in biological systems. As argued in [1], if it were not for
nonlinearity, we would all be quivering jellies!

More concretely, even the briefest consideration of the dynamics which arise
from the biochemical reaction kinetics underpinning almost all cellular pro-
cesses, [2], reveals the ubiquity of nonlinear phenomena. The fundamental law
of mass action states that when two molecules A and B react upon collision
with each other to form a product C

A + B
k→ C (3.1)

the rate of the reaction is proportional to the number of collisions per unit
time between the two reactants and the probability that the collision occurs
with sufficient energy to overcome the free energy of activation of the reaction.
Clearly, the corresponding differential equation

dC

dt
= kAB (3.2)

where k is the temperature dependent reaction rate constant, is nonlinear. In
enzymatic reactions, proteins called enzymes catalyse (i.e. increase the rate
of) the reaction by lowering the free energy of activation. This situation may
be represented by the Michaelis-Menten model, which describes a two-step
process whereby an enzyme E first combines with a substrate S to form a

73
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complex C which then releases E to form the product P

S + E
k1−⇀↽−
k2

C
k3→ P + E (3.3)

The corresponding differential equation relating the rate of formation of the
product to the concentrations of available substrate and enzyme is again non-
linear

dP

dt
=

VmaxS

Km + S
(3.4)

where the equilibrium constant Km = (k2+k3)/k1 and the maximum reaction
velocity Vmax = k3E. Cooperativity effects, where the binding of one sub-
strate molecule to the enzyme affects the binding of subsequent ones, serve
to further increase the nonlinearity of the underlying kinetics. In general, for
n substrate molecules with n equilibrium constants Km1 through Kmn, the
rate of reaction is given by the Hill equation

dP

dt
=

VmaxSn

Kn
h + Sn

(3.5)

where Kn
h =

∏n
i=1 Kmn.

Nonlinear Michaelis-Menten and Hill-type functions are also ubiquitous in
higher-level models of cellular signal transduction pathways and transcrip-
tional regulation networks. In transcriptional regulatory networks, for exam-
ple, transcription and translation may be considered as dynamical processes,
in which the production of mRNAs depends on the concentrations of protein
transcription factors (TFs) and the production of proteins depends on the con-
centrations of mRNAs. Equations describing the dynamics of transcription
and translation, [3], can then be written as

dmi

dt
= gi(p)− kg

i mi

dpi

dt
= kimi − kp

i pi

respectively, where mi and pi denote mRNA and protein concentrations and
kg

i and kp
i are the degradation rates of mRNA i and protein i. The function

gi describes how TFs regulate the transcription of gene i, and experimental
evidence suggests that the response of mRNA to TFs concentrations has a
nonlinear Hill curve form [4]. Thus, the regulation function of transcription
factor pj on its target gene i can be described by

g+
i = vi

p
hij

j

k
hij

ij + p
hij

j

(3.6)

for the activation case and

g−i = vi

k
hij

ij

k
hij

ij + p
hij

j

(3.7)
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for the inhibition case, where vi is the maximum rate of transcription of gene
i, kij is the concentration of protein pj at which gene i reaches half of its
maximum transcription rate and hij is a steepness parameter describing the
shape of the nonlinear sigmoid responses.

Finally, nonlinear dynamics are also ubiquitous at the inter-cellular level,
where linear models obviously cannot capture the saturation effects arising
from limitations on the number of cells which can exist in a medium or or-
ganism. In fact, interactions between different types of cells often display
highly nonlinear dynamics - consider, for example, a recently proposed (and
validated) model of tumour-immune cell interactions, [5] which gives the re-
lationships between tumor cells T , Natural Killer cells N and tumor specific
CD8+ T-cells L as,

dT

dt
= aT (1− bT )− cNT −D

dN

dt
= σ − fN +

gT 2

h + T 2
N − pNT

dL

dt
= −mL +

jD2

k + D2
L− qLT + rNT

D = d
(L/T )γ

s + (L/T )γ
T

Again, the highly nonlinear nature of the dynamics governing the interactions
between the different cell types is strikingly apparent in the above equations.

For the reasons discussed above, the mathematical models which have been
developed to describe the dynamics of intra- and inter-cellular networks are
typically composed of sets of nonlinear differential equations, i.e. nonlinear
dynamical systems. The study of such systems is by now a mature and ex-
tensive field of research in its own right (see, for example [6]) and so we will
not attempt to provide a complete treatment here. Instead, and in keeping
with the aims of this book, we will focus on certain aspects of nonlinear sys-
tems and control theory which have particular applicability to the study of
biological systems.

3.2 Equilibrium points

A biological system often operates in the neighbourhood of some nominal
condition, i.e. the production and degradation rates of the biochemical com-
pounds are regulated so that the amounts of each species remain approxi-
mately constant at some levels. When such an equilibrium is perturbed by
an unpredicted event (e.g. by the presence of exogenous signalling molecules,
like growth factors), a variety of different reactions may take place, which in
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general can lead the system either to operate at a different equilibrium point,
or to tackle the cause of the perturbation in order to restore the nominal
operative condition.

A point xe in the state space of a generic nonlinear system∗ without exoge-
nous inputs

ẋ = f (x) (3.8)

is said to be an equilibrium point if, whenever the state of the system starts at
xe, it will remain at xe for all t > 0. The equilibrium points are the roots of
the equation f(x) = 0. When the system has an exogenous input the generic
model reads

ẋ = f(x, u) (3.9)

and the pair (xe, ue) is an equilibrium point for the system if

f(xe, ue) = 0 .

One of the main differences between linear and nonlinear systems is that the
latter can exhibit zero, one or multiple isolated equilibria, which are in general
different from the origin of the state space. In the linear case, instead, the
equation Ax = 0 admits only the trivial isolated solution x = 0, if det A 6= 0,
or a continuum of equilibrium points (e.g. a straight line in the state space of
a second order system), when A has one or more zero eigenvalues.

Example 3.1

Let us consider the basic reaction

R + S
kon−−⇀↽−−
koff

C, (3.10)

which describes the reversible binding of a ligand S to a receptor molecule R
with the formation of a complex C, with the binding and unbinding reaction
rates given by the kinetic constants kon and koff respectively. Applying the
law of mass action, it is straightforward to write the ODE model of the above
reaction as

dR

dt
=

dL

dt
= koffC − konR L (3.11a)

dC

dt
= konR L− koffC (3.11b)

∗In the following we make certain mild assumptions about the mathematical properties of f

(e.g. it is autonomous, piecewise continuous and locally Lipschitz, [6]) which are in practice
true for the vast majority of models used in Systems Biology.
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The equilibrium point of the reaction can be found by setting to zero all the
derivatives of the state variables, i.e. by computing the solution of†

koffC − konR L = 0

which yields
Ceq

Req Leq
=

kon

koff
= Keq . (3.12)

The larger the equilibrium constant Keq, the stronger the ligand-receptor bind-
ing, indeed, in the case of binding reactions, this is also called the binding
constant and denoted by KB (biochemists often refer also to the dissociation
constant, defined as KD = koff/kon = 1/KB). The equilibrium constant is
directly related to the biochemical standard free energy change ∆G′◦, which
gives the free-energy change for the reacting system at standard conditions
(temperature 298K, partial pressure of each gas 1 atm, concentration of each
solute 1 M, pH 7), by the expression[7]

∆G′◦ = −RT lnK ′
eq , (3.13)

where R is the gas constant, 8.315 J/mol·K, and T is the absolute temperature.
Thus, if the state of the system is at (Req, Leq, Ceq), in the absence of
exogenous perturbations the concentrations of the three species will remain
at those values indefinitely. Note carefully, however, that this is a dynamic
equilibrium: the system is not static, indeed reactions are continuously taking
place, however the binding and unbinding events per unit time are balanced
such as to keep the overall concentrations unchanged.

It is fundamental to understand that the equilibrium points of a system
depend not just on the structure of the equations, but also on the values
of the parameters: in nonlinear systems, even small changes in the value of
a single parameter can significantly alter the map of equilibrium points, as
illustrated by the next example.

Example 3.2

Consider the nonlinear system

dx

dt
= rx

(

1− x

q

)

− x2

1 + x2
= f(x) (3.14)

The equilibrium points are solutions of the equation f(x) = 0 which implies

rx

(

1− x

q

)

− x2

1 + x2
= 0

†This is a special case, because the resulting equations are all equivalent; in general, setting
to zero the derivatives yields a number of algebraic equations equal to the number of state
variables.
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Obviously, x = 0 is an equilibrium point, but so are all the solutions to the
equation

r

(

1− x

q

)

=
x

1 + x2
(3.15)

These solutions can be easily visualised by plotting both sides of Eq. (3.15)
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x

FIGURE 3.1: Intersections of x/(1 + x2) (solid line) and r(1 − x/q) (dashed
lines) for q = 20 and r = 0.15, 0.4, 0.6.

as shown in Figure 3.1: the intersections correspond to the equilibrium points
of system (3.14). Note how both the location and the number of equilibrium
points changes for different values of the parameter r.

3.3 Linearisation around equilibrium points

The study of the behaviour of nonlinear systems is typically based on the
computation of the equilibrium points and the subsequent analysis of the
trajectories of the system in the neighbourhood of these points. Such an
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analysis can be conducted quite easily by computing linearised models that
approximate the system behaviour around a given equilibrium point.

From a mathematical point of view, the linear approximation is based on
the Taylor series expansion of f(x) in the neighbourhood of xe, that in the
scalar case reads

f(x) = f(xe)+
df(xe)

dx
(x−xe)+

1

2!

d2f(xe)

dx2
(x−xe)

2+
1

3!

d3f(xe)

dx3
(x−xe)

3+ . . .

(3.16)
Hence, the linear (or first-order) approximation

fa(x) = f(xe) +
df(xe)

dx
(x− xe)

is actually close to f(x) if at least one of these conditions holds

a) The value of (x− xe) is small, i.e. the system trajectory is always close
to xe, and thus the terms (x − xe)

n with n > 1 are negligible;

b) The values of the derivatives dnf(x)/dxn are negligible for n > 1, i.e.
the function f(x) is only ‘mildly’ nonlinear in the neighbourhood of xe.

Similar arguments apply when the system’s dimension is greater than one, in
which case

f(x) : x ∈ R
n 7→







f1(x)
...

fn(x)






∈ R

n

is a vector function. Therefore, in place of the derivative, we will use the
Jacobian, that is the matrix of all first-order partial derivatives, defined as

J(x) =
∂f(x)

∂x
=







∂f1

∂x1
. . . ∂f1

∂xn

...
. . .

...
∂fn

∂x1
. . . ∂fn

∂xn






.

Thus, the behaviour of the nonlinear system (3.8) can be approximated in the
neighbourhood of an equilibrium point xe by the linear system

δẋ = J(xe)δx , (3.17)

where δx = x− xe.

Example 3.3

The second order system

ẋ1 = f1(x1, x2) = ν0 + ν1β − ν2 + ν3 + kfx2 − kx1 (3.18a)

ẋ2 = f2(x1, x2) = ν2 − ν3 − kfx2 (3.18b)
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devised in [8] defines a minimal model for intracellular Ca2+ oscillations in-
duced by the rise of inositol 1,4,5-trisphosphate (InsP3), which is triggered
by external signals that bind to the cell membrane receptor phospholipase C
(PLC). The increase of InsP3 concentration triggers the release of Ca2+ from
intracellular stores. Subsequently, Ca2+ oscillations arise from the cyclic ex-
change of this ion between the cytosol and a pool insensitive to InsP3.

The two state variables in this model are the concentrations of free Ca2+ in
the cytosol (x1) and in the InsP3-insensitive pool (x2). The terms ν0 and kx1

represent the influx and efflux of Ca2+ into and out of the cell, respectively, in
the absence of external stimuli. The rates of Ca2+ transport from the cytosol
into the InsP3-insensitive store and viceversa are

ν2 = VM2

xn
1

Kn
2 + xn

1

(3.19)

ν3 = VM3

xm
2

Km
R + xm

2

· xp
1

Kp
A + xp

1

(3.20)

Furthermore, there is a nonactivated, leaky transport of x2 into x1, given
by kfx2. In the model, the level of InsP3 is assumed to affect the influx of
Ca2+ by raising the value of β. Parameter values for the model are shown
in Table 3.1. In order to derive a linearised version of the above model we
calculate the partial derivatives

∂f1

∂x1
= − 130 x1

(x2
1 + 1)

2 +
1.312e3 x3

1 x2
2

(x4
1 + 0.6561)

2
(x2

2 + 4)
− 10 (3.21a)

∂f1

∂x2
=

4e3 x4
1 x2

(x2
2 + 4)

2
(x4

1 + 0.6561)
+ 1 (3.21b)

∂f2

∂x1
=

130 x1

(x2
1 + 1)

2 −
1.312e3 x3

1 x2
2

(x2
2 + 4) (x4

1 + 0.6561)
2 (3.21c)

∂f2

∂x2
= − 4e3 x4

1 x2

(x2
2 + 4)

2
(x4

1 + 0.6561)
− 1 (3.21d)

(3.21e)

Note that the Jacobian is independent of β, since the term ν1β in Eq. (3.18a)
does not depend on x. The value of β, instead, determines the location of
the equilibrium point. Assuming β = 0.23, the linearised system is derived
by computing the Jacobian at the equilibrium point, i.e. by setting x = xe =
(0.2679, 2.2108) in Eq. (3.21), which yields

J(xe) =

(

−8.5872 1.8721
−1.4128 −1.8721

)

. (3.22)

The free evolution of the nonlinear system (3.18) and that of its linearisation,
with initial condition (0.18, 2), are compared in Figure 3.2: the trajectories
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TABLE 3.1

Kinetic parameters for the Goldbeter model (3.18)

Parameter Value Unit Parameter Value Unit

ν0 1 µM · s−1 K2 1 µM

k 10 s−1 KR 2 µM

kf 1 s−1 KA 0.9 µM

ν1 7.3 µM · s−1 m 2

VM2
65 µM · s−1 n 2

VM3
500 µM · s−1 p 4
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FIGURE 3.2: Free evolution state response of the nonlinear system (3.18)
and of its linearisation, with initial condition (0.18, 2) close to the equilibrium
point.

are very similar since they are close to the equilibrium point. Figure 3.3, on
the other hand, shows what happens when the trajectories start from a point
that is further away from the equilibrium, that is (0.42, 1.85).

Linearisation can be applied also in the presence of exogenous inputs, e.g.
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FIGURE 3.3: Free evolution state response of the nonlinear system (3.18) and
of its linearisation, with initial condition (0.42, 1.85) far from the equilibrium
point.

for system (3.9) the linearised system is

δẋ =







∂f1

∂x1
. . . ∂f1

∂xn

...
. . .

...
∂fn

∂x1
. . . ∂fn

∂xn






δx +







∂f1

∂u1
. . . ∂f1

∂un

...
. . .

...
∂fn

∂u1
. . . ∂fn

∂un






δu (3.23)

where δu = u− ue.

Example 3.4

In the model introduced in the previous example, if β is considered a variable
exogenous input, we end up with the following linearised system around an
equilibrium (xe, βe)

δẋ =

(

−8.5872 1.8721
−1.4128 −1.8721

)

δx +

(

7.3
0

)

δβ , (3.24)

where δβ = β − βe. From Figures 3.4 and 3.5 it is possible to see that for
small step inputs the responses of the nonlinear system and of its linearisation
are very close, whereas they are completely different when the amplitude of
the step input increases.
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FIGURE 3.4: State response of the nonlinear system (3.18) and of its lineari-
sation to a small step change of β (from 0.23 to 0.26), applied at t = 1.
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FIGURE 3.5: State response of the nonlinear system (3.18) and of its lineari-
sation to a large step change of β (from 0.23 to 0.35), applied at t = 1.
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3.4 Stability and regions of attractions

Since the behaviour of a nonlinear system in a small neighbourhood of an
equilibrium point is usually well approximated by its linearisation, the ques-
tion that naturally arises is how to guarantee that the state trajectories do not
deviate far from an equilibrium point after the system is subject to a small
perturbation: this leads us to the concept of stability. Roughly speaking, an
equilibrium point xe of a system (3.8) is stable if all the system’s trajectories
starting from a small neighbourhood of xe, stay close to xe for all time.
Considering the above, it comes as no surprise that stability is among the most
important and thus the most investigated properties in control and dynamical
systems theory. It is also worth noting that, besides state space equilibrium
points, other kinds of stability can be considered, e.g. input-output stability
and stability of periodic orbits (i.e. limit cycles).

3.4.1 Lyapunov stability

Many of the fundamental results concerning the stability of dynamical systems
are due to the work of the Russian mathematician Lyapunov, who devised the
homonymous stability theory. The formal definition of Lyapunov stability is
given below in the case when the equilibrium coincides with the origin of the
state space‡.

Stability of an equilibrium point:The origin of the state space
x = 0 is a stable equilibrium point at t = 0 for system (3.8) if for each
ǫ > 0 and any t0 ≥ 0 there is a δ > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ǫ, t ≥ t0 .

This means that, if we choose an initial condition which is close enough
to the equilibrium point, the trajectory of the system is guaranteed not to
drift away by more than a specified distance from the equilibrium point (see
Fig. 3.6). Moreover, if the trajectory tends asymptotically to the stable equi-
librium point, that is

‖x(t0)‖ < δ ⇒ lim
t→∞

x(t) = 0 ,

the equilibrium point is said to be asymptotically stable. In this case, all tra-
jectories tend to the equilibrium point provided that the initial condition is
sufficiently close: the set of all such initial conditions is denoted the Region (or
Domain) of Attraction of the equilibrium point. The analytical computation

‡It can be easily shown that the general case of nonzero equilibrium can be recast in the
same form by applying a change of variables
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||x||=δ

||x||=ε

FIGURE 3.6: Stability of an equilibrium point.

of this region is usually not an easy task, but it can often be either com-
puted numerically or approximated by using the level curves of some suitable
function.

Lyapunov’s theory also provides us with some useful tools with which to
analyse the stability of an equilibrium point, for a given system of nonlinear
differential equations.

Lyapunov’s Direct Method: Let x = 0 be an equilibrium point
for system (3.8) and D ⊂ Rn be a domain containing x = 0. Let
V : D → R be a continuously differentiable function such that

V (0) = 0 (3.25a)

V (x) > 0 , ∀x ∈ D − {0} (3.25b)

V̇ (x) ≤ 0 , ∀x ∈ D . (3.25c)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 , ∀x ∈ D − {0},

then x = 0 is asymptotically stable.

A continuously differentiable function V (x) satisfying Eq. (3.25) is called
a Lyapunov function. A significant advantage of the above result is that it
allows us to determine the stability of an equilibrium point without needing
to actually compute the trajectories of the system. On the other hand, the
theorem provides only a sufficient condition for stability and, therefore, if one
fails in finding a suitable Lyapunov function, one cannot conclude that the
equilibrium point is unstable.

One of the main difficulties in applying Lyapunov’s direct method is that
there is no systematic way to construct a suitable solution V (x). The most
common approach for generating a candidate Lyapunov function is to con-
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struct a quadratic function having the form

V (x) = xT Px, (3.26)

where P is a square symmetric matrix. For this form, it is quite straightfor-
ward to determine positive or negative definiteness, as this corresponds to all
of the eigenvalues of P being either positive or negative, in each case.

Example 3.5

In Example 3.3 we have determined that (0.2679, 2.2108) is an equilibrium
point for the system when β = 0.23. Now we want to use Lyapunov’s direct
method to analyse the stability of this equilibrium point. Taking a quadratic
Lyapunov function centered on the equilibrium point, that is

V (x) = (x− xe)
T P (x− xe),

the conditions of Eq. (3.25) are verified if

V (x) > 0, ∀x ∈ D − {xe}
V̇ (x) = f(x)T P (x− xe) + (x− xe)

T Pf(x) ≤ 0, ∀x ∈ D,

for some domain D ⊂ R : xe ∈ D. The matrix

P =

(

0.5684 −0.0634
−0.0634 0.0746

)

is a solution to this problem (in Section 3.5.3 we will show how this matrix
was found), indeed the surfaces shown in Figs. 3.7–3.8 show that there exists a
neighbourhood of xe where the Lyapunov function is positive, and its deriva-
tive is strictly negative. Therefore, we can conclude that the equilibrium point
xe is asymptotically stable.

Another, in many cases simpler, method to check the stability of equilibrium
points is the so-called Lyapunov’s indirect method, which is stated below.

Lyapunov’s Indirect Method: Let x = 0 be an equilibrium point
for the nonlinear system (3.8), where f : D → Rn is continuously
differentiable and D is a neighbourhood of the origin and let

A =
∂f

∂x
(x)

∣

∣

∣

∣

x=0

.

Then

a) The origin is asymptotically stable if ℜ(λi) < 0 for all the eigen-
values λi, i = 1, . . . , n of A.

b) The origin is unstable if ℜ(λi) > 0 for one or more eigenvalues
of A.
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FIGURE 3.7: Surface described by the quadratic Lyapunov function in Ex-
ample 3.5.

Example 3.6

Consider again the stability of the equilibrium point xe of the system (3.18).
In Example 3.4 we computed the linearisation of this system around xe and
the Jacobian, J(xe), is given in Eq. (3.22). To apply Lyapunov’s indirect
method, it is sufficient to compute the eigenvalues of J(xe), which are −8.167
and −2.293: since they are both strictly negative, we can conclude that the
equilibrium point is asymptotically stable.

Note that Lyapunov’s indirect method, like the direct one, provides only
sufficient conditions for stability. It also does not allow us to determine the
stability of an equilibrium when there are one or more eigenvalues with zero
real part (i.e. ℜ(λi) = 0 for some i).

3.4.2 Regions of attraction

Regions of attractions are of paramount importance in biological systems,
indeed when a system that is operating in the neighbourhood of an equilibrium
point leaves the boundaries of its region of attraction, it is usually abruptly
led to a new operating condition (corresponding to another equilibrium point
or to oscillations). This phenomenon is at the basis of many on-off regulatory
mechanisms of biological functions and periodic behaviours, at the molecular,
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FIGURE 3.8: Surface described by the derivative of the Lyapunov function
in Example 3.5.

cellular or population level. First of all let us give a more precise definition
of region of attraction.

Region of Attraction: Let the origin x = 0 be an asymptotically
stable equilibrium point for the nonlinear system (3.8) and let Φ(t, x0)
be the solution of Eq. (3.8) that starts at initial state x0 at time t = 0.
The region of attraction of the origin, denoted by RA, is defined by

RA = {x0 : Φ(t, x0)→ 0 as t→∞}.

A notable property of the region of attraction is that the boundary of RA

is always formed by trajectories of the system. This makes it quite easy to
numerically determine, for second-order systems, the region of attraction on
the phase plane. The phase plane is a diagram giving the trajectories of a
second-order system, that is the curve described by the point (x1(t), x2(t)) as
the time t varies.

Example 3.7

Consider the hypothetical genetic regulatory system depicted in Fig. 3.9,
composed of two genes, G1 and G2, whose expression is regulated by the
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corresponding proteins, P1 and P2. Each gene promotes its own transcription
and inhibits that of the other gene.

G1

G2

P1

P2

transcription

translation

inhibition

activation

FIGURE 3.9: A network of two genes with self and mutual trascriptional
regulation.

Denote the concentrations of the mRNA molecules transcribed from G1 and
G2 as x and y respectively. In order to derive a second-order system, we will
neglect the dynamics of mRNA translation into the corresponding proteins.
Then, the system dynamics can be modelled as

ẋ = µ1







α0 + α1

(

x
K1

)h1

1 +
(

x
K1

)h1

+
(

y
K2

)h2






− λd1 x (3.28a)

ẏ = µ2







β0 + β1

(

y
K3

)h3

1 +
(

x
K4

)h4

+
(

y
K3

)h3






− λd2 y. (3.28b)

The regulatory terms in parentheses express the combinatorial effects of the
two species on the mRNA transcription. Note that, when the concentrations
of the two proteins are zero, the genes are transcribed at the basal rates (µ1α0

and µ2β0, respectively). Choosing the parameter values§ given in Table 3.2,
the system exhibits five equilibrium points, whose values are shown in Ta-
ble 3.3. Using Lyapunov’s indirect method, we can readily establish that
there are three asymptotically stable equilibrium points: one corresponds to
low expression levels for both genes, the other two occur when one of the two
genes is highly expressed and the other is almost knocked out. Therefore,

§The parameters given in Table 3.2 have been arbitrarily chosen, and should not be assumed
to be representative of experimental concentrations and kinetic constants.
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TABLE 3.2

Kinetic parameters for the two-genes regulatory network in
Example 3.7

Parameter Value Unit Parameter Value Unit

µ1 0.1 µM · s−1 α0 0.1

µ2 0.1 µM · s−1 α1 0.9

λd1 0.1 s−1 β0 0.1

λd2 0.1 s−1 β1 0.9

K1 0.5 µM h1 3

K2 1 µM h2 3

K3 0.5 µM h3 3

K4 1 µM h4 3

TABLE 3.3

Equilibrium points and eigenvalues of the
linearisation of system (3.28).

Equilibrium point Eigenvalues

(0.0814, 0.6483) -0.089861, -0.020127

(0.0935, 0.5010) -0.08509, 0.019804

(0.1078, 0.1078) -0.077778, -0.078521

(0.5010, 0.0935) 0.019804, -0.08509

(0.6483, 0.0814) -0.020127, -0.089861

from an engineering perspective, the system implements a tri-stable switch
and the state can be controlled by some external effectors acting on one or
both the genes to move it from one equilibrium point to another. This is effec-
tively shown by the phase plane diagram in Fig. 3.10, where the (unbounded)
regions of attraction D1, D2, D2, of the three stable equilibrium points are
separated by the dashed trajectories.

A practical means to estimate the region of attraction of an equilibrium
point is provided by Lyapunov’s results. First of all, it is important to remark
that the domain D given above in the statement of Lyapunov’s direct method
cannot be considered an estimate of the region of attraction. Indeed, the re-
gion of attraction has to be an invariant set, that is every trajectory starting
inside it should never escape from it. Since the Lyapunov function is positive
with negative derivative over D, the trajectory x(t) is forced to move from
greater to smaller level curves, defined by V (x) = xT Px = c, where c is a pos-
itive scalar. This, however, does not prohibit the trajectory from trespassing
the boundary of D, thus possibly leading the state to a different equilibrium
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FIGURE 3.10: Phase plane of system (3.28).

point or to diverge. Therefore, the best estimate that one can provide using
Lyapunov’s results is represented by the largest invariant set contained in D.
A simple way to compute such an estimate is to find the maximum value of
c such that the corresponding Lyapunov function level curve, V (x) = c, is
completely included in D, [6].

3.5 Optimisation methods for nonlinear systems

Modern control engineering makes widespread use of mathematical optimisa-
tion to design and analyse feedback control systems. As the scale and com-
plexity of industrial control systems has increased over recent years, control
engineers have been forced to abandon many traditional linear design tech-
niques in favour of nonlinear methods which often rely on numerical optimisa-
tion. Increasingly, the emphasis is on finding ways to formulate optimisation
problems which accurately reflect a set of design or analysis criteria, and are
tractable in terms of the computational requirements of the corresponding
optimisation algorithms. In Systems Biology, the ever increasing scale of the
nonlinear computational models being developed has also highlighted the im-
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portant role of optimisation in developing, validating and interrogating these
models, [9]. Some of the tasks for which advanced optimisation methods are
now widely used in Systems Biology research include

• Model parameter estimation against experimental data for “bottom-up”
modelling, [10, 11]

• Network inference in “top-down” modelling, [12, 13]

• Analysing model stability and robustness, [14, 15]

• Exploring the potential for yield optimisation in biotechnology and metabolic
engineering [16, 17]

• Directly optimising experimental searches for optimal drug combina-
tions [18]

• Computational design of genetic circuits [19]

• Optimal control for modification of self organised dynamics [20]

• Optimal experimental design [21]

In many of the above examples, the analysis of the particular system property
of interest can be formulated as an optimisation problem of the form

max
x

f(x) subject to y ≤ x ≤ z

or
min

x
f(x) subject to y ≤ x ≤ z

where x is a vector of model parameters with upper and lower bounds z
and y, respectively, and f(x) is some nonlinear objective function or cost
function. For example, in a model validation problem, the objective function
could be formulated as the difference between the simulated outputs of the
model and one of more sets of corresponding experimental data, and the
optimisation algorithm would compute the values of the model parameters
within their biologically plausible ranges (defined by y and z) which minimise
this function. On the other hand, in a yield optimisation problem f(x) could
represent the total quantity of some product produced in a given time period.
The optimisation algorithm would then search for parameter values and/or
model structures which maximised this quantity in the model simulation, in
order, for example, to provide guidance on the choice of mutant strains for
improving yields.

Many different classes of optimisation algorithms are available in the liter-
ature. In this section, we give a brief overview of some of the most widely
used optimisation methods which may be used to solve problems of the type
considered in Systems Biology research. The application of several of these
methods to particular problems in Systems Biology will be illustrated in the
two Case Studies at the end of this chapter, and in later chapters.
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3.5.1 Local optimisation methods

Local algorithms typically make use of gradient information (calculated either
analytically of numerically) of the cost function to find the search direction
while determining the optimum. Global algorithms, in contrast, typically use
randomisation and/or heuristic search techniques which require only the cal-
culation of the objective function value. The search space, or design space, for
the set of optimisation parameters being used may be convex or non-convex.
Fig. 3.11 shows a two-dimensional convex search space in the parameters x
and y, with a corresponding cost function z. Clearly, in this case there exists
only one maximum value of the cost function over the entire search space,
and thus any local optimisation algorithm which uses gradient information
will eventually converge to the desired global solution. On the other hand, for
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FIGURE 3.11: Example of a convex search space.

problems with non-convex search spaces, such as the one shown in Fig. 3.12
for example, gradient-based local optimisation algorithms may only provide a
local, rather than a global solution, depending on where in the search space
the optimisation starts. The performance of a given optimisation algorithm is
generally problem dependent, and there is no unique optimisation algorithm
for general classes of problems which will guarantee computation of the true
global solution with reasonable computational complexity. One of the most
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FIGURE 3.12: Example of a nonconvex search space.

widely used local optimisation algorithms is the Sequential Quadratic Progam-
ming (SQP) method, which is often a very effective approach for medium-size
non-linearly constrained optimisation problems. It can be seen as a general-
isation of Newton’s method for unconstrained optimisation in that it finds a
step away from the current point by minimising from a sequence of quadratic
programming subproblems. SQP methods are efficient general purpose algo-
rithms for solving smooth and well-scaled non-linear optimisation problems
when the functions and gradients can be evaluated with high precision. In
many situations, the local gradients will not be available analytically and in
such situations numerical approximations of gradients have to be computed -
this can cause slower and less reliable performance, especially when the func-
tion evaluations are noisy. In SQP, a quadratic approximation of the Lagrange
function and an approximation of the Hessian matrix are defined by a quasi-
Newton matrix. The SQP algorithm replaces the objective function with
a quadratic approximation and replaces the constraints with linear approx-
imations. The quasi-Newton matrix is updated in every iteration using the
standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. An efficient
MATLAB coding of the SQP algorithm is available as the function “fmincon”
provided in [22], the associated documentation also provides more details on
the SQP method.
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3.5.2 Global optimisation methods

Most optimisation problems encountered in Systems Biology involve noncon-
vex search spaces and thus require the use of global optimisation methods
to ensure the computation of globally optimal solutions. Global optimisa-
tion algorithms may be broadly separated into two classes - evolutionary al-
gorithms and deterministic search methods. The most well-known type of
evolutionary algorithms are Genetic Algorithms (GA’s), which are general
purpose stochastic search and optimisation algorithms, based on genetic and
evolutionary principles [23]. This approach assumes that the evolutionary
processes observed in nature can be simulated on a computer to generate a
population, or a set, of fittest candidates. A fitness function (corresponding to
the objective function of interest) is defined to assign a performance index to
each candidate. In genetic search techniques, each member of the population
of candidates is encoded as an artificial chromosome, and the population un-
dergoes a repetitive evolutionary process of reproduction through selection for
mating according to a fitness function, and recombination via crossover with
mutation. A complete repetitive sequence of these genetic operations is called
a generation. GA’s have become a popular, robust search and optimisation
technique for problems with large as well as small parameter search spaces.
Due to their stochastic nature, global optimisation schemes such as GA’s can
be expected to have a much better chance of converging to a global optimum
than local optimisation algorithms. The price to be paid for this improved
performance is a dramatic increase in computation time when compared with
local methods. Fleming and Purshouse, in [24], provide a comprehensive re-
view of various applications of GA’s in the field of control engineering.

Differential evolution (DE) is a relatively new global optimisation method,
introduced by Storn and Price in [25]. It belongs to the same class of evolu-
tionary global optimisation techniques as GA’s, but unlike GA’s it does not
require either a selection operator or a particular encoding scheme. Despite
its apparent simplicity, the quality of the solutions computed using DE is
claimed to be generally better than those achieved using other evolutionary
algorithms, both in terms of accuracy and computational overhead [25, 26, 27].
This method also starts the optimisation from randomly generated multiple
candidate solutions. In DE, however, a new search point in each iteration
is generated by adding the weighted vector difference between two randomly
selected candidate points in the population, with yet another third randomly
chosen point. The vector difference determines the search direction and a
weighting factor decides the step size in that particular search direction. The
DE methodology consists of the following four main steps 1) Random ini-
tialisation, 2) Mutation 3) Crossover 4) Evaluation and Selection. There are
different schemes of DE available based on the various operators that are
employed, one of the most popular is referred to as “DE/rand/1/bin”[25].

A significant drawback of the evolutionary methods described above is that
no formal proofs of convergence are available, and hence multiple trials may
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be required to provide confidence that the global solution has been found.
An alternative approach is to use deterministic methods such as the DIRECT
(DIviding RECTangles) algorithm, [28], a modified version of a class of Lip-
schitzian optimisation schemes, which, when run for a long enough time, has
been proved to converge to the global solution [29]. The DIRECT algorithm
has previously been successfully applied to several different classes of opti-
misation problems. In [30], DIRECT optimisation is applied to a realistic
slider air-bearing surface (ABS) design, an important engineering optimisa-
tion problem in magnetic hard disk drives, in which the cost function evalu-
ation also requires substantial computational time. Fast convergence of the
algorithm and a favourable comparison with adaptive simulated annealing
were demonstrated in this study. In [31] the minimisation of the cost of fuel
and/or electric power for the compressor stations in a gas pipeline network
is attempted using the DIRECT algorithm and a hybrid version of DIRECT
algorithm with implicit filtering. Again, the application is a complex and re-
alistic one, and the reported results are very promising. In [10] the DIRECT
optimisation method is used to improve the set of estimated parameters in a
model of mitotic control in frog egg extracts. The DIRECT optimisation is
used to search for the globally optimal kinetic rate constants for a proposed
mathematical model of the control system that best fits the experimental data
set, and the improvement obtained over the locally optimised parameter set
was clearly demonstrated.

Whatever the particular problem under consideration, the highly complex
and nonlinear nature of biological systems’ dynamics means that the search
space is often non-convex and of high-dimension, with computationally expen-
sive objective function evaluations. In order to gain confidence (with reason-
able computational overheads) that the global optimum for the problem has
been found, it is often useful to employ two algorithms (say DE and DIRECT)
which are based on completely different principles and strategies, and check
whether the results are consistent. In addition, combining the best features of
global and local methods in hybrid algorithms can sometimes produce signifi-
cant computational savings as well as improved performance, [32, 33]. In such
hybrid schemes there is the possibility of incorporating domain knowledge,
which gives them an advantage over a pure blind search based on evolution-
ary principles such as GA’s. Most of these hybrid schemes apply a technique
of switching from the global scheme to the local scheme after the first optimi-
sation algorithm finishes its search or optimisation. In [33], some guidelines
are provided on designing more sophisticated hybrid GA’s based on proba-
bilistic switching strategies, along with experimental results and supporting
mathematical analysis. Efficient computer code implementations and further
details of all the global optimisation algorithms discussed above are available
in the MATLAB Genetic Algorithm and Direct Search Toolbox, [34].
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3.5.3 Linear matrix inequalities

Linear Matrix Inequalities (LMI) play a crucial role in systems and control
theory, indeed they appear in the solutions to several important problems, e.g.
construction of quadratic Lyapunov functions for stability and performance
analysis, optimal control and interpolation problems. Their widespread ap-
plication in the field arises from the development, in the late 1980’s, of so
called interior-point algorithms, which have proven to be extremely efficient
methods for solving LMIs, enabling high-order problems to be tackled with
standard computational requirements and in reasonable time.

An LMI is a particular type of convex optimisation problem, having the
form

F (x) = F0 +

n
∑

i=1

xiFi > 0, (3.29)

where the symmetric matrices Fi are assigned and xi, i = 1, . . . , n, are the
optimisation variables. A noteworthy property of LMIs is that a set of multiple
LMIs

F (1) > 0, . . . , F (p) > 0

can be recast as the single LMI

diag(F (1), . . . , F (p)) > 0.

Moreover, some convex nonlinear inequalities can be converted to LMI form
using the properties of Schur complements: the LMI

(

Q(x) S(x)
S(x)T R(x)

)

> 0, (3.30)

where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depend affinely on x, is equiv-
alent to

R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0.

In most cases, LMIs are encountered in a different form than Eq. (3.29), where
the optimisation variables are arranged in a matrix format. For example, as
we now show, the Lyapunov stability conditions of Eq. (3.33) are LMIs, where
the optimisation variables are the entries of the symmetric matrix P .

Example 3.8

Consider again the system in Example 3.5, where the stability of the equilib-
rium point xe was demonstrated by construction of the Lyapunov function

V (x) = (x− xe)
T P (x− xe),

This function satisfies the conditions for Lyapunov stability given in Eq. (3.25)
if

V (x) > 0, ∀x ∈ D − {xe}
V̇ (x) = f(x)T P (x− xe) + (x− xe)

T Pf(x) ≤ 0, ∀x ∈ D,
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for some domain D ⊂ R : xe ∈ D. To find a matrix P which satisfies these
conditions, we first apply the asymptotic stability conditions to the linearised
system

δẋ = Aδx, where δx = x− xe,

to get

V (δx) = δxT Pδx > 0 (3.32a)

V̇ (δx) = δxT Pδẋ + δẋPδx

= δxT AT Pδx + δxT PAδx < 0 (3.32b)

Condition (3.32a) can be easily imposed by requiring the matrix P to be
positive definite, that is

P > 0, (3.33a)

whereas condition (3.32b) is satisfied by any matrix P that satisfies the linear
matrix inequality

AT P + PA < 0. (3.33b)

The solution to the above set of LMIs can be calculated using standard opti-
misation packages (e.g. [35] or [36]) and gives

P =

(

0.5684 −0.0634
−0.0634 0.0746

)

This was the approach that was used to compute V (x) in Example 3.5.
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3.6 Case Study III: Stability analysis of tumor dormancy

equilibrium

Biology background: Tumor progression is the process by which tumors
grow and eventually invade surrounding tissues and/or spread (metasta-
sise) to areas outside the local tissue. These metastatic tumors are the
most dangerous and account for a large percentage of cancer deaths. The
dynamics of tumor progression may be thought of in terms of a complex
predator-prey system involving the immune system and cancer cells.
The immune system can recognise mutant or otherwise abnormal cells as
foreign, but some cancer cells are able to mutate sufficiently that they are
able to escape the surveillance mechanisms of the immune system. Certain
cancers are able to produce chemical signals that inhibit the actions of
immune cells, and some tumors grow in locations such as the eyes or
brain, which are not regularly patrolled by immune cells. The population
of “predators” thus consists of the immune response cells (white blood
cells), such as T–lymphocytes, macrophages and natural killer cells: these
cells engulf and neutralise malignant cells in a variety of ways.
Natural killer cells are cytotoxic - small granules in their cytoplasm contain
special proteins such as perforin and proteases known as granzymes. When
these are released in close proximity to a cell which has been earmarked
for killing, perforin forms pores in the cell membrane of the target cell
through which the granzymes and associated molecules can enter, inducing
apoptosis.
Macrophages are another type of white blood cell that differentiate from
blood monocytes which migrate into the tissues of the body. As well as
helping to destroy bacteria, protozoa, and tumor cells, macrophages also
release substances that stimulate other cells of the immune system. T–
lymphocytes originate in the bone marrow and reside in lymphatic tissue
such as the lymph nodes and the spleen. T–lymphocytes are divided into
two categories: regulatory and cytotoxic. In the regulatory form, helper
T–lymphocytes organise the attack against the tumor cells (the prey), but
they do not actively participate in the elimination of the malignant cells.
They are able to stimulate the growth of the population of several types
of predator cells (e.g. macrophages and cytotoxic T–lymphocytes).
Moreover, predator cells are also present in the body in two forms: hunting
and resting. For example, the cytotoxic T–lymphocytes in the resting form
can become active predators (cytotoxic cells) when a helper T–cell sends
an appropriate activation signal. Recent research has indicated that the
immune system can also arrest development (induce dormancy) in early
stage tumors without having to actually destroy the malignant cells.
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3.6.1 Introduction

Intensive efforts have been made in recent Systems Biology research to de-
velop reliable dynamical models of tumor development - see, for example, [37]
and [38] which provide a comprehensive overview of different approaches to
modelling of the tumor–immune system interaction dynamics. Recent work
has indicated that functional models of competing populations (i.e. Lotka-
Volterra-like models), in which tumor growth dynamics are explained in terms
of competition between malignant and normal cells, provide many insights
into the role of cell-cell interactions in growth regulation of tumors. In spite
of their simple formulation, such models can capture many key features of
cancer development, such as: a) unbounded growth, which leads to an uncon-
trolled tumor; b) steady-state conditions, in which the populations of normal
and malignant cells coexist and their sizes do not vary (tumor dormancy);
c) cyclic profiles of the size of the tumor cell population (tumor recurrence);
and d) a steady-state of tumor eradication due to the action of the immune
response (tumor remission). The cases b) and d) represent desirable clinical
conditions since in these equilibria the population size of tumor cells can be
constrained to low or null values.

In this Case Study, we consider the dynamical model of tumor growth
devised in [39], which has three equilibrium points, two unstable, E1, E2, and
one asymptotically stable, E3. In the clinical context, E1 and E2 correspond
to unbounded tumor growth, while E3 corresponds to a density of malignant
cells that can be considered safe for the patient and remains in a steady-state
(tumor dormancy) under the control of the immune system. As we will show,
a nonlinear analysis of the tumor dynamics can determine an estimate for
the region of attraction of the desirable equilibrium point, thus allowing us to
map the range of clinical conditions under which the tumor progression can
be kept under control through immune-therapy.

The model considered in [39] belongs to a special class of nonlinear system,
namely quadratic systems, in which the nonlinearity arises from multiplica-
tive terms between two state variables. Such systems arise in a vast array
of applications in engineering (electrical power systems, chemical reactors,
robots) as well as in ecological and biological systems, where the quadratic
terms naturally arise when considering, for example, biochemical phenomena
(e.g. from the law of mass action) or prey-predator-like interactions between
multi-species populations.

The exact determination of the whole region of attraction of the zero equi-
librium point of a quadratic system is an unsolved problem (except for some
very simple cases). Therefore, following the approach proposed in [15], we will
tackle the more practical problem of determining whether an assigned range
of clinical conditions belongs to the region of attraction of the equilibrium
point E3. The approach proposed here can be used regardless of the system
order, and it requires the solution of a particular type of LMI-based optimisa-
tion problem, namely the Generalised Eigenvalue Problem (GEVP) [40], for
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which efficient numerical optimisation routines exist [36]. In principle, if used
with an appropriately validated model, such an approach could also be used
to design an optimal and personalised strategy for cancer therapy.

3.6.2 Model of cancer development

In this section, we introduce the quadratic model of tumor growth developed
in [39]. The model contains three state variables: the density of tumor cells
M , the density of hunting predator cells N , and the density of resting predator
cells Z. The system model is















Ṁ = q + rM
(

1− M
k1

)

− αMN

Ṅ = βNZ − d1N

Ż = sZ
(

1− Z
k2

)

− βNZ − d2Z

, (3.34)

where r is the growth rate of the tumor cells, q is the rate of conversion of the
normal cells to the malignant ones, α is the rate of predation of the tumor
cells by the hunting cells, β is the rate of conversion of the resting cells to
the hunting cells, d1 represents the natural death rate of the hunting cells, s
is the growth rate of the resting predator cells, d2 is the natural death rate
of the resting cells, k1 is the maximum carrying or packing capacity of the
tumor cells, and k2 is the maximum carrying capacity of the resting cells. All
these parameters are positive. In particular, for each cell population, k1 and
k2 (k1 > k2) represent the maximum number of cells that the environment
could support in the absence of competition between these populations.

Note that in the model (3.34), the dynamics of the tumor–immune system
interactions are described using a quadratic formulation. Indeed, for tumor
cells and resting predator cells, the growth is modelled by adopting Lotka–
Volterra and logistic terms [41]. In general, the logistic growth factor is defined
as

R(x) = r

(

1− x

f

)

, (3.35)

where x is the number of individuals of the population, and r and f are pos-
itive constants. For a given population, r is the intrinsic growth factor and
f is the maximum number of individuals that can cohabit in the same en-
vironment such that each individual finds the necessary amount of resources
for survival, denoted as the carrying capacity. From Eq. (3.35), note that
R(x) is a maximum when the population level is low, becomes zero when the
population reaches the carrying capacity and is negative when this level is ex-
ceeded. Other papers in the literature, e.g. [42] and [43], also present ordinary
differential equation models in which the tumor growth is described using lo-
gistic terms. Indeed, several recent clinical tests on measurable tumors have
confirmed that, at higher tumor density, the growth of the tumor increases
more slowly.
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3.6.3 Stability of the equilibrium points

System (3.34) has three equilibrium points

E1 =

[

k1

2

(

1 +

√

1 +
4q

rk1

)

, 0, 0

]

(3.36a)

E2 =

[

k1

2

(

1 +

√

1 +
4q

rk1

)

, 0, k2

(

1− d2

s

)]

(3.36b)

E3 =

[

M∗,
s

β

(

1− d1

βk2

)

− d2

β
,
d1

β

]

, (3.36c)

where

M∗ =
−
[

αs
β

(

1− d1

βk2

)

− αd2

β − r
]

+

√

[

αs
β

(

1− d1

βk2

)

− αd2

β − r
]2

+ 4rq
k1

2 r
k1

.

(3.37)

The three equilibrium points given above are biologically admissible only if
they belong to the positive orthant (since concentrations of cells cannot take
negative values). From Eq. (3.36a), we note that in the case of the equilib-
rium E1 only malignant cells are present, and this equilibrium point always
belongs to the positive orthant since the system parameters are positive. Both
malignant cells and resting predator cells are present in the organism in the
case of the equilibrium point E2. Finally, when the system trajectories are
around the equilibrium E3, all three species of cells are present. To guarantee
biological admissibility of the equilibria E2 and E3, it is necessary that s > d2

in Eq. (3.36b) and

β >
sd1

k2(s− d2)
(3.38)

in Eq. (3.36c), respectively.

Regarding the stability properties of these equilibrium points, as shown
in [39] the first equilibrium point is always unstable because the values of
the system parameters are all positive. Also, if the equilibria E1 and E2

belong to the positive orthant and E3 does not, E2 is an asymptotically stable
equilibrium point. Finally, if E3 also belongs to the positive orthant, then E2

is unstable and E3 is asymptotically stable.

An asymptotically stable equilibrium point corresponds to a favorable con-
dition from a clinical point of view, since it represents a dormant tumor in
which the density of malignant cells does not vary.

Moreover, when E3 belongs to the positive orthant, it is possible to de-
crease the steady-state density of the malignant cells by varying the rate of
destruction of the tumor cells by the hunting cells (system parameter α). In
addition, by comparing the density of the malignant cells in the equilibrium
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points E3 and E2, it is possible to verify that, if

α <
2rβ

s
(

1− d1

βk2

)

− d2

, (3.39)

the density of malignant cells in E3 is lower than in E2.

There is a biological interpretation for the equilibrium points E2 and E3

lying in the positive orthant. In particular, if only E2 belongs to the positive
orthant, a mechanism for converting resting predator cells to hunting predator
cells does not exist. Conversely, when E3 belongs to the positive orthant
it is possible to control the steady-state density of the tumor by varying
α. Therefore, it is of significant clinical interest to determine the region of
attraction surrounding E3, since this defines a safety region within which all
state trajectories asymptotically return to the favorable clinical condition. As
noted above, however, the exact computation of the region of attraction for
all but the most simple quadratic systems is extremely difficult. Therefore,
in the following we instead focus on the simpler problem of demonstrating
that a specified region (in this case a box in the state space) is included in
the region of attraction of the equilibrium point. If this can be shown for a
large enough box, then the goal of any therapeutic strategy should be to lead
the system evolution from a given range of cell densities (corresponding to an
initial point in the state space) into such a box in the region of attraction of
an asymptotically stable equilibrium in which the tumor cells density is null
(tumor remission) or, at least, low (tumor dormancy) as in the case of E3.

In [43] and [44], it has been shown that new protocols for cancer treatment,
which make use of vaccines and immunotherapy, are able to control (or block)
the tumor growth by modifying some critical parameters of the dynamical
system that regulate the interactions between tumor cells and immune cells.
Immunotherapy consists of the administration of therapeutic antibodies as
drugs which can make immune cells able to kill more tumor cells. Therefore,
in the following, we shall assume that we are able to control the immunother-
apeutical action in the model (3.34), by varying the value of the parameter
α. For the purposes of cancer therapy planning, an optimal value of α will be
determined which is able to ensure the existence of a specified safety region
around E3.

3.6.4 Checking inclusion in the region of attraction

Let us consider a quadratic system in the form

ẋ = Ax + B(x) , (3.40)
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where x ∈ Rn is the system state and

B(x) =











xT B1x
xT B2x

...
xT Bnx











(3.41)

with Bi ∈ Rn×n, i = 1, . . . , n.
First note that the study of the stability properties of a nonzero equilibrium

point of system (3.40) can always be reduced to the study of the corresponding
properties of the origin of the state space of another quadratic system by
applying a suitable change of variable. Indeed assume that xe 6= 0 is an
equilibrium point for system (3.40), then

Axe + B(xe) = 0 . (3.42)

Now letting

z = x− xe ; (3.43)

it is readily seen that, from Eq. (3.42),

ż =











A + 2











xT
e B1

xT
e B2

...
xT

e Bn





















z + B(z) + Axe + B(xe)

=











A + 2











xT
e B1

xT
e B2

...
xT

e Bn





















z + B(z) , (3.44)

which is a quadratic system in the form of Eq. (3.40). Moreover, the equilib-
rium z = 0 of system (3.44) corresponds to the equilibrium x = xe of system
(3.40).

On the basis of this observation, without loss of generality, we shall focus on
the stability properties of the zero equilibrium point of system (3.40). Also,
with a slight abuse of terminology, we shall refer to the “stability properties”
of system (3.40), in place of the “stability properties of the zero equilibrium
point” of system (3.40).

Checking local asymptotic stability of system (3.40) is rather simple, since it
amounts to evaluating the eigenvalues of the linearised system ẋ = Ax. In the
context of our analysis, however, establishing the local asymptotic stability
is not enough, since it is required to check whether a given box around the
equilibrium point in the state space belongs to the region of attraction of the
equilibrium.
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In order to precisely define the problem, recall that a box R ⊂ Rn can be
described as follows:

R = conv
{

x(1), x(2), . . . , x(p)

}

(3.45a)

=
{

x ∈ R
n : aT

k x ≤ 1 , k = 1, 2, . . . , q
}

, (3.45b)

where p and q are suitable integer values, x(i) denotes the i-th vertex of R
and conv{·} denotes the operation of taking the convex hull of the argument.

For example, the box in R2

R := [−1, 2]× [−1, 3] ,

can be described both in the form of Eq. (3.45a) with

x(1) =
(

2 −1
)T

, x(2) =
(

2 3
)T

x(3) =
(

−1 3
)T

, x(4) =
(

−1 −1
)T

,

and in the form of Eq. (3.45b) with

aT
1 =

(

1
2 0
)

, aT
2 =

(

−1 0
)

aT
3 =

(

0 1
3

)

, aT
4 =

(

0 −1
)

.

In the next section we will try to solve the following problem:

Problem 1. Assume that the matrix A in Eq. (3.40) is Hurwitz (all eigen-
values of A have strictly negative real parts); then, given the box R defined in
Eq. (3.45), such that 0 is an interior point of R, establish whether R belongs
to the region of attraction of system (3.40). ♦

Let us first recall the following classical result from Lyapunov stability
theory.

Estimate of the region of attraction: A given closed set E ⊂ Rn,
such that 0 is an interior point of E, is an estimate of the region of
attraction of system (3.40) if

i) E is an invariant set for system (3.40);

ii) there exists a Lyapunov function V (x) such that

a) V (x) is positive definite on E;

b) V̇ (x) is negative definite on E.

We choose a quadratic Lyapunov function V (x) = xT Px, with P symmetric
positive definite, so as to satisfy condition ii-a). The derivative of V (x) along
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the trajectories of system (3.40) reads

V̇ (x) = ẋT Px + xT P ẋ

= xT



















[

AT +
(

BT
1 x BT

2 x . . . BT
n x
)]

P + P











A +











xT B1

xT B2

...
xT Bn







































x < 0 .

(3.46)

Note that the bracketed expression exhibits a linear dependence on the state
variables x1, . . . , xn. This implies that it is negative definite on R if and only
if it is negative definite on the vertices of R. Hence, we can conclude that
V (x) satisfies condition ii) over R if the symmetric matrix function

AT P + PA + P











xT B1

xT B2

...
xT Bn











+
(

BT
1 x BT

2 x · · · BT
n x
)

P (3.47)

is negative definite on the vertices of R. In order to also satisfy condition
i), the idea is to enclose R into an invariant set which belongs to the region
of attraction, namely the region bounded by a suitable level curve of the
Lyapunov function. Based on the above ideas, and skipping the technical proof
(the reader is referred to [15] for full details), Problem 1 can be transformed
into the following Generalised Eigenvalue Problem (GEVP):

Problem 2. Find a scalar γ and a symmetric matrix P such that

0 < γ < 1

P > 0
(

1 γaT
k

γak P

)

≥ 0, k = 1, 2, . . . , 2n

xT
(i)Px(i) ≤ 1, i = 1, 2, . . . , 2n

γ(AT P + PA) + P
(

BT
1 x(i) BT

2 x(i) · · · BT
n x(i)

)T

+
(

BT
1 x(i) BT

2 x(i) · · · BT
n x(i)

)

P < 0, i = 1, 2, . . . , 2n . ♦

3.6.5 Analysis of the tumor dormancy equilibrium

Validation of the proposed technique

In what follows we use the model parameter values from [39], thus q = 10,
r = 0.9, α = 0.3, k1 = 0.8, β = 0.1, d1 = 0.02, s = 0.8, k2 = 0.7, d2 = 0.03.
Assume we want to establish whether the state response of system (3.34)

converges to the asymptotically stable equilibrium E3 =
[

2.67 5.41 0.2
]T

after
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FIGURE 3.13: State response of system (3.34) from different perturbed initial
conditions

it has undergone a significant perturbation on the number of tumor cells. The
convergence can be studied by simulation, as shown in Figure 3.13, where the
system evolution is computed for different initial conditions. However, this
approach only allows us to test a finite number of initial points: to check the
convergence over a whole region, we have to guarantee that it belongs to the
domain of attraction of E3, as follows.

In order to validate our technique, let us define a suitable box and solve
Problem 1 for system (3.34). Define the box R = [2, 7]× [5.2, 5.7]× [0.19, 0.21]
containing the equilibrium point E3 and the initial condition x0. Since E3 is a
nonzero equilibrium point, we apply the change of variables (3.43) and study
the properties of the zero state of the corresponding quadratic system in the
form of Eq. (3.44) with

A =





r 0 0
0 −d1 0
0 0 s− d2



 , B1 =





− r
k1
−α

2 0

−α
2 0 0

0 0 0



 ,

B2 =





0 0 0

0 0 β
2

0 β
2 0



 , B3 =





0 0 0

0 0 −β
2

0 −β
2 − s

k2



 . (3.48)

Then we determine the vectors ak for k = 1, . . . , 6, the vertices z(i), for
i = 1, . . . , 8, and the expression for the box R translated to the origin. A
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solution to the feasibility Problem 2 is then given by

γ = 0.1194, P =





0.0319 −0.0027 −0.0464
−0.0027 4.194 7.259
−0.0464 7.259 182.26



 ,

which can be readily obtained by numerically solving the problem using the
YALMIP [35] package or the Matlab LMI Toolbox [36]. Thus, we can conclude
that the box R belongs to the region of attraction of E3. This implies that
every trajectory starting from an initial condition included in R (such as, for
example, those shown in Figure 3.13) converges to E3.

Optimisation of the therapeutic treatment

Changes in the hemodynamic perfusion of the tumor, radiation or chemother-
apy may induce stochastic perturbations of the state variables around the
equilibrium point E3, thus leading the system away from the steady-state
condition. If these perturbations were to bring the system out of the domain
of attraction of the equilibrium point E3, the state trajectories could diverge
leading to the unbounded growth of the tumor. Given the above, the results
presented in the following are potentially useful not only for the analysis of
the tumor development, but also to devise an effective therapeutic strategy:
given a certain operative range, a suitable strategy could be that of enforcing
the system trajectories to tend to the asymptotically stable equilibrium E3

(tumor growth blocked). This problem can be translated in mathematical
terms to that of computing the value of certain parameters such that the
region of attraction of E3 contains the given operative range.

By using the results presented in Section 3.6.4, it is possible to optimise the
value of α, which depends on the amount of immunotherapeutic drug injected
into the patient, in order to guarantee a safety region (i.e. included in the
region of attraction) around the equilibrium point E3. Thus, the box R is
assigned in terms of an admissible variation interval for each state variable
around the equilibrium point. The sizes of such intervals can be chosen on
the basis of clinical knowledge about the admissible perturbations acting on
the system.

In order to exemplify this strategy, we shall apply the proposed methodology
to the quadratic model (3.34) using the same parameter values given in [39],
except for α which will be optimised as described below. First of all, note
that the first component of the equilibrium E3 depends on α, while the other
components do not:

E3(α) =
(

x(α) 5.41 0.2
)T

, (3.49)

where x(α) is given by Eq. (3.37) when all parameters, except α, assume the
values given in [39]. The first component of E3 monotonically varies from 3.4
for α = 0 (i.e. no therapy) to 2.68 for α = 0.3 (maximum value of α compatible
with Eq. (3.39)). In [39] the maximum allowable value of α is considered to
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simulate the system behavior. Here our goal is to use the proposed approach
to guarantee a reasonable safety region around E3 while, at the same time,
minimising the value of α and therefore the amount of drugs that need to be
delivered to the patient. To cope with relatively large variations of the cell
densities, we will take the box R defined in the previous section as the safety
operating region for the system under investigation.

Thus, for a given value of α, we can

1. Compute the corresponding equilibrium point E3(α) by using Eq. (3.49);

2. Determine whether R belongs to the region of attraction of E3(α) by
using the approach of Section 3.6.4.

By repeating these two steps for decreasing values of α, it is possible to
find the minimum value which guarantees the existence of the specified safety

region. In our case the result is αopt = 0.08, with E3(αopt) =
[

3.20 5.41 0.2
]T

.
Indeed it is possible to verify that, with the values given above,

γ = 0.203, P =





0.0298 −0.0227 −0.3129
−0.0227 5.862 18.37
−0.3129 18.37 488.08



 , (3.50)

is an admissible solution to Problem 2.
In Fig. 3.14 the box R, the ellipsoidal invariant set determined by the Lya-

punov function xT Px ≤ 1, with P given in Eq. (3.50), and several trajectories
starting from different points in R are depicted. As expected, all trajectories
which start from points in the safety box converge to the tumor dormancy
equilibrium.

It is interesting to note that the trajectories can exit the box, exhibiting an
overshoot which extends well outside the box, before reaching the equilibrium.
Indeed, the fact that the initial condition belongs to the region of attraction
does not guarantee that the number of malignant cells is bounded during
the transient, rather it ensures that, after a possible overshoot, the system
will return to the dormancy level. On the other hand, the proposed analysis
method also provides a bound on the admissible system trajectories, which is
given by the ellipsoidal region surrounding the box.

Developing an improved understanding of the dynamical behavior of tumor
progression can have interesting implications for the development of thera-
peutic strategies. For example, a quantitative analysis of tumor growth over
a time interval, coupled with an effective model, could help to determine
whether the current therapy is effective and the observed growth is just a
transient phenomenon, or the system has left the safety region and has en-
tered a phase of unbounded growth requiring a different therapeutic action.
Also note that the optimal value of α found in our analysis is very small. Un-
der the assumption that the parameter α is representative of the dose of drug
administered to the patient, the small value of α required in our calculations
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FIGURE 3.14: PolytopeR, ellipsoidal invariant set surroundingR and several
trajectories starting from different points (cross markers) and converging to
the tumor dormancy equilibrium (circle marker)

is an alluring result, because it suggests that, by exploiting the proposed tech-
nique, it is possible not only to devise a robust therapeutic strategy but also
to minimise, at the same time, the amount of drug delivered to the patient. A
major remaining challenge in immunotherapy, in fact, consists of improving
antitumor activity without inducing unmanageable toxicity to normal tissues
[45]. Therefore, a primary goal of current research in this area is to deter-
mine the minimum dose of drug capable of producing the desired effective
therapeutic action, in order to limit unwanted side–effects on normal tissues.
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3.7 Case Study IV: Global optimisation of a model of

the tryptophan control system against multiple ex-

periment data

Biology background: Tryptophan is one of the essential amino acids
(protein building-blocks) in humans, i.e. it cannot be synthesised inter-
nally and must be part of our diet. Tryptophan is also a protein precursor
for serotonin and melatonin. A protein precursor is an inactive protein
(or peptide) that can be turned into an active form by post-translational
modification. Protein precursors are often used by an organism when
the subsequent protein is potentially harmful, but needs to be available
at short notice and/or in large quantities. Serotonin is a neurotransmit-
ter that performs numerous functions in the human body including the
control of appetite, sleep, memory and learning, temperature regulation,
mood, behaviour, cardiovascular function, muscle contraction, endocrine
regulation and depression. Melatonin is an important hormone that plays
a role in regulating the circadian sleep-wake cycle. It also controls essential
functions such as metabolism, sex drive, reproduction, appetite, balance,
muscular coordination and the immune system response in fighting off
various diseases.
Tryptophan has been shown to be effective as a sleep-aid and anti-
depressant, and has been indicated for a range of other potential ther-
apeutic applications including relief of chronic pain and the reduction of
various impulsive, manic and violent disorders. It is sold as a prescription
drug, and is also available as a dietary supplement.
The biotechnology industry uses fermentation processes to commercially
produce tryptophan. Large quantities of wild-type or genetically mod-
ified bacteria are grown in vats, and the food supplement is extracted
from the bacteria and purified. Unfortunately, however, yields of trypto-
phan generated via this process are significantly lower than those achieved
in microbial production of other amino acids, making its production an
expensive and challenging process. This is almost certainly due to the
exquisitely complex control system employed by the cell to regulate tryp-
tophan production.
As has been pointed out by numerous researchers working in this area,
the development of an improved quantitative understanding of this com-
plex dynamical system is the obvious starting point in developing yield
optimisation strategies for industrial tryptophan production.
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3.7.1 Introduction

Many cellular control systems employ multiple feedback loops to allow fast
and efficient adaptation to uncertain environments. The various feedback
mechanisms used by prokaryotes such as E. coli to regulate the expression
of proteins involved in the production of the amino acid tryptophan combine
to form an extremely complex, but highly effective, feedback control system.
This system has been the subject of numerous modelling studies in recent
Systems Biology research, with the result that a plethora of different mathe-
matical models of tryptophan regulation may now be found in the literature,
see for example [46]-[49] and references therein. In each of these modelling
studies, the dynamics of the proposed model were compared with an extremely
limited set of experimental data, and our current understanding of the un-
derlying reactions is such that very little information is available to guide the
selection of parameter values for the models. As a result, in most previous
studies only qualitative agreement between model outputs and experimental
data could be demonstrated, see for example [46]. Since many of the models
in the literature have been derived using diverse assumptions about the ex-
act workings of the underlying feedback mechanisms involved, the lack of any
strong validation (or invalidation) of a particular model has hindered progress
in understanding the underlying design principles of this system.

In this Case Study, we focus on the issue of model validation, and proceed
from the assumption that, for a valid model, there must exist at least one
set of biologically plausible model parameters which yields a close match to
the available experimental data. We consider one particular model of the
tryptophan control system introduced in [46], which includes regulation of
the trp operon by feedback loops representing repression, feedback inhibition,
and transcriptional attenuation [46]. The model also incorporates the effect
of tryptophan transport from the growth medium as well as the various time
delays involved in the transcription and translation processes. We use global
optimisation methods to investigate whether, for the proposed model struc-
ture, realistic (i.e. biologically plausible) parameter values can be found so
that the model reproduces the dynamic response of the in vitro system to a
number of different experimental conditions, [50].

3.7.2 Model of the tryptophan control system

The mathematical model of the tryptophan control system considered in this
study is taken from [46], and consists of the set of nonlinear differential equa-
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tions (3.51).

dOF (t)

dt
=

Kr

Kr +
T (t)

T (t) + Kt
R

{

µO − kpP
[

OF (t)−OF (t− τp)e
−µτp

]}

− µOF (t)

(3.51a)

dMF (t)

dt
= kpPOF (t− τm)e−µτm

[

1− b
(

1− eT (t)/c
)]

− kρρ
[

MF (t)−MF (t− τρ)e
−µτρ

]

− (kdD + µ) MF (t)

(3.51b)

dE(t)

dt
=

1

2
kρρMF (t− τe)e

−µτe
− (γ + µ) E(t) (3.51c)

dT (t)

dt
= K

KnH
i

KnH
i + T nH (t)

E(t)− g
T (t)

T (t) + Kg
+ d

Text

e + Text [1 + T (t)/f ]
− µT (t)

(3.51d)

In Eq. 3.51, R is total repressor concentration, O is total operon concentra-
tion, P is mRNA polymerase (mRNAP) concentration, OF (t) is free operon
concentration, MF (t) is free mRNA concentration, E(t) is total enzyme con-
centration, T (t) is tryptophan concentration, Kr is the repression equilibrium
constant, Kt is the the rate equilibrium constant between the total repressor
and the active repressor, µ is the growth rate, kp is the DNA-mRNAP isomeri-
sation rate, b and c are constants defining the dynamics of the transcriptional
attenuation, kρ is the mRNA-ribosome isomerisation rate, ρ is the ribosomal
concentration, kd is the mRNA degradation rate, D is the mRNA degrading
enzyme, γ is the enzymatic degradation rate constant, K is the tryptophan
production rate, which is proportional to the active enzyme concentration,
Ki is the equilibrium constant for the Trp feedback inhibition of anthranilate
synthase reaction, which is modelled by a Hill equation with the coefficient,
nH , and g is the maximum tryptophan consumption rate.

The internal tryptophan consumption is modelled by a Michaelis-Menten
type term with the constant Kg, Text is the external tryptophan uptake, d,
e, and f are parameters describing the dynamics of the external tryptophan
uptake rate, τp is the time taken for mRNAP to bind to DNA and move
away to free the operon, τm is the time taken for mRNA to be produced after
mRNAP binds to the DNA, τρ is the time taken for the ribosome to bind to
mRNA and initiate translation, and τe is another ribosome binding rate delay
for the enzyme.

All 25 independent parameters are given in Table 3.4 and the dependent
parameters are calculated as follows: T̄ = Ki, kρ = 1/(ρτρ), kdD = ρkρ/30,
Kg = T̄ /20, g = Tcr(T̄ + Kg)/T̄ , ĒA = ĒKnH

i /(KnH

i + T̄ nH ), Ḡ = gT̄ /(T̄ +
Kg), and K = (Ḡ + µT̄ )/ĒA, where T̄ and Ē are the steady-state of trypto-
phan and enzyme, respectively, and Tcr is the tryptophan consumption rate.
More detail about the model can be found in [46]. The model given above
clearly takes into account the three different feedback control mechanisms
(repression, feedback inhibition and transcriptional attenuation) that have
been experimentally verified to operate in the tryptophan operon. In [46], the
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authors were also careful to base their choices for model parameters on the
available biological data, although in many cases little information is available.

Table 3.4: Original and optimised parameters in the tryptophan model.

Unit
Original
in [46]

Optimal
Exp. A

Optimal
Exp. B

Optimal
Exp. C

d [·] 23.5 23.5 23.5 23.5
e [·] 0.9 0.9 0.9 0.9
f [·] 380 380 380 380
R [µM] 0.8 1.357 1.759 1.518
O [µM] 0.0033 0.0059 0.0086 0.0039
P [µM] 2.6 3.22 2.86 3.33
Ē [µM] 0.378 0.338 0.550 0.349
Tcr [µM/min] 22.7 14.07 14.00 14.01
Kr [µM] 0.0026 0.0015 0.0022 0.0077
Kt [µM] 60.34 64.55 158.84 127.41
Ki [µM] 4.09 6.93 53.13 50.41
nH [·] 1.2 1.00 1.00 1.00
b [·] 0.85 0.53 0.33 0.60
c [·] 0.04 0.0083 0.345 0.0109
ρ [µM] 2.9 3.33 3.68 4.00
γ [1/min] 0.0 0.0113 0.00063 0.0034
µ [1/min] 0.01 0.0264 0.0245 0.0192
τp [min] 0.1 0.0267 0.0381 0.0664
τm [min] 0.1 0.0277 0.2587 0.2241
τρ [min] 0.05 0.0874 0.1300 0.1299
τe [min] 0.66 1.1284 1.7131 1.7156
OF (0) [µM] 4.8765e− 5 7.6444e− 5 0.9772e− 5 0.9965e− 5
MF (0) [µM] 1.2037e− 4 0.4304e− 4 0.3677e− 4 0.2667e− 4
E(0) [µM] 0.0119 0.0238 0.0238 0.0238
T (0) [µM] 16.571 13.962 42.772 42.967

For validation purposes, experimental data is available in [50], which re-
ports the results of a number of experiments with wild and mutant strains of
the E. coli CY15000 strain. These experiments consisted of growing bacteria
in a number of different media which included tryptophan until the culture
reached a steady-state. Then the bacteria were washed and put into the same
media without tryptophan. The response of enzyme anthranilate synthase to
these nutritional shifts was then measured as a function of time. Anthrani-
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FIGURE 3.15: Optimised (dashed line) versus original (dash-dot line) model
responses for data from experiment A (x), experiment B (o) and experiment
C (+), experimental data taken from [50]
.

late synthase is the key enzyme involved in tryptophan biosynthesis and its
activity is proportional to the production rate of tryptophan. In Fig. 3.15,
the dash-dot lines give the model responses according to the three different
experimental setups. As shown in the figure, the steady-state values are close
to the experimental data but there are large discrepancies in the transient dy-
namics. This leaves open the question: is this discrepancy simply a result of
an incorrect choice of parameters in the model, or are the underlying assump-
tions on which the model is constructed (its structure) a poor representation
of the biological reality? In the next section, we show how global optimisation
can be used to at least partially resolve this issue.

3.7.3 Model analysis using global optimisation

For each set of experimental data, we formulate an optimisation problem to
minimise the square sum of errors between the dynamics of the active enzyme
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concentration produced by the model and the experimental data as follows:

min
p

J =

N
∑

j=1

|x̄(tj)− ˜̄x(tj)|2 (3.52)

where p is the set of parameters in the model, ˜̄x(tj) is the experimental mea-
surement at time tj , and x̄(tj) is the model response at time tj . This nonlinear
and nonconvex optimisation problem is solved using a hybrid Genetic Algo-
rithm based on the one developed in [51] for each of the three different sets of
experimental data. The results are shown in Fig. 3.15 and Table 3.4. As can
be seen from the figure, while the original model shows quite a poor agreement
with the data, the optimised model is able to almost exactly reproduce the
responses of the in vitro system for each different experiment. Importantly,
the optimal model parameters are also all within biologically plausible ranges.
Although these results are obviously very far from being a comprehensive vali-
dation of the proposed model, they do show that the proposed model structure
can accurately reproduce the experimentally measured behaviour, hence mak-
ing the assumptions on which the model is based a plausible explanation of
the biological processes involved.
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4

Negative feedback systems

4.1 Introduction

Negative feedback is a powerful mechanism for changing and controlling the
dynamics of a system. Through the expert use of this type of feedback, control
engineers are able to manipulate the dynamics of a huge variety of different
systems, so that they behave in a way that is desirable and efficient from the
point of view of the user, [1, 2, 3]. In biological systems, evolutionary pres-
sures have led to the use of negative feedback for a wide variety of purposes,
including homeostasis, chemotaxis, adaptation and signal transduction. As
shown in Fig. 4.1, the principle of negative feedback is extremely simple: a
feedback loop is closed around a system G and the measured output of the
system y is compared to its desired value r. The resulting error signal e is
acted on by a controller K, which generates an input signal u for the system
which causes its output to move towards its desired value. Note that, depend-
ing on the type of system, and the level of control required, the controller K
could be as simple as a unity gain or as complex as a high-order nonlinear
dynamical system. Consider, for example, a simple first-order system G(s)

K G
+

-

Σ

r(t) u(t) y(t)e(t)

FIGURE 4.1: Negative feedback control scheme.

which has a time constant of 3 seconds and a system gain of 10:

Y (s) = G(s)U(s); G(s) =
10

3s + 1
(4.1)

121
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The response of this system to a step input U(s) = 1/s is shown in Fig. 4.2,
and as expected, the system takes 3 seconds to reach 63% of its final value.
Suppose the response of the system is now required to be much faster than
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FIGURE 4.2: Step responses of G(s) = 10/(3s+1) with and without feedback
control.

this - the time constant can be changed by placing a simple static controller
with gain K in series with the system and ”closing the loop” using negative
feedback, as shown in Fig. 4.1. The open-loop transfer function (i.e. the
transfer function from R(s) to Y (s) without any feedback) for the system is
now given by L(s) = KG(s) = 10K/(3s + 1) while the closed-loop transfer
function from R(s) to Y (s) is given by

T (s) =
L(s)

1 + L(s)
=

10K

3s + 1 + 10K
(4.2)

The time constant of the system has now changed and is dependent on the
value of K. To see this, we divide by 1+10K to get a unit constant coefficient
on the denominator:

T (s) =
10K

1+10K
3

1+10K s + 1
(4.3)

Thus the gain and time constant of the closed loop system are now given by
10K

1+10K and 3
1+10K , respectively. Incorporating even a modest value of, say,
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2.9 for the gain K thus results in a dramatically faster response of the system,
which now has a time constant of 0.1 seconds and responds to a step change
in R as shown in Fig. 4.2.

At this point the reader might be tempted to ask: if the aim is to produce
a required type of dynamic response, why not just place a controller in series
with the system to achieve that response, rather than going to the trouble of
using feedback? Indeed, if the dynamics of the system were precisely known
(and not subject to any variation), and the system operated in a vacuum con-
taining no external disturbances, then there would be no need to use feedback
control. This is never the case, however, and as we shall see later in this
chapter, it is the ability of feedback to generate insensitivity (“robustness”)
in the response of systems to variations and disturbances that leads engineers
(and bacteria) to use it.

Are there any limitations to the type of dynamics that can be imposed on a
particular system by exploiting the power of feedback? The answer, of course,
is that there are, and indeed the study of these fundamental limitations has
kept control theorists busy for many decades. In the case of the system above,
for example, we can see that while both the steady-state gain and the time
constant of the closed loop system can be set by choosing an appropriate value
for the controller gain K, these two characteristics cannot be adjusted inde-
pendently (at least using this type of simple controller). As another example,
consider the system

G(s) =
100

s2 + 8s + 10
(4.4)

This system has the step response shown in Fig. 4.3, with a steady-state gain of
10 and a rise time of 1.5 seconds. Suppose now that it is required to lower the
gain of this system so that it no longer amplifies input signals (gain of 1) and
that we again require a significantly faster response. This can be achieved by
placing a simple static controller K, this time with a gain of 20, in a negative
feedback loop around the system, as shown in Fig. 4.1. The resulting closed
loop step response, shown in Fig. 4.3, delivers unity steady-state gain with a
much faster rise time of 0.02 seconds, however the response is now also much
more oscillatory, with a significant initial overshoot. Worse still, if even a
very small time-delay of 5 milliseconds is included in the feedback loop, as
shown in Fig. 4.4, the closed loop response of the system actually becomes
unstable (Fig. 4.3). The above example illustrates a fundamental point about
the use of feedback: its power to radically change (and even destabilise) a
system’s dynamics makes it a potentially dangerous strategy for achieving
control. The precise way in which biological systems have evolved to guard
against the potentially dangerous effects of feedback is only just starting to
be elucidated in recent Systems Biology research. Potentially of even more
importance for medical applications is to understand how such safeguards
sometimes fail, since the resulting unstable behaviour is postulated to be at
the root cause of many diseases, e.g. uncontrolled growth of tumour cells.
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FIGURE 4.3: Step responses of G(s) = 100/(s2+8s+10), G(s) under feedback
control, and G(s) under feedback control with time delay.

e 
-0.005s G(s)=

+

-

Σ

r(t) u(t) y(t)e(t)
100

s2+8s+10
K

FIGURE 4.4: Negative feedback control scheme with time delay.

In later sections of this chapter we will return to explore the potential
uses and fundamental limitations of negative feedback in more detail. First,
however, we provide some basic tools for evaluating the stability of feedback
loops. In order to make the exposition as clear as possible we will focus on
linear systems, discussing limitations and extensions of the results to the case
of nonlinear systems as appropriate.
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4.2 Stability of negative feedback systems

In this section, we introduce an important tool for determining the stability
of linear feedback systems - Nyquist’s Stability Criterion. In contrast to the
tests for stability described in previous chapters, this criterion allows us to gain
meaningful insight into the degree of stability of a feedback control system,
and paves the way for the introduction of notions of robustness which will be
further developed in later chapters. Nyquist’s Stability Criterion is based on
a result from complex analysis known as Cauchy’s principle of the argument
which may be stated as follows:
Let F (s) be a function which is differentiable in a closed region of the complex
plane s except at a finite number of points (namely, the poles of F (s)). Assume
also that F (s) is differentiable at every point on the contour of the region.
Then, as s travels around the contour in the s-plane in the clockwise direction,
the function F (s) encircles the origin in the (Re{F (s)},Im{F (s)})-plane in
the same direction N times, where N = Z − P and Z and P are the number
of zeros and poles (including their multiplicities) of the function inside the
contour.
The above result can be also written as arg{F (s)} = (Z−P )2π = 2πN which
explains the term “principle of the argument”.

Now consider a closed-loop negative feedback system

T (s) =
G(s)

1 + G(s)K(s)

where G(s) represents the system and K(s) is the feedback controller. Since
the poles of a linear system are given by those values of s at which its transfer
function is equal to infinity, it follows that the poles of the closed-loop system
may be obtained by solving the following equation

1 + G(s)K(s) = D(s) = 0

This equation is known as the characteristic equation for the closed-loop sys-
tem. Thus the zeros of the complex function D(s) are the poles of the closed-
loop transfer function. In addition, it is easy to see that the poles of D(s)
are the zeros of the closed-loop system T (s). Nyquist’s Stability Criterion
is obtained by applying Cauchy’s principle of the argument to the complex
function D(s), as follows.

The Nyquist plot is a polar plot of the function D(s) as s travels around
the contour given in Fig. 4.5. Note that the contour in this figure covers the
whole unstable half (right hand side) of the complex plane s, in the limit
as R → ∞. Since the function D(s), according to Cauchy’s principle of the
argument, must be analytic at every point on the contour, any poles of D(s)
on the imaginary axis must be encircled by infinitesimally small semicircles, as
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shown in Fig. 4.5. We are now ready to state the Nyquist Stability Criterion:
The number of unstable closed-loop poles is equal to the number of unstable
open-loop poles plus the number of encirclements of the origin by the Nyquist
plot of D(s).
This result follows directly by applying Cauchy’s principle of the argument to
the function D(s) with the s-plane contour given in Fig. 4.5, and noting that

1. Z and P represent the numbers of zeros and poles, respectively, of D(s)
in the right half plane, and

2. the zeros of D(s) are the closed-loop system poles, while the poles of
D(s) are the open-loop system poles (closed-loop system zeros).

A slightly simpler version of the criterion may be stated if, instead of using
the function D(s) = 1+G(s)K(s), we draw the Nyquist plot of the open-loop
transfer function L(s) = G(s)K(s) and then count encirclements of the point
(−1, j0), rather than the origin. This gives the following modified form of the
Nyquist criterion:
The number of unstable closed-loop poles (Z) is equal to the number of unstable
open-loop poles (P) plus the number of encirclements (N) of the point (−1, j0)
by the Nyquist plot of L(s) = G(s)K(s), i.e.

Z = P + N

From the above, it is clear that a stable closed-loop system can only become
unstable if the number of encirclements of the point (−1, j0) by the Nyquist
plot changes. From this observation, we can define two important measures
of robust stability, i.e. measures of the amount of uncertainty required to
destabilise a stable closed-loop system, based on the the closeness with which
the Nyquist plot passes to the point (−1, j0). For example, in the case of an
open-loop stable system, closed-loop stability requires that the Nyquist plot
of L(s) does not encircle the point (−1, j0), i.e. that it crosses the negative
real axis at a point between the origin and -1. As shown in Fig. 4.6, we can
thus define the Gain and Phase Margins for the system as:

Gain Margin GM = 20 log
1

|L(jωcp)|
[dB]

Phase Margin PM = 180◦ + arg{L(jωcg}
where ωcp is the phase crossover frequency, i.e. the frequency at which the
phase of L(jω) = 180◦, and ωcg is the gain crossover frequency, i.e. the
frequency at which the gain of L(jω) = 1. These margins provide measures of
the amount of uncertainty in system gain and phase which can be tolerated
by the closed-loop system before it loses stability. The Phase Margin also
provides a measure of robustness to time delays in the feedback loop. This
can be appreciated by noting that a time delay term e−τds has unity gain
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and phase equal to −ωτd rads/s. Thus, for example, a closed-loop system
with a PM of 35◦ (or 35π

180 = 0.6109 rads) can tolerate an additional time
delay of τd = 0.6109/ωcg before losing stability. This also explains the lack
of robustness of the system shown in Fig. 4.3 to even very small amounts of
time-delay. The phase margin of this system is only 10.2◦ or 0.1780 rads,
with ωcg = 44.5 rads. Thus the maximum amount of time-delay which may
be tolerated in the closed-loop system is 0.178/44.5 = 0.004, and a time delay
of 5ms causes instability as shown.

r→0

R→∞ 

Im(s)

Re(s)

FIGURE 4.5: Nyquist contour in the s-plane.

Adequate Gain and Phase Margins represent minimal requirements for
robust stability in feedback systems - typical values required in traditional
control engineering applications are 6 dB of Gain Margin and 35◦ of Phase
Margin. Their limitations as robustness measures are by now also widely
recognised, however, among the most important of which are:

• Gain and Phase Margins do not measure robustness to simultaneous
changes in system gain and phase, i.e. when calculating GM, the phase
of the system is assumed to be perfectly known, and vice versa.

• In systems with multiple feedback loops Gain and Phase margins can
be calculated for each loop one at a time, but may give unreliable re-
sults, since they do not take into account cross-coupling effects between
different feedback paths.

• Finally, Gain and Phase Margins are defined for LTI systems, and do
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Pm

1/Gm

(-1,j0)
•

(0,-j)

•

•
Re

Im

L(jω)

FIGURE 4.6: Nyquist plot with Gain and Phase Margins.

not take into account the potential destabilising effects of nonlinear or
time-varying dynamics in feedback systems.

The above considerations have motivated the development of many more so-
phisticated robustness measures in recent control engineering research, and in
Chapter 6 we provide more details of several of these tools, and their appli-
cation in the context of Systems Biology.

4.3 Performance of negative feedback systems

After discussing the stability of negative feedback systems, we now focus on
the analysis of their performance, i.e all those properties that determine the
effectiveness of the closed-loop system response. Performance indices typically
used in control engineering include

a) steady-state error of the output with respect to the reference signal;

b) response speed, measured in terms of rise time, settling time and band-
width of the frequency response (see Section 2.8);

c) capability to reject disturbances;

d) amplitude and rate of variation of the control input signal required.
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These characteristics can be analysed by studying the transfer functions
between the exogenous inputs (reference signals r(t) and disturbances d(t))
and the variables of the system influenced by these inputs (control inputs u(t),
error signals e(t) and controlled outputs y(t)).

C(s) G(s)
+

-

ΣC(s) G(s)Σ
+

+

d(t)

r(t)

L(s)

u(t) y(t)e(t)

FIGURE 4.7: Block diagram of the classical negative feedback control loop.

Thus, with reference to the control scheme shown in Fig.4.7, it is useful to
define the following transfer functions:

• Sensitivity Function

S(s) =
1

1 + G(s)K(s)
, (4.5)

• Complementary Sensitivity Function

T (s) =
G(s)K(s)

1 + G(s)K(s)
(4.6)

• Control Sensitivity Function

Q(s) =
K(s)

1 + G(s)K(s)
(4.7)

The following relations link the Laplace transform of the input and output
variables

Y (s) = T (s)R(s) + S(s)D(s) (4.8a)

U(s) = Q(s)R(s)−Q(s)D(s) (4.8b)

E(s) = S(s)R(s)− S(s)D(s) (4.8c)

Note carefully that, without feedback control, there is no way that the effect of
disturbance signals d(t) on the output of the system y(t) could be attenuated,
no matter what changes were made to the system G(s). Indeed, to obtain a
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perfect tracking of the reference signal, r(t), along with a perfect rejection of
the disturbance, d(t), the conditions

T (jω) = 1 (4.9)

S(jω) = 0 (4.10)

should be ideally satisfied for all values of ω. Under these conditions, however,
the relation Q(s) = G(s)−1T (s) yields Q(s) = G(s)−1. Since in practice G(s)
is always such that when s→∞, G(s)→ 0 , we have that Q(s)→∞. Hence,
the control effort, i.e. the size of the control input signal, required to provide
perfect tracking and disturbance rejection increases with frequency and even-
tually becomes unbounded. In physical systems, this relation places serious
limits on the performance of feedback systems, since there are always practical
limitations on the size (and rate of change) of control input signals (e.g. limits
on the angular position and velocity of an aircraft rudder place limitations
on the frequency of pilot reference inputs which may be tracked, and wind
gust disturbances which may be attenuated, by the flight control system). In
biological systems, changes in the concentrations of certain molecules, or in
drug doses, will also be intrinsically limited by the availability of molecular
compounds, diffusion effects, toxicological effects, etc. and thus there will
always be limitations on the control performance which may be obtained.

It is also important to notice that the condition

S(s) + T (s) = 1 (4.11)

holds, and thus the frequency responses of S(jω) and T (jω) cannot be as-
signed independently. This reveals a fundamental tradeoff in the performance
of a feedback system: since the function T (s)→ 0 when s→ 0, then S(s)→ 1
and the conditions in Eq. (4.9)-(4.10) are not realisable for ω ∈ [0, +∞). More-
over, decreasing T (jω) in a given interval of ω (to limit the size of the control
input) causes an increase in the sensitivity of the system to disturbances,
S(jω), and viceversa.

For biological feedback systems, in contrast to engineered control systems,
it is sometimes difficult to make a clear distinction between the controller C(s)
and the system being controlled G(s) (although this distinction is more clear in
the context of Synthetic Biology, where one might be interested in the design
of the controller). To avoid this complication, in the following we will focus on
the open-loop transfer function L(s) = G(s)C(s). At this point we also make
a clear distinction between the terms “regulation” and “tracking”. Although
the term regulation is often loosely used in biology to indicate any type of
feedback control, it has a very precise meaning in the control engineering
literature, i.e. the capability of a control system to keep a controlled variable
at, or close to, the value of a constant reference input. Tracking, on the other
hand, refers to the capability of a control system to follow dynamic changes in
the reference input. When r(t) is constant (r(t) = r), the controlled variable
y(t) in a negative feedback system should reach a value equal, or at least close
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to, r after a transient time interval. To see what conditions must be satisfied
for this to occur, let us make explicit the gain and the number of poles at the
origin of the loop transfer function, by expressing it as

L(s) =
C

sn
L′(s),

with L′(0) = 1. Now consider a step reference input at time t = 0 with
amplitude r̄. The steady-state error can be computed by applying the initial
value theorem∗, which yields

ess = r̄ − lim
t→∞

y(t)

=
(

1− lim
s→0

T (s)
)

r̄

=

(

1− lim
s→0

C/sn

1 + C/sn

)

r̄ = lim
s→0

(

sn

sn + C

)

r̄ .

Hence, if L(s) has no pole at the origin (i.e. L(s) contains no integrators),
the steady-state error is

1

1 + C
r̄,

If, however, n ≥ 1, then ess = 0 regardless of the values of C or r̄ - an ex-
tremely robust level of performance! This is the basis for the use of integral
control in many industrial feedback systems. By using the controller to in-
troduce an integrator into the feedback loop, the control system acts in such
a way that the control effort is proportional to the integral of the error, and
thus perfect steady-state tracking of step changes in the reference signal can
be guaranteed. This fact can be generalised to different types of reference
signals and takes the name internal model principle: in order for the closed-
loop system to perfectly (that is with ess = 0) track an assigned reference
signal, the loop transfer function must include the Laplace transform of such
a signal. For example, if the reference signal is a ramp, r(t) = t · 1(t), it can
be readily shown that L(s) must contain at least two integrators in order to
achieve perfect tracking.

So far we have not considered the disturbance d(t), which of course affects
the regulation error as well. This effect is described by the sensitivity function,
according to Eq. (4.8a). Analogously to the regulation problem, perfect rejec-
tion of a step disturbance, d(t) = d̄1(t), requires L(s) to exhibit at least a pole
at the origin, indeed the contribution of the disturbance to the steady-state

∗The initial value theorem states that, if F (s) =
∫∞
0 f(t)e−stdt then Limt→0f(t) =

Lims→∞sF (s).
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error is

e∞ = lim
t→∞

y(t)

= lim
s→0

S(s)d̄

= lim
s→0

1

1 + C/sn
d̄ = lim

s→0

sn

sn + C
d̄ .

The arguments above can be extended to other types of signal: to completely
reject a disturbance whose Laplace transform is d̄/sn, L(s) must include at
least n poles in the origin; if the number of poles is n− 1, the final tracking
error will be equal to d̄/C.

In Chapter 2, we have seen that the dynamic behaviour of a linear system,
namely the rise time, settling time, overshoot, and oscillatory nature of the
response, are mostly determined by the poles of the transfer function. For the
closed-loop system of Fig. 4.7, taking L(s) = NL(s)/DL(s), we obtain

T (s) =
NL(s)

DL(s) + NL(s)
, (4.12)

and hence the poles are the roots of the polynomial DL(s) + NL(s). These
roots can be computed numerically or studied through the root locus method,
which we will not discuss here. However, the most simple and effective way
to gain some insight into the closed-loop dynamic behaviour is to look at the
frequency response of the loop transfer function. Assume that the frequency
response L(jω) has no unstable pole and |L(jω)| = 1 only at ωc, which will
be denoted as the critical frequency. If |L(jω)| is high at low frequencies and
rapidly decreases after the critical frequency, as in the example depicted in
Fig. 4.8, we can state the following approximations

|1 + L(jω)| ≈ |L(jω)| , ω < ωc

|1 + L(jω)| ≈ 1 , ω > ωc,

hence

|T (jω)| ≈
{

1 , ω < ωc

|L(jω)| , ω > ωc
(4.13)

The Bode diagrams of the magnitude of L(jω) and T (jω), shown in Fig. 4.8
for a typical case, confirm the validity of the approximations. Under these
assumptions, the harmonic components of the reference signal at frequencies
lower than ωc are transferred to the output almost unchanged, whereas those
beyond the critical frequency are attenuated. Therefore, the critical frequency
represents a good approximation of the bandwidth of the closed-loop system,
which is expected to exhibit a pair of complex conjugate dominant poles
around the critical frequency. Indeed, the response of the closed-loop system
can be approximately described by the transfer function

Ta(s) =
ω2

n

s2 + 2ζωns + ω2
n

, (4.14)
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FIGURE 4.8: Frequency response of a loop transfer function L(jω) (solid line)
and its corresponding complementary sensitivity function T (jω) (dashed line).

where ωn = ωc. Moreover, it is possible to show that the phase margin ϕm,
defined in Section 4.2, is linked to the damping coefficient ζ of the complex
poles by the formula

ζ = sin(
ϕm

2
). (4.15)

Transfer function (4.14) enables us to estimate the overshoot and number of
oscillations of the closed-loop system output when the reference signal under-
goes a step change. Note that Eq. (4.14) does not contain any zero; however,
Eq. (4.12) shows that the zeros of T (s) coincide with those of L(s). It is impor-
tant to take into account that low frequency zeros can significantly affect the
step response, amplifying the initial overshoot and transient oscillations. We
can also analyse the frequency response of the sensitivity function by making
the same assumptions on L(jω) as above, in order to derive the approximation

|S(jω)| ≈
{ 1

L(jω) , ω < ωc

1 , ω > ωc
(4.16)

which is confirmed by the example diagram shown in Fig. 4.9.
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FIGURE 4.9: Frequency response of a loop transfer function L(jω) (solid
line) and its corresponding sensitivity function S(jω) (dashed line).

4.4 Fundamental tradeoffs with negative feedback

A recurrent theme in control systems research is the attempt to characterise
fundamental limitations or tradeoffs between conflicting design objectives,
since such information is invaluable to an engineer who is attempting to si-
multaneously satisfy many different stability and performance specifications.
The identification of such properties in cellular networks could also provide
deep insights into the design principles underlying the functioning of many
different types of biological systems. In this section, we provide examples of
some fundamental tradeoffs which hold exactly for linear negative feedback
systems, and are likely to hold at least approximately for more general classes
of systems.

One fundamental tradeoff which holds for negative feedback systems has
already been given as Eq. 4.11 in the previous section. Consideration of the
“shape” of the loop transfer function L(s) provides further insight into the
tradeoff between stability and performance in negative feedback systems. As
discussed in the previous section, for accurate tracking of reference signals
and good rejection of disturbances, |L| should be large over the bandwidth
of interest for the system. However, since the gain of most systems decreases
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at high frequency, large values of |L| at high frequency requires very large
controller gains, and hence large, high-frequency control signals. Such signals
are very difficult and/or expensive to generate - in a physical system, such
as an aircraft rudder, they would require the use of very powerful, high per-
formance servomotors, while in a cell, the generation of large, high-frequency
fluctuations in molecular concentrations would be likely to impose a heavy
energy load on the organism. For this reason, the magnitude of L is usually
required to “roll-off” to a low value, above a certain critical frequency, as
shown in Fig. 4.8. So far, so good, since all of the above requirements can be
captured by making |L| very large at low frequencies and very small at high
frequencies. Unfortunately, the resulting need to make |L| roll-off steeply at
frequencies near the crossover region (frequencies between where |L| = 1 and
∠L = −180◦) is not compatible with ensuring closed-loop stability, [3]. This
is because the amount of phase-lag in L is directly related to its rate of roll-off.
For example, consider a loop transfer function of the form L = 1/sn. In this
case, the value of |L| drops by 20× n dB when ω increases by a factor of 10.
However, the phase associated with L is given by ∠L = −n× 90◦. Thus if we
wish to preserve a a phase margin of 45◦, then we need that ∠L > −135 and
thus n should not exceed 1.5.

Another fundamental constraint on the performance of negative feedback
systems, known as The Area Formula relates to the magnitude of the sensi-
tivity function S = 1/(1 + L) at different frequencies, [4, 5]. Under the mild
assumption that the relative degree (degree of the denominator minus degree
of the numerator) of L(s) is at least 2, the area formula gives that

∫ ∞

0

log|S(jω)|dω = π(log e)
(

∑

Re pi

)

where pi are the unstable poles of L. Consider, for example, the system

G(s) =
1

(s + 1)(s + 2)

with a negative feedback controller K(s) = 10. The open-loop transfer func-
tion L is stable and has relative degree 2. Thus, the right hand side of the
area formula is equal to zero, and so if the sensitivity (on a log scale) is plotted
against frequency (on a linear scale), then the positive area under the graph
is equal to the negative area, as shown in Fig. 4.10. Thus, the improvement
in tracking and disturbance rejection at some frequencies obtained by making
S small must be paid for at others, where the effect of the feedback controller
is actually to decrease the performance of the system. Of course, in the case
of open-loop unstable systems, the situation is even worse, since there is now
more positive than negative area. As suggested in [4], an intuitive explanation
for this is that some of the feedback is being “used-up” in the effort to shift
unstable poles into the left-half plane, and thus there is less available for the
reduction of sensitivity. Alert readers will by now probably have thought of
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FIGURE 4.10: Illustration of The Area Formula

a “get-out clause” for the area formula: since only a conservation of area is
required, why not pay for large reductions in sensitivity at some frequencies
by making an arbitrarily small increase in |S| spread over an arbitrarily large
frequency range? Unfortunately, if the bandwidth of L is limited (and in re-
ality it always is), then this is not possible, [6]. For example, if the open-loop
bandwidth must be less than some frequency ω1 (where ω1 > 1), such that

|L(jω)| < 1

ω2
, ∀ ω ≥ ω1

then for ω ≥ ω1

|S| ≤ 1

1− |L| <
1

1− ω−2
=

ω2

ω2 − 1

and hence
∫ ∞

ω1

log|S(jω)|dω ≤
∫ ∞

ω1

log
ω2

ω2 − 1
dω

The integral on the right-hand side of the above equation is finite, [6, 5], and
so the available positive area at frequencies above ω1 is limited. Thus, if |S|
becomes smaller and smaller over some part of the frequency range from zero
to ω1, then the required positive area must eventually be generated by making
|S| large at some other frequencies below ω1.

In this section, we have provided only a few simple examples of the many
different limitations which can be shown to apply to negative feedback sys-
tems in certain situations. Our analysis has been restricted to simple linear
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systems, and the reader might be entitled to question whether this type of
analysis holds in general for biological systems. Two points need to made
here. The first is that results which hold for linear systems generally also hold
for nonlinear systems when the deviations from the steady-state are small.
Secondly, the type of analysis approach proposed here is extremely powerful
because it provides hard bounds on system behaviour, and so can be used
to investigate the limits on performance of biological control systems. More
generally, Systems Biology research is increasingly clarifying the crucial role
of negative feedback in determining biological behaviour, and highlighting the
similarities of such systems to engineered control systems. To take just one
recent example, a study of the effects of negative feedback on three-tiered
kinase modules in the MAPK/ERK pathway showed that the system reca-
pitulates the design principles of a negative feedback amplifier, which is used
in electronic circuits to confer robustness, output stabilisation, and lineari-
sation of nonlinear signal amplification, [7]. Directly analogous properties
were observed in the biological behaviour of the MAPK/ERK as a result of
negative feedback, which (i) converts intrinsic switch-like activation kinetics
into graded linear responses, (ii) conveys robustness to changes in rates of
reactions within the system, and (iii) stabilises outputs in response to drug-
induced perturbations of the amplifier.
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4.5 Case Study V: Analysis of stability and oscillations

in the p53-Mdm2 feedback system

Biology background: Tumor suppressor genes protect a cell from one
step on the path to cancer. When such genes are mutated to cause a loss
or reduction in their function, the cell can progress to cancer, usually in
combination with other genetic changes. Whereas many abnormal cells
usually undergo a type of programmed cell death (apoptosis), activated
oncogenes can instead cause these cells to survive and proliferate. Most
oncogenes require an additional step, such as mutations in another gene, or
environmental factors, such as viral infection, to cause cancer. Cells which
experience stresses such as DNA damage, hypoxia, and abnormal onco-
gene signals activate an array of internal self-defense mechanisms. One
of the most important of these is the activation of the tumor suppressor
protein p53, which transcribes genes that induce cell-cycle arrest, DNA
repair, and apoptosis. p53 transcriptionally activates the Mdm2 protein
which, in turn, negatively regulates p53 by both inhibiting its activity as
a transcription factor and by enhancing its degradation rate.
The negative feedback loop formed by p53 and Mdm2 also includes signif-
icant time-delays arising from transcriptional and translational processes,
and as a result can produce complex oscillatory dynamics. Oscillations
of p53 and Mdm2 protein levels in response to ionising radiation (IR)-
induced DNA damage appear to be damped in assays that measure aver-
ages over population of cells. Recent in vivo fluorescence measurements
in individual cells, however, have shown undamped oscillations of p53 and
Mdm2 lasting for at least 3 days. Although the oscillations are initially
synchronised to the gamma irradiation signal, small variations in the tim-
ing of these oscillations inevitably arise due to stochastic variations across
individual cells, causing the peaks to eventually go out of phase and thus
the p53 and Mdm2 dynamics to appear as damped oscillations in assays
over cell populations, [8].
Intriguingly, single-cell measurements in experiments with varying levels
of IR have also revealed that increased DNA damage produces (on aver-
age) a greater number of oscillations, but has no effect on their average
amplitude or period. The precise biological purpose of this “digital” type
of response still remains to be fully elucidated, but one theory is that
the oscillations of p53 may act as a timer for downstream events - genes
inducing growth arrest (e.g. p21) are rapidly expressed during the first
oscillation of p53, whereas proapoptotic p53 target genes such as Noxa,
Puma, or Bax are gradually integrated over multiple cycles of p53 pulses,
ratcheting up at each pulse until they reach a certain threshold value that
activates apoptosis, [9].
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FIGURE 4.11: Biochemical interactions between p53 and Mdm2.

A block diagram of the p53-Mdm2 interactions is depicted in Fig. 4.11. Let-
ting x1 and x2 represent the concentrations of p53 and Mdm2, the interaction
dynamics can be approximated by the model

ẋ1 = β1 x1 − α12 x1 x2 (4.17a)

ẋ2 = β2 x1(t− τ)− α2 x2 (4.17b)

which is based on the models presented in [8], with the parameter values
given in Table 4.1. The dynamics of the intermediate biochemical reactions
occurring after a change in the concentration of p53 are neglected so that
only the final effect on the concentration of Mdm2 is considered. Therefore,
the intermediate steps are represented in the model by means of a pure time
delay τ . The presence of such a time delay can produce oscillations in the
system response, as has been verified by experimental observations. On the
other hand, the system does not oscillate for small values of τ . Thus, it is
interesting to establish what is the minimum value of time delay for which
the system exhibits undamped (or at least prolonged) oscillations.

An answer to this question can be found by applying tools from linear sys-
tems analysis, in particular the concept of phase margin, which was described
in Section 4.2. Since system (4.17) is nonlinear, in order to apply this tool,
we must derive a linearised model around an equilibrium point. By imposing
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TABLE 4.1

Parameters values for system (4.17).

Parameter Value Unit Description

β1 2.3 h−1 Self-induced generation rate
coefficient for p53

β2 24 h−1 p53-induced generation rate
coefficient for Mdm2

α12 120 x−1
2maxh

−1 Mdm2 degradation rate coefficient

α2 0.8 h−1 Mdm2-induced degradation rate
coefficient for p53

ẋ1 = 0, ẋ2 = 0 we get the equilibrium point

x̄1 =
α2β1

α12β2
, x̄2 =

β1

α12
.

Thus, the linearised system is given by

˙̃x1 = (β1 − α12x̄2) x̃1 − α12x̄1 x̃2 (4.18a)

˙̃x2 = β2 x̃1 − α2 x̃2 (4.18b)

where x̃i = xi − x̄i for i = 1, 2. Now, we have seen in Section 4.2 that closed-
loop stability can be inferred from the frequency response of the open-loop
transfer function. The open-loop linearised system is obtained by deleting the
feedback of x̃2 and substituting it with an input signal ũ in the first equation,
which yields

˙̃x1 = (β1 − α12x̄2) x̃1 + α12x̄1 ũ (4.19a)

˙̃x2 = β2 x̃1 − α2 x̃2 (4.19b)

Note that the term containing the input ũ is positive, because the minus sign
is already included in the negative feedback scheme. The frequency response
L(jω) of system (4.19), given in Fig. 4.12, shows that the Phase Margin is
equal to 32.7◦ = 0.57 rad at ωc = 1.24 rad/s. Now recall that the maximum
time delay the system can tolerate before losing stability can be computed
as PM/ωc = 0.57/1.24 = 0.46 hours. This value can only be expected to
be an approximate threshold, since it has been derived from a linear approx-
imation of the nonlinear system: however, the smaller the perturbation from
the equilibrium condition, the better the approximation will be. To test the
validity of the computed delay threshold, we simulate the nonlinear system
starting from the equilibrium condition and then inject a perturbation, by
summing a square pulse signal d̃(t) = d̄ (1(t)− 1(t− T )) to x2, for a number
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of different values of the time delay τ . Fig. 4.13 reports the time response
of the nonlinear system for d̃ = x̄2/8, T = 10 h (for better visualisation, the
pulse perturbation is applied at time t = 10 h): it is clearly visible that the
analysis conducted on the linearised system holds also for the nonlinear sys-
tem, at least for a moderate perturbation of the state from the equilibrium
condition. For τ < 0.46 the oscillations induced by the perturbation dampen
out, for τ = 0.46 they exhibit a constant amplitude, whereas for τ > 0.46 the
oscillation is unstable. Note that, in the latter case the oscillation amplitude
does not grow unboundedly, but the system trajectory reaches a limit cycle
(see Section 5.2).
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system (4.19).
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4.6 Case Study VI: Perfect adaptation via integral feed-

back control in bacterial chemotaxis

Biology background: Bacteria are constantly searching for sources
of nutrients and trying to escape from locations containing harmful com-
pounds. Bacteria like E.coli have an intricate locomotion system: each
cell is endowed with several flagella, which can rotate clockwise (CW) or
counter-clockwise (CCW). When rotating CCW the flagella are aligned
into a single rotating bundle, therefore producing a movement along a
straight line; CW rotation, on the other hand, causes unbundling of the
flagella to create an erratic motion called a tumble. By alternating the
rotational direction of the motor, E. coli swim through their environment
in a sort of random walk. However, when a nutrient (e.g. aspartate) is
sensed by the bacteria’s membrane receptors, the random walk becomes
biased toward the concentration gradient of the nutrient. This bias is
achieved through controlling the length of time spent in CW and CCW
rotation: when a bacterium recognises a change in the concentration of
a nutrient, a signaling pathway is activated that eventually results in a
prolonged period of CCW rotation. The same mechanism can be applied,
by simply reversing the functioning logic, to flee from toxic compounds
(e.g. phenol).
A key feature of this system is that the bacterium is very sensitive to
changes in the concentration of the nutrient, but soon becomes insensi-
tive to steady-state concentration levels. This is a sensible strategy, since
if the surrounding environment contains a constant (either low or high)
concentration of the nutrient, then there is no reason to swim in a par-
ticular direction. This property, which is very commonly encountered in
biological sensing subsystems, is often referred to as desensitisation or
perfect adaptation. It is the same mechanism, for example, that makes
our olfactory system adapt to a constant odorant molecule concentration,
eventually filtering it out.
The signaling pathway that underlies chemotaxis in E. coli has been thor-
oughly studied since the 1970’s, [10, 11]. More recent studies have pre-
cisely characterised the bacterial perfect adaptation mechanism, using a
mixture of computational modelling and experimental validation, [12, 13].
Furthermore, the results obtained using feedback control theory in [14]
showed that the perfect adaptation encountered in bacterial chemotaxis
stems from the presence of integral action in the signaling control scheme.
This finding accounts for the high robustness of the chemotactic mecha-
nism against large variations in molecular concentrations and environmen-
tal noise. Integral feedback has also been observed as a recurring motif in
other biological systems that exhibit perfect adaptation, e.g. in calcium
homeostasis [15].
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The sensing of chemical gradients by bacteria is mediated by transmem-
brane receptors, called methyl-accepting chemotaxis proteins (MCP). The
binding of ligands to these MCP activates an intracellular signalling path-
way, mediated by several Che proteins. The histidine kinase CheA is
bound to the receptor via the adaptor protein CheW. CheA phosphory-
lates itself and then transfers phosphoryl groups to CheY. Phosphorylated
CheY (CheY-P) diffuses in the cell, binds to the flagellar motors and in-
duces CW rotation (cell tumbling). When an attractant binds to the MCP,
the probability of the receptor being in the active state is decreased, along
with the phosphorylation of CheA and CheY, eventually leading to a CCW
flagellar rotation (straight motion). The probability of the chemorecep-
tors being active is also increased/decreased by adding/removing methyl
groups, which is done by the antagonist regulator proteins CheR and
CheB-P, respectively. CheB, in turn, is activated by CheA, by taking from
the latter a phosphoryl group. The basic mechanism, which is captured by
the computational model in [12], is that an increase in the ligand concen-
tration is compensated for by increasing the methylation level. Since the
two mechanisms have different time constants, the return to the original
equilibrium requires a certain time interval. During this time interval, the
system produces a transient response, corresponding to a reduction of the
tumbling rate in favor of straight motion.

In the following, we present the mathematical model of bacterial chemo-
taxis developed in [12] and explain how it exhibits an integral feedback con-
trol structure, following the analysis in [14]. Additionally, we will show how
the integral feedback property is crucially related to the biochemical assump-
tion that the action of the methylation enzyme CheR is independent of the
chemoattractant level.

4.6.1 A mathematical model of bacterial chemotaxis

The state variables and parameters included in the model are defined in Ta-
bles 4.2 and 4.3, [12]. When the number of methylation sites M = 4, the model
comprises 26 state variables. Note that the concentration of the chemoattrac-
tant ligand, L, represents an exogenous input, whereas the concentrations of
CheBP and CheR are assumed to be constant. The latter assumption is justi-
fied by the fact that methylation and demethylation are enzymatic reactions,
in which the enzymes are not transformed.

The probability that a receptor is in its active state increases with the
addition of methyl groups, whereas it is reduced by the binding of chemoat-
tractant. The activation probability values are αu

0 = 0, αu
1 = 0.1, αu

2 = 0.5,
αu

3 = 0.75, αu
4 = 1 for unoccupied receptors and αo

0 = 0,, αo
1 = 0, αo

2 = 0.1,
αo

3 = 0.5, αo
4 = 1 for occupied ones, where the subscript indicates the methy-

lation level. Note that the unmethylated receptors are assumed to be always
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FIGURE 4.14: Chemotaxis regulation in response to variations in the con-
centration of chemoattractant.

in the inactive state.
The reactions considered in the model are

Ē⋆
m (E⋆

m) + B
ab(a

′

b)−−−−⇀↽−−−−
db

{E⋆
mB} kb−→ E⋆

m−1, m = 1, . . . , M (4.20a)

Ē⋆
m (E⋆

m) + R
ar(a′

r)−−−−⇀↽−−−−
dr

{E⋆
mR} kr−→ E⋆

m+1, m = 0, . . . , M − 1 (4.20b)

Eu
m + L

kl−−⇀↽−−
k−l

Eo
m, m = 0, . . . , M. (4.20c)

The association kinetic constants of CheBP, CheR with the receptor complex
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TABLE 4.2

State variables of the chemotaxis model (4.20).

State variable Description

Eu
m Receptor complex (MCP+CheW+CheA),

with m = 0, . . . , M methyl groups,
unoccupied by chemoattractant

Eo
m Receptor complex (MCP+CheW+CheA),

with m = 0, . . . , M methyl groups,
occupied by chemoattractant

{E⋆
mB} Receptor complex bound to CheBP

(⋆ can be u or o)

{E⋆
mR} Receptor complex bound to CheR

(⋆ can be u or o)

are ab, ar for the active form Ē⋆
m and a′

b, a′
r for the inactive form E⋆

m, respec-
tively. A key assumption in this model is that CheB can only associate with
active receptors, denoted by Ē⋆

m, and thus we assume a′
b = 0. Violation of this

assumption affects the capability of the system to provide perfect adaptation,
as will be demonstrated later. On the contrary, CheR can associate with both
active and inactive receptors.

With respect to the schematic diagram of the overall system shown in
Fig. 4.14, the mathematical model does not consider two mechanisms: a)
the phosphorylation of CheY and its dephosphorylation by CheZ, and b) the
spontaneous dephosphorylation of CheB and its phosphorylation by active
CheA. These two subsystems are neglected in order to alleviate the compu-
tational burden and to focus the analysis on the regulatory mechanism that
yields perfect adaptation. Mechanism a), indeed, acts as a transduction sub-
system, by communicating the activation level to the flagellar motor, through
the protein CheYP. Note that it is not involved in any feedback loop and it can
therefore be neglected in the analysis. Mechanism b), however, is implement-
ing a feedback action: when the activation level increases, the concentration
of CheBP increases as well, yielding a higher demethylation rate and, thus,
counteracting the rise in the concentration of active receptors. Although this
feedback action clearly plays an important role in the chemotaxis control sys-
tem, it has been shown experimentally in [13] that it is not responsible for
perfect adaptation, and therefore it is also neglected in our analysis.

By applying the law of mass action it is straightforward to translate Eq. (4.20)
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into a set of differential equations, e.g.

dEo
1

dt
=− ab αo

1 Eo
1 CheBP − a′

b (1− αo
1)Eo

1 CheBP + db {Eo
1B}+ kb {Eo

2B}
− ar αo

1 Eo
1 CheR− a′

r (1− αo
1)Eo

1 CheR + dr {Eo
1R}+ kr {Eo

0B}
+ kl E

u
1 L− k−lE

o
1 , (4.21)

where X denotes the concentration of species X.

TABLE 4.3

Parameters of the chemotaxis model (4.20) with perfect
adaptation.

Parameter Value Unit Parameter Value Unit

ab 800 1/(s µM) dr 100 1/s

db 1000 1/s kr 0.1 1/s

kb 0.1 1/s kl 1000 1/(s µM)

ar 80 1/(s µM) k−l 1000 1/s

a′
r 80 1/(s µM) a′

b 0 1/(s µM)

As demonstrated by the simulation results shown in Fig. 4.15, this model
does indeed exhibit the perfect adaptation property encountered in wet lab
experiments. However, the complexity of the model hampers the compre-
hension of the mechanisms underpinning such behaviour. To elucidate these
mechanisms more clearly, we must analyse in more detail the dynamics of the
methylation/demethylation process.

4.6.2 Analysis of the perfect adaptation mechanism

The mechanism through which the system achieves perfect adaptation to
changes in the ligand concentration cannot be seen explicitly from the re-
action scheme in Fig. 4.14. At equilibrium, the rates at which receptors are
being methylated and demethylated are equal. Recall that demethylation is
assumed only to happen to activated receptors, and increased ligand binding
decreases the probability of activation. This results in a very fast drop in
the demethylation rate, due to the fast ligand binding dynamics. Because
the methylation rate is constant, while the demethylation rate is reduced, the
methylation level increases over time until the number of activated receptors
returns to its original value and the system returns to equilibrium. At this
point, the demethylation rate will also have returned to its original value, and
the overall flux balance is restored. This mechanism is confirmed by the time
courses reported in Fig. 4.16 which have been generated using the same pulses
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FIGURE 4.15: Concentration of active receptors in response to pulses of
chemoattractant concentration: starting at t = 20 min, the ligand concentra-
tion is repeatedly set to a constant value for 20 minutes and then reset to zero
for another 20 minutes, using different concentration levels (1,3,5,7 µM).

in chemoattractant concentration used in Fig. 4.15. Panels A and B show the
very fast changes in the concentrations of unoccupied and occupied receptors
which result in the fast deviations from equilibrium of the active receptor
concentration shown in Fig. 4.15. Panels C and D show the (slower) changes
in the concentrations of methylated and unmethylated receptors, which act
to restore the active receptor concentration to its equilibrium value, as shown
in Fig. 4.15.

To gain further insight into this intriguing feedback control system, let us
explicitly write the balance equation for receptor methylation/demethylation,
that is

ż = kr

M−1
∑

m=0

{E⋆
mR} − kb

M
∑

m=1

{E⋆
mB} , (4.22)

where z :=
∑M

m=1 E⋆
m is the total concentration of methylated receptors. This

is not exactly the same as the total methylation level, which is actually given
by the total concentration of bound methyl groups

∑M
m=1 m ·E⋆

m. However, in
the following we use the scalar quantity z as an approximate indicator of the
methylation level, in order to avoid the use of vector notation which would
unnecessarily complicate the analysis. Since the methylation/demethylation
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FIGURE 4.16: Changes in the concentrations of unoccupied (A), occupied
(B), unmethylated (C) and methylated (D) receptors in response to 20 minute
pulses of chemoattractant concentration.

reactions are assumed to follow Michaelis-Menten kinetics, we can substitute
Ē⋆

m · CheBP /KMb for {E⋆
mB}, where KMb is the Michaelis-Menten constant

of the demethylation reaction, given by KMb = (kb + db)/ab. Regarding the
methylation rate, assuming that the protein CheR is present in small quan-
tities with respect to the receptor, we can also assume that the concentra-
tion {E⋆

m R} is almost equal to the total concentration of CheR, denoted by
CheRT . Thus, the methylation reaction constantly occurs at the maximum
rate, equal to kr CheRT , and

ż = kr CheRT − kb CheBP

KMb

M
∑

m=1

Ē⋆
m

= kr CheRT − Γ Ē, (4.23)

where Γ = kb CheBP /KMb and Ē is the activity level (total concentration of
active receptors) given by

Ē :=

M
∑

m=1

Ē⋆
m =

M
∑

m=1

αu
mEu

m +

M
∑

m=1

αo
mEo

m

Once again, to avoid having to use vector notation to represent the relative
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∫
kr CheRT

fE (·,·)

L

Γ

+

-

z· z E

FIGURE 4.17: Block diagram representation of the methyla-
tion/demethylation mechanism, showing the integral feedback control
loop.

contribution of each methylated state, we approximate Ē with the function
fE(L, z). This function depends on the ligand concentration L, because L
determines the number of receptors which are unoccupied or occupied. It also
depends on the methylation level z because z determines the relative numbers
of receptors in each methylation state. Thus Eq. (4.23) can be represented
as shown in Fig. 4.17 using the block diagram formalism, which effectively
highlights the structural presence of an integral feedback control loop.

The system is at steady-state when the concentration of methylated recep-
tors is constant, that is ż = 0, hence the active receptor concentration at
steady-state, Ēss, can be computed as

Ēss =
krCheRT

Γ

=
kr CheRT KMb

kb CheBPss

=
kr CheRT KMb

kb

(

CheBT −∑M
m=1 {E⋆

mB}ss

)

=
kr CheRT KMb

kb CheBT − kr CheRT
=

γ CheRT KMb

CheBT − γ CheRT
,

where γ = kr/kb and we have exploited the fact that, by virtue of Eq. (4.22),
at steady-state

kb

M
∑

m=1

{E⋆
mB}ss = kr CheRT .
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The expression for Ēss confirms that, as expected from our discussion of in-
tegral feedback control in Section 4.3, the concentration of active receptors at
steady-state is independent of the ligand concentration, since it is uniquely
determined by the total concentration of CheR and CheB, the constant KMb

and the ratio of the kinetic constants kr, kb in the methylation and demethy-
lation reactions.

4.6.3 Perfect adaptation requires demethylation only of ac-
tive receptors

In [12], it was recognised that the key assumption required in this model to
obtain perfect adaptation is that CheBP can demethylate only active recep-
tors. Although it has not been possible to directly confirm this assumption
experimentally, some supporting evidence for it may be found in the litera-
ture. For instance, in the face of a sudden increase of chemoattractant, the
demethylation rate has been shown to fall sharply [16],[17]. This could be
explained by the sudden reduction in the number of active MCPs, caused by
their association with the chemoattractant molecules.
Further confirmation of the necessity of this assumption can be provided by
studying how the regulatory mechanism changes when the assumption is no
longer valid. In this case, the kinetic constant a′

b for the association of CheBP

with the inactive receptor E⋆
m is no longer zero. Thus, Eq. (4.23) becomes

ż = kr CheRT − kb CheBP

KMb
Ē − kb CheBP

K ′
Mb

(

z − Ē
)

= kr CheRT − (Γ− Γ′) Ē − Γ′ z , (4.24)

where K ′
Mb = (kb + db)/a′

b and Γ′ = kb CheBP /K ′
Mb. Correspondingly, the

control structure of Fig. 4.17 modifies to the one in Fig. 4.18. This block
diagram shows that the control structure is now composed of two feedback
loops, one on the methylation level and another on the activity level. Note
that, when a′

b = ab (i.e. CheBP can associate equally well with active and
inactive receptors) then Γ = Γ′ and the activity level feedback loop vanishes.
In this case the system would not be able to counteract the effect of changes in
the ligand concentration on the activity level and only the methylation level
would be regulated. If 0 < a′

b < ab, then the lower the value of a′
b the closer

the system will be to the integral feedback structure of Fig. 4.18 and the more
effective will be the adaptation mechanism.
The above arguments are confirmed by the simulations of the response of the
system with different values of a′

b, shown in Fig. 4.19.

The case-study described above represents a striking example of how it is
possible to support a biological hypothesis by rigorous engineering arguments:
by exploiting the analysis tools of control theory, it has been possible to
confirm that the chemotactic mechanism is based on the fact that CheBP

demethylates only active receptors. In addition, we have been able to show
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∫
kr CheRT

fE (·,·)

Γ′

+ z· z

-

+

+

Γ-Γ′

L

E

FIGURE 4.18: Block diagram representation of the methyla-
tion/demethylation mechanism, assuming that CheBP can demethylate
also nonactive receptors.

that quasi-perfect adaptation can still be achieved when the demethylation of
inactive receptors occurs at a very low rate.
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5

Positive feedback systems

5.1 Introduction

As seen in the previous chapter, negative feedback control loops play an im-
portant role in enabling many different types of biological functionality, from
homeostasis to chemotaxis. When evolutionary pressures cause negative feed-
back to be supplemented with or replaced by positive feedback, other dynami-
cal behaviours can be produced which have been used by biological systems for
a variety of purposes, including the generation of hysteretic switches and oscil-
lations, and the suppression of noise. Indeed, it has recently been argued that
intracellular regulatory networks contain far more positive “sign-consistent”
feedback and feed-forward loops than negative loops, due to the presence of
hubs that are enriched with either negative or positive links, as well as to
the non-uniform connectivity distribution of such networks, [1]. In the case
studies at the end of this chapter we consider some of the types of biological
functionality which may be achieved by positive feedback. First, however, we
provide an introduction to some of the tools which are available to analyse
these types of complex feedback control systems.

5.2 Bifurcations, bistability and limit cycles

5.2.1 Bifurcations and bistability

In Chapter 3, we have seen that nonlinear systems can exhibit multiple equi-
libria, each one being (either simply or asymptotically) stable or unstable. As
can clearly be seen in Fig. 3.10, for example, the position of the equilibrium
points, along with their stability properties and regions of attraction, deter-
mine in large part the trajectories in the state space, i.e. the behaviour of the
system.

On the other hand, nonlinearity also implies that the number and location
of the equilibrium points, as well as their stability properties, vary with the
parameters values. Therefore, it comes as no surprise that the behaviour of a

155
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FIGURE 5.1: Bifurcation diagram of system (3.14).

nonlinear system might dramatically change when the value of some parameter
varies, even by a small amount: this phenomenon is called a bifurcation.

In Example 3.2, we have shown that system (3.14) can have either one or
three equilibrium points, depending on the values of the parameters r and
q. Assume, for example, that the value of q is fixed at 20 and let r increase
from 0.15 to 0.6. From Fig. 3.1 we see two bifurcation points, occurring at
r = 0.198 and r = 0.528, where the number of equilibrium points changes
from one (low value) to three and then back to one (high value).

A straightforward stability analysis, via linearisation at the equilibrium
points, reveals that the low and high-valued equilibrium points are always
asymptotically stable, whereas the middle-valued one, when it exists, is unsta-
ble. The variations in the map of equilibrium points corresponding to changes
of r can be effectively visualised by using a bifurcation diagram, in which the
equilibrium values of some state variable are plotted against the bifurcation
parameter. For example, the bifurcation diagram of system (3.14) is shown
in Fig. 5.1: the solid lines represent the asymptotically stable equilibrium val-
ues, whereas the dashed line represents the unstable one. For intermediate
values of r the system is bistable, it can evolve to the upper or lower branch
of the diagram, depending on whether the initial condition is above or below
the middle branch, respectively. The bifurcation diagram also informs us that
there is a hysteresis-like behaviour in this system: when the system’s state is
on the lower stable equilibrium branch the state jumps to the higher stable
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equilibrium branch when r is increased beyond 0.528; however, to jump back
to the lower stable condition, the value of r must drop below 0.198.

Bistability is a very important system-level property that is exhibited even
by many relatively simple signalling networks. It is the mechanism that al-
lows the production of switch-like biochemical responses, like those underly-
ing commitment to a certain fate in the cell cycle and in the differentiation
of stem cells, or the production of persistent biochemical “memories” of tran-
sient stimuli. Note that the presence of a hysteresis ensures a stable switch-
ing between the two operative conditions for the system; indeed, if the two
thresholds were coincident, the system trajectories would constantly switch
back and forth when the value of r is subject to stochastic variation around
the bifurcation point.

Bifurcations can be classified according to the type of modifications they
produce in the map of equilibrium points and in their stability properties. In
the following we give a brief overview of the most common types of bifurca-
tions, that is saddle-node, transcritical and pitchfork, confining ourselves for
simplicity to the case of first-order systems. For a comprehensive treatment
of bifurcations and their applications to biological (and other) systems, the
reader is referred to Strogatz’s classical monograph [2].

Saddle-node bifurcation. This type of bifurcation occurs when there are
two equilibrium points, one asymptotically stable and the other unstable. As
the bifurcation parameter increases, the two points get closer and eventually
collide, annihilating each other. The prototypical example of a saddle-node
bifurcation is provided by the system

ẋ = r + x2. (5.1)

A dual bifurcation can be generated by changing the sign of the nonlinear
term, that is

ẋ = r − x2. (5.2)

In the latter system, for small values of r there is a single stable equilibrium
point, but as the parameter increases suddenly two equilibrium points appear
(one asymptotically stable and the other unstable). For still higher values of
r the system returns to having a single stable equilibrium point. The diagram
in Fig. 5.1 thus exhibits two saddle-node bifurcations: as r increases, a pair
of stable/unstable equilibrium points is generated at point 2 and destroyed at
point 1.

Transcritical bifurcation. A transcritical bifurcation is characterised by
an asymptotically stable and an unstable equilibrium point, which get closer
together as the bifurcation parameter increases until they eventually collide
and then separate, in the process exchanging their stability properties. The
prototypical example of a transcritical bifurcation is provided by the system

ẋ = rx − x2. (5.3)
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FIGURE 5.2: Transcritical bifurcation diagram of system (5.3).

which yields the bifurcation diagram shown in Fig. 5.2.

Pitchfork bifurcation. A supercritical pitchfork bifurcation occurs when,
as the bifurcation parameter increases, the asymptotically stable origin be-
comes unstable and, contemporarily, two new asymptotically stable equilib-
rium points are created, symmetrically with respect to the origin. This be-
haviour is exhibited, for example, by the system

ẋ = rx − x3. (5.4)

The associated bifurcation diagram is shown in Fig. 5.3(a), whereas Fig. 5.3(b)
reports the dual case, termed a subcritical pitchfork bifurcation, which can
be obtained from the system

ẋ = rx + x3. (5.5)

5.2.2 Limit cycles

A limit cycle is an isolated closed orbit which is periodically described by the
state trajectory. The existence of periodic trajectories is not a prerogative
of nonlinear systems, indeed we have learned in Chapter 2 that oscillations
arise, for example, when a linear system possesses a pair of purely imaginary
eigenvalues. In the linear case, however, the amplitude of the oscillation
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FIGURE 5.3: a) Supercritical pitchfork bifurcation diagram of system (5.4),
b) Subcritical pitchfork bifurcation diagram of system (5.5).

depends on the initial condition, which implies the presence of a family of
periodic solutions: therefore, if the state is perturbed, the trajectory does not
return to the original orbit. Moreover, the oscillations extinguish or diverge
as soon as the real part of the eigenvalues slightly shift to the left or right half
plane, respectively. This implies that the oscillations of linear systems are not
robust to parameter uncertainties/variations, and therefore it is very unlikely
that such systems can generate purely periodic trajectories in practice.

In nonlinear systems, on the other hand, limit cycles are independent of the
initial conditions and neighbouring trajectories will be attracted to or diverge
from a limit cycle (it will accordingly be termed a stable or unstable limit
cycle, respectively). Thus, stable limit cycles are robust to state perturba-
tions, i.e. they can exist in biological reality. In fact, the biological world
is full of systems that produce periodic sustained oscillations, even for very
long periods, for example, the mechanisms involved in the circadian clock,
the cardiac pulse generator, or the cell division cycle itself. Moreover, the un-
certainties and disturbances which affect all biological processes suggest that
the mechanisms generating such life-critical oscillations must be robust in the
face of different initial conditions, parameter variations and environmental
perturbations.

Focusing on the molecular level, it is worth mentioning the following result,
taken from [3]: a necessary condition for exhibiting limit cycles, in a two
species reaction system, is that it involves at least three reactions, among
which one must be autocatalytic of the type

2X + · · · ↔ 3X + . . .

Example 5.1

On the basis of the results above, among the possible candidates for chemical
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FIGURE 5.4: Phase plane of the simple chemical oscillator (5.7). The thick
curve denotes the limit cycle.

systems which exhibit limit cycles, the simplest such reaction mechanism can
be shown to be, [4]:

X
k1−−⇀↽−−
k1i

A, B
k2−→ Y, 2X + Y

k3−→ 3X. (5.6)

Applying the law of mass action, the reaction kinetics are described by

ẋ = k3x
2y + k1ia− k1x (5.7)

ẏ = k2b− k3x
2y (5.8)

The system exhibits a limit cycle for certain choices of the parameters, as
shown by the phase plane in Fig. 5.4, which can be obtained with the param-
eters k1 = k1i = k2 = k3 = 1, a = 0.1, b = 0.2.

Hopf bifurcation. One further type of bifurcation which is relevant to the
study of biological systems, is the Hopf bifurcation. This bifurcation occurs
when an asymptotically stable equilibrium mutates into an unstable spiral,
i.e. a point in which the linearised system exhibits two unstable complex-
conjugated eigenvalues, and the equilibrium is surrounded by a limit cycle.
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FIGURE 5.5: Supercritical Hopf bifurcation diagram of system (5.10).

Therefore, when the bifurcation parameter surpasses the critical value, the
system produces stable and robust oscillations. This is called a supercritical
Hopf bifurcation, whereas the dual phenomenon, similarly to pitchfork bifur-
cations, is called a subcritical Hopf bifurcation. A prototypical second order
system producing a Hopf bifurcation is

ṙ = µr − r3 (5.9a)

θ̇ = ω + br2 (5.9b)

where polar coordinates (r, θ) have been used. The same system can be trans-
lated in cartesian coordinates, using the relations x = r cos θ, y = r sin θ,
which yields

ẋ =
[

µ− (x2 + y2)
]

x−
[

ω + b(x2 + y2)
]

y (5.10a)

ẏ =
[

µ− (x2 + y2)
]

y +
[

ω + b(x2 + y2)
]

x (5.10b)

The supercritical Hopf bifurcation diagram of system (5.10) is depicted in
Fig. 5.5, where the solid circles denote the amplitude of the oscillation.
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5.3 Monotone systems

As discussed in Example 3.7 and shown in Figure 3.10, biological systems
which exhibit more than one equilibrium can be analysed using standard
graphical approaches for the analysis of nonlinear systems in the phase plane.
These graphical methods are, however, generally only applicable to systems
with two states, which is clearly a significant limitation for the analysis of
complex biological networks. In [5], a new method is described, based on the
theory of monotone systems, which allows the analysis of positive feedback
systems of arbitrary order for the presence of bistability or multistability (i.e.,
more than two alternative stable steady-states), bifurcations, and associated
hysteretic behavior. The method relies on two conditions that are frequently
satisfied even in complicated, realistic models of cell signalling systems: mono-
tonicity and the existence of steady-state characteristics. Below, we provide
an introduction to this approach, which will be used in Case Study VII to
analyse the dynamics of a positive feedback loop in a MAPK cascade.

The approach works by considering the positive feedback system in open-
loop, so that it can be described using the general set of ordinary differential
equations:

ẋ1 = f1(x1, ..., xn, ω)

ẋ2 = f2(x1, ..., xn, ω)

:

ẋn = fn(x1, ..., xn, ω)

where xi(t) describes the concentration of some molecular species over time,
fi is a differentiable function and ω represents an external input signal that
may be applied to the system. Assume that the output of the system is given
by some differentiable function of x, i.e. η = h(x), (in practice, η will often
simply be one of the state variables, so that η = xi). Thus η defines which
state variable, or combination of state variables, is fed back to the input of
the system via the positive feedback loop. In the following we assume for
simplicity that ω and η are both scalar, although extensions of the theory for
vector inputs and outputs have also been derived, [5].

In order to apply the test for multistability developed in [5], the system
defined above must satisfy two critical properties: (A) the open-loop system
has a monostable steady-state response to constant inputs, i.e. the system
has a well-defined steady-state input/output (I/O) characteristic; and (B) the
system is strongly I/O monotone, i.e. there are no possible negative feedback
loops, even when the system is closed under positive feedback.

Property A means that, for any constant input signal ω(t) = a for t > 0
(i.e. a step-function input stimulus), and for any initial conditions x1(0), y1(0),
the solution of the above system of differential equations converges to a unique
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steady-state, which depends on the particular step magnitude a, but not on
the initial states. When this property holds, kx,y(a) indicates the steady-state
vector limt→+∞[x1(t), y1(t)] corresponding to the signal ω(t) = a, and kη(a)
indicates the corresponding asymptotic value η(+∞) for the output signal.

Property B (monotonicity), refers to the graphical structure of the inter-
connections between the dynamic variables in the system. This structure is
described by the incidence graph of the system, which has n + 2 nodes, la-
beled ω, η and xi, i = 1, ..., n. To create the incidence graph, a labeled edge
(an arrow with a + or − sign attached to it) is drawn whenever a variable
xi (or input ω) directly affects the rate of change of a variable xj , j 6= i (or
the value of the output η). A + sign is attached to each label whenever the
effect is positive and a − sign when the effect is negative. By definition, no
edges are drawn from any xi to itself. Thus, if fi(x, ω) is strictly increasing
with respect to xj for all (x, ω), then a positive edge is drawn directed from
vertex xj to xi, while if fi(x, ω) is strictly decreasing as a function of xj for
all (x, ω), then a negative edge is drawn directed from vertex xj to xi. If fi

is independent of xj , no edge from xj to xi is drawn. The same procedure
is followed for edges from the vertex ω to any vertex xj , and from any xj to
η. If an effect is ambiguous, because it depends on the actual values of the
input or state variables, such as in the example ẋ1 = (1 − x1)x2 + ω, where
f1(x1, x2, ω) = (1− x1)x2 + ω is an increasing function of x2 if x1 < 1, but is
a decreasing function of x2 if x1 > 1, then a graph cannot be drawn and the
method as described here does not apply. The sign of a path (the individual
edges transversed in any direction, forward or backwards) is then defined as
the product of the signs along it, so that the corresponding path is simply
called positive or negative. A system is said to be strongly I/O monotone (i.e.
it satisfies property B) provided that the following four conditions hold for
the incidence graph of the system:

1. Every loop in the graph, directed or not, is positive.

2. All of the paths from the input to the output node are positive.

3. There is a directed path from the input node to each node xi.

4. There is a directed path from each xi to the output node.

Note that condition (1) and (2) together amount to the requirement that every
possible feedback loop in the system is positive - properties (3) and (4) are
technical conditions needed for mathematical reasons.

If the system can be shown to satisfy both properties A and B, then it
can be analysed for the property of bistability as follows. Graph together the
characteristic kη, which represents the steady-state output η as a function of
the constant input ω, with the diagonal η = ω. Algebraically, this amounts to
looking for fixed points of the mapping kη. If the characteristic kη is sigmoidal,
as shown in Figure 5.6, then there will be three intersections between these
graphs, which we label points I, II, and III, respectively. Note that the slope
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FIGURE 5.6: The sigmoidal steady-state I/O static characteristic curve kη

has three intersections with the line representing ω as a function of η for uni-
tary positive feedback. The three intersection points (I, II, and III) represent
two stable steady-states (I and III) and one unstable steady-state (II) for the
closed-loop system.

of the characteristic kη is < 1 at points I and III and > 1 at point II. If the
open-loop system is now closed using unity positive feedback (i.e. by setting
ω = η), then it can be shown, [6], that the resulting closed-loop system has
three equilibria, xI , xII , and xIII , corresponding to the I/O pairs associated
with the points I, II, and III, respectively. The equilibria xI and xIII , which
correspond to the points at which the characteristic has slope < 1, are stable,
whereas xII is unstable, so that every trajectory in the state space, except
possibly for an exceptional set of zero measure, converges to either xI or xIII ,
i.e. the system is bistable.

Note that if the characteristic kη had not been sigmoidal, then there could
not be three intersections, and the system could not be bistable for any feed-
back strength. Importantly, it is straightforward to show that any cascade
composed of subsystems, each of which is monotone and admits a well-defined
characteristic, will itself be monotone and admit a characteristic [7]. Thus,
in contrast to traditional phase-plane analysis, the approach described above
can be applied to arbitrarily high-order systems. Finally, although the devel-
opment above assumed the simple case where the output feeds back directly
to the input, more complicated feedback loops may also be studied using the
same basic approach, by a reduction to unity feedback, [5].

The computational analysis method described above also suggests an exper-
imental approach to the detection of bistability in positive feedback systems.
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If the feedback can be blocked in such a system, and if the feedback-blocked
system is known (or correctly intuited based on biological insight) to be mono-
tone, then if the experimentally determined steady-state stimulus-response
curve of the feedback-blocked system is sigmoidal, the full feedback system is
guaranteed to be bistable for some range of feedback strengths. Conversely, if
the open-loop system exhibits a linear response, a Michaelian response, or any
response that lacks an inflection point, the feedback system is guaranteed to
be monostable despite its feedback. Thus, some degree of “cooperativity” or
“ultrasensitivity” appears to be essential for bistability in monotone systems
of any order.

5.4 Chemical Reaction Network Theory

In this section, we introduce a powerful analysis tool named Chemical Reac-
tion Network Theory (CRNT) [8],[9], which provides an alternative strategy,
with respect to the approach presented in the previous section, to investigate
the bistability of biomolecular systems. It is worth noting that the two ap-
proaches are complementary: CRNT is applicable to systems for which it is
not possible to define a signed incidence graph. On the other hand, the Mono-
tone Systems approach can cope with different types of kinetics, whereas the
most useful results of CRNT are given for the special case of mass action
kinetics.

The advantage of CRNT is that it provides a straightforward way to analyse
the type of dynamical behaviour that one can expect from an arbitrarily
complex network of chemical reactions, just by inspection of the topology of
the associated graph. More specifically, CRNT enables us to establish whether
an assigned reaction network can exhibit one or multiple equilibrium points,
without even the need to write down the kinetic equations and assign values
to the kinetic parameters. This point makes CRNT especially suitable for
dealing with biomolecular systems, whose parameters are often unknown or
subject to significant variability among different individuals.

Although CRNT is not a standard topic in the field of control engineering,
it is closely related to it, since it deals with the study of equilibrium points and
their stability properties. Moreover, it is becoming increasingly popular as a
tool for Systems Biologists, for example as a method to sift kinetic mechanism
hypotheses [10] and to study multistability in gene regulatory networks [11].
Thus, in view of the relationship discussed in the previous sections between
positive feedback and bistability, it is appropriate to provide here at least an
introductory overview of CRNT as an analysis tool for biological systems.
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5.4.1 Preliminaries on reaction network structure

To facilitate the introduction of some preliminary definitions, we will refer to
a simple example network, whose standard reaction diagram is as follows:

A1+A2 A3 A6A4+A5

2A1 A2+A7

A8

We shall denote by N the number of species in the network under considera-
tion, so for our example N = 8. With each species we associate a vector ei,
where {e1, . . . , eN} is the standard basis for RN , that is

e1 =















1
0
0
...
0















, e2 =















0
1
0
...
0















, · · · , eN =















0
0
0
...
1















.

The complexes of a reaction network are the objects that appear before and
after the reaction arrows. The number of distinct complexes will be denoted
by n, thus in our network there are n = 7 complexes, namely A1 + A2, A3,
A4+A5, A6, 2A1, A2+A7, A8. With each reaction we shall associate a reaction
vector, which is derived from the vectors ei by summing the vectors associated
with the products and subtracting those associated with the reactants, each
multiplied by the respective stoichiometric coefficient. For example, for the
reaction

A1 + A2 → A3 (5.11)

the reaction vector is r1 = e3 − e1 − e2 =
(

−1 −1 1 0 0 0 0 0
)T

and for

2A1 → A2 + A7 (5.12)

we get r6 = e2 + e7 − 2e1 =
(

−2 1 0 0 0 0 1 0
)T

. The reaction vectors
span a linear subspace S ∈ RN which is called the stoichiometric subspace.
The matrix S =

[

r1 r2 · · · rp

]

, where p is the number of reactions, is termed
the stoichiometric matrix and is the starting point for various mathematical
techniques used to determine network properties, especially in the study of
metabolic networks [12]. We shall say that a reaction network has rank s if
the stoichiometric matrix has rank s. Recall that this amounts to stating that
there exist at most s ≤ p linearly independent reaction vectors. The stoichio-
metric subspace enables us to characterise all the points of the state space
which are reachable by the system in terms of stoichiometric compatibility
classes. We say that two points of the state space, x′ and x′′ are stoichiomet-
rically compatible if x′−x′′ lies in S. At this point, we can partition the set of
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all positive state vectors into positive stoichiometric compatibility classes. In
particular, the positive stoichiometric compatibility class containing x ∈ PN ,
where P

N is the positive orthant of R
N , is the set (x + S) ∩ P

N , that is the
set of vectors in PN obtained by adding x to all vectors of S.

Looking at the standard reaction diagram (where each complex appears
only once) of our example network, we readily notice that it is composed of
two separate pieces, one containing the complexes {A1 + A2, A3, A4 + A5,
A6}, the other containing the complexes {2A1, A2 +A7, A8}. There is no link
between complexes of the two sets, therefore each set is called a linkage class
of the network and the symbol l will be used to indicate the number of linkage
classes in a network (in our case l = 2). Note that a linkage class is just a
set of complexes, without any information about the related reactions. Two
different complexes in a reaction network are strongly linked if there exist two
directed arrow pathways, one pointing from one complex to the other and one
in the reverse direction. By convention, every complex is considered strongly
linked to itself. By a strong linkage class in a reaction network we mean a set
of complexes such that each pair in the set is strongly linked to a complex that
is not in the set. Note that the number of strong linkage classes does depend
on the specific reaction diagram. A terminal strong linkage class is a strong
linkage class containing no complex that reacts to a complex in a different
strong linkage class. In rough terms, a strong linkage class is terminal if there
is no exit from it along a directed arrow pathway. Each linkage class must
contain at least one terminal strong linkage class, therefore, if we indicate by
t the number of terminal strong linkage classes, then t ≥ l.

An interesting result is that any two reaction networks with the same com-
plexes and the same linkage classes also have the same rank. Hence, given only
the complexes of a network and a specification of how they are partitioned into
linkage classes, we can calculate the rank while ignoring the actual reaction
topology. Indeed, to determine the rank, we can use any reaction network
formed by the same complexes and linkage classes. A simpler network with n
complexes and l linkage classes is one that contains only p = n− l reactions,
therefore its rank cannot exceed n − l and the same holds for any network
with the same number of complexes and linkage classes, no matter how many
reactions it contains. Hence, we can state that the deficiency of a network,
defined as

δ = n− l− s (5.13)

is always a nonnegative integer.

To understand CRNT, we also need the notion of a (weakly) reversible
network: a reversible network is one in which each reaction is accompanied by
its reverse. A network is weakly reversible if, whenever there exists a directed
arrow pathway (consisting of one or more reaction arrows) pointing from one
complex to another, there also exists a directed arrow pathway pointing from
the second complex back to the first. The class of (weakly) reversible networks
is a subset of the set of networks for which t = l.
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5.4.2 Networks of deficiency zero

In this and in the next section we will provide two fundamental results in
CRNT, which can be used to derive qualitative information about the trajec-
tories of a system of nonlinear differential equations associated with a reaction
network. The application of these results does not require a deep understand-
ing of CRNT, but only some familiarity with the above preliminary notions
concerning the complexes, rank, linkage classes and deficiency of a reaction
network. In particular we will examine the case of networks of deficiency zero
and of deficiency one.

It is important to remark that the results given below are general, for they
apply to networks of any size and complexity, possibly involving hundreds of
species and reactions. First let us consider the case of networks of deficiency
zero. For any reaction network of deficiency zero the following statements
hold true:

(i) If the network is not weakly reversible then, for arbitrary kinetics (not
necessarily mass action), the differential equations for the corresponding
reaction system cannot admit a positive steady-state.

(ii) If the network is not weakly reversible then, for arbitrary kinetics (not
necessarily mass action), the differential equations for the corresponding
reaction system cannot admit a cyclic state trajectory along which all
species concentrations are positive.

(iii) If the network is weakly reversible then, for mass action kinetics (but
regardless of any particular positive value for the rate constants), the
differential equations for the corresponding reaction system have the
following properties: there exists within each positive stoichiometric
compatibility class precisely one steady-state; the steady-state is asymp-
totically stable; and there is no nontrivial cyclic state trajectory along
which all species concentrations are positive.

Precluding that the network can admit a positive steady-state means that if
some steady-state exists it must be such that at least certain species concen-
trations are zero. Note also that the above result does not entirely preclude
the existence of nontrivial cyclic state trajectories. For arbitrary kinetics there
might be cyclic state trajectories such that some concentrations are always
zero. When mass action kinetics are assumed, instead, it is possible to show
that the system cannot generate any nontrivial cyclic composition trajectory.

Example 5.2

Let us illustrate the applicability of the above result by means of an example.
Consider again our example reaction network - we want to establish whether
this system admits a positive steady-state or a cyclic trajectory along which
all species concentrations are positive. The network exhibits zero deficiency
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and is not weakly reversible, as is readily seen by considering the reaction
path from complex A1 + A2 to A6, for which there exists no reverse pathway.
Therefore, according to statements (i) and (ii) above, we can rule out the
existence of a positive steady-state or a cyclic trajectory (along which all
species concentrations are positive) regardless of either the kinetics assigned
to the reactions or the values of the parameters.

It is interesting to see what happens if we slightly modify our simple net-
work, by making the reaction A3 → A4 + A5 reversible, as shown in the
following reaction diagram

A1+A2 A3 A6A4+A5

2A1 A2+A7

A8

k1

k2

k3

k4

k5

k7

k8

k9

k10

k6

This modification renders the network weakly reversible. Note that the com-
plexes and the linkage classes of the modified network are the same as the
original one, and therefore the deficiency of the modified network equals zero.
If we assume that the reaction kinetics are all of mass action type, the system
is described by the following system of differential equations

ċ1 = −k1c1c2 + k2c3 − 2k7c
2
1 + k8c8 (5.14a)

ċ2 = −k1c1c2 + k2c3 + k7c
2
1 + k9c8 − k10c2c7 (5.14b)

ċ3 = k1c1c2 + k4c4c5 − (k2 + k3)c3 (5.14c)

ċ4 = k3c3 − (k4 + k5)c4c5 + k6c6 (5.14d)

ċ5 = k3c3 − (k4 + k5)c4c5 + k6c6 (5.14e)

ċ6 = k5c4c5 − k6c6 (5.14f)

ċ7 = k7c
2
1 + k9c8 − k10c2c7 (5.14g)

ċ8 = −(k8 + k9)c8 + k10c2c7 (5.14h)

where the i-th state variable, ci, is the concentration of species Ai. To study
the behaviour of system (5.14) we can apply statement (iii) above, which
allows us to conclude that, regardless of the (positive) value of the kinetic
parameters, the system admits precisely one positive steady-state, which is
asymptotically stable. Moreover the system does not admit a periodic state
trajectory along which all species concentrations are positive. It is not difficult
to see that providing such definitive answers to these questions by using other
mathematical approaches would have been extremely difficult.

The results discussed above are for networks of deficiency zero, however
there are a number of other interesting propositions and remarks that extend
these basic results and provide more specific information. For example, CRNT
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allows us to state that, given a deficiency zero network containing the null
complex, the corresponding system (no matter the reaction kinetics) admits
no steady-state at all if the null complex does not lie in a terminal strong
linkage class. The interested reader is referred to [8] for additional results.

5.4.3 Networks of deficiency one

Let us now consider the case of networks of deficiency one. In contrast to the
results in the previous section, the results provided by CRNT for this case give
no dynamical information: they are only concerned with the uniqueness and
existence of positive steady-states. Also, for networks of nonzero deficiency,
the lack of weak reversibility no longer precludes the existence of (multiple)
positive steady-states. Indeed, the weak reversibility condition is replaced by
the far milder condition that each linkage class contain no more than one
terminal strong linkage class.

To better understand the following result it is important to note that the
deficiency of a reaction network need not be the same as (in fact it is always
greater or equal than) the sum of the deficiencies of its linkage classes. It is
also important to point out that the following result holds for networks where
the deficiencies of the individual linkage classes are less than one, but this
does not mean that the deficiency of the entire network must be less than
one.

Consider a mass action system for which the underlying reaction network
has l linkage classes, each containing just one terminal strong linkage class.
Suppose that the deficiency of the network and the deficiencies of the individ-
ual linkage classes satisfy the following conditions:

(i) δθ ≤ 1, θ = 1, 2, . . . , l

(ii)
∑l

θ=1 δθ = δ.

Then, no matter what (positive) values the rate constants take, the cor-
responding differential equations can admit no more than one steady-state
within a positive stoichiometric compatibility class. If the network is weakly
reversible, the differential equations admit precisely one steady-state in each
positive stoichiometric compatibility class.

For networks having just one linkage class condition (ii) above is satisfied
trivially. Thus, the following result is also readily derived: A mass action
system for which the underlying reaction network has just one linkage class
can admit multiple steady-states within a positive stoichiometric compatibility
class only if the deficiency of the network or the number of its terminal strong
linkage classes exceeds one.

The above result represents a generalisation of the previous result for net-
works of deficiency zero, indeed it is concerned with the existence and unique-
ness of one steady-state. Note also that it does not allow us to say anything
about networks of deficiency one where all the linkage classes are of deficiency
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zero. This is a serious weakness, because deficiency one networks can exhibit
multiple positive steady-states and we would like to have a tool to establish
when this occurs. Fortunately, CRNT addresses this issue, at least for reaction
networks with mass action kinetics, through the Deficiency One Algorithm [9].
Given a deficiency one network satisfying certain weak regularity conditions,
CRNT will indicate either that there does exist a set of rate constants such
that the corresponding mass action differential equations admit multiple pos-
itive steady-states or else that no such rate constants exist. In the affirmative
case, the algorithm will also provide a set of values of the kinetic parameters
for which the system is multistable.

The detailed illustration of this aspect of CRNT goes beyond the scope of
this book, as it would require the presentation of a number of new definitions
and results and of a rather involved algorithm. Fortunately, it is not necessary
to understand every detail of the theory to apply it: the algorithm is coded
in the CRNT Toolbox∗, which is freely available and easy to use. Using this
toolbox, it is sufficient to fill in the network’s reactions and run the algorithm
to get a comprehensive report elucidating all the properties of the network
that can be analysed by CRNT and, in particular, whether the corresponding
dynamical system has multiple positive steady-states.

∗http://www.chbmeng.ohio-state.edu/~feinberg/crnt
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5.5 Case Study VII: Positive feedback leads to multista-

bility, bifurcations, and hysteresis in a MAPK cas-

cade

Biology background: Xenopus oocytes are eukaryotic cells that un-
dergo the classical steps of meiotic cell division. After the G1 and S
phases, they carry out the early events of meiotic prophase: their homol-
ogous chromosomes pair up and undergo recombination. However, after
the meiotic prophase, the oocyte does not immediately proceed to the
first meiotic division, but enters a several-month-long growth phase. It
grows up to a volume of about 1 µL, with a protein content of 25 µg,
and then it stops. At this point, the cell is technically still in meiotic
prophase, since transcription is taking place and the M-phase cyclins are
present. However, these cyclins are locked in inactive complexes with
CDK1, and thus the cell is arrested indefinitely in this state, with all its
various opposing processes (protein synthesis/degradation, phosphoryla-
tion/dephosphorylation, anabolism/catabolism, etc.) in balance.
The meiosis process is resumed only when the ovarian epithelial cells sur-
rounding the oocyte release a maturation-promoting hormone, the pro-
gesterone, in response to gonadotropins produced by the frog pituitary.
Xenopus oocytes possess both classical progesterone receptors and seven
transmembrane G-protein-coupled progesterone receptors. However, pro-
gesterone undergoes metabolism in the oocyte, and there is evidence that
androgens and androgen receptors may ultimately mediate progesterone’s
effects. Regardless of whether a progestin or an androgen is the ultimate
trigger, the effects of progesterone on immature oocytes are striking. The
oocyte leaves its G2-arrest state, carries out the first asymmetrical meiotic
division, enters meiosis II, and then arrests in the metaphase of meiosis II.
This progression from the G2-arrest state to the meiosis II-arrest state is
termed maturation. After maturation the oocyte is ovulated, acquires a
jelly coat, and is laid by the frog. It then drifts in the pond in this arrested
state until either it is fertilised, which allows it to complete meiosis and
commence embryogenesis, or it undergoes apoptosis.
Oocyte maturation is a typical example of a cell fate switch: the cell
responds to an external trigger by undergoing an all-or-none, irreversible
change in its appearance, its biochemical state, and its developmental
potential [13].
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Although many details of this system still remain to be elucidated, in
broad outline the signalling network that mediates progesterone-induced
oocyte maturation is well-understood and is depicted in Figure 5.7. Pro-
gesterone stimulates the translation of the Mos oncoprotein, a MAP kinase
kinase kinase (MAPKKK). Active Mos phosphorylates and activates the
MAPKK MEK1, which then phosphorylates and activates ERK2 (which
in Xenopus is often called p42 MAPK). Inhibitors of these MAPK cas-
cade proteins inhibit oocyte maturation, and activated forms of the pro-
teins can initiate maturation in the absence of progesterone. The acti-
vation of p42 MAPK then yields the dephosphorylation and activation
of cyclin B-CDK1 complexes (sometimes named “latent MPF”, for latent
maturation-promoting factor or “pre-MPF”). Activated cyclin B-CDK1
complexes then cause the oocyte to resume the meiotic M-phase.

MEKMEK MEK
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P
MEK

P

P
MEK

P
MEK

P

p42p42 p42p42p42
P

P
p42

P

P
p42
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progesteroneprogesterone

+

FIGURE 5.7: Schematic depiction of the Mos-MEK-p42 MAPK cascade. The
system comprises a positive feedback loop consisting of active (double phos-
phorylated) p42 increasing the concentration of active Mos through a number
of (not shown) intermediate steps.
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In what follows, we will investigate the “all-or-nothing” character of oocyte
maturation. In particular, we will use the concept of bistability and related
analysis tools to understand how and under what conditions a network of
reversible activation processes culminates in an irreversible cell fate change.

Note that the cascade is embedded in a positive feedback loop, indeed
the activation of p42 MAPK stimulates the accumulation of its upstream
activator, the Mos oncoprotein, probably through both an increase in the rate
of Mos translation and a decrease in the rate of Mos proteolysis. Thus, we will
apply the Monotone Systems theory introduced in Section 5.3 to investigate
the bistability of the Mos-MEK-p42 MAPK cascade, following the treatment
in [5].

Breaking the positive feedback from p42 to Mos, we can write the open-loop
model of the MAPK cascade as

dMos

dt
=

V2 ·Mos

K2 + Mos
+ V0 · ω + V1 (5.15a)

dMEK

dt
=

V6 ·MEKp

K6 + MEKp
− V3 ·Mos ·MEK

K3 + MEK
(5.15b)

dMEKpp

dt
=

V4 ·Mos ·MEKp

K4 + MEKp
− V5 ·MEKpp

K5 + MEKpp
(5.15c)

dp42

dt
=

V10 · p42p

K10 + p42p
− V7 ·MEKpp · p42

K7 + p42
(5.15d)

dp42pp

dt
=

V8 ·MEKpp · p42p

K8 + p42p
− V9 · p42pp

K9 + p42pp
(5.15e)

MEKp = MEKtot −MEK −MEKpp (5.15f)

p42p = p42tot − p42− p42pp (5.15g)

where ω is the input to the system and p42pp = η is the output. We have
assumed that the total concentrations of MEK and p42 are constant, that
is MEK + MEKp + MEKpp = MEKtot and p42 + p42p + p42pp = p42tot.
Therefore, the two differential equations for MEKp and p42p have been sub-
stituted by the two algebraic conservation equations (5.15f) and (5.15g). The
parameter values for these equations are shown in Table 5.1. In order to keep
the analysis simple, we can easily decompose the MAPK cascade into three
submodules, consisting of the three kinase levels:

I) MAPKKK module, consisting of just Mos, with input ω and output
Mos;

II) MAPKK module, made up by MEK, MEKp and MEKpp, with input
Mos and output MEKpp;

III) MAPK module, made up by p42, p42p and p42pp, with input MEKpp

and output p42pp.
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TABLE 5.1

Parameters for model (5.15). The values have been chosen in
[5] such that the model kinetics are consistent with
experimentally available data.

Parameter Value Unit Parameter Value Unit

MEKtot 1200 nM p42tot 300 nM

V0 0.0015 s−1 · nM−1 V1 2E-6 s−1

V2 1.2 nM · s−1 K2 200 nM

V2 1.2 nM · s−1 K2 200 nM

V3 0.064 s−1 K3 1200 nM

V4 0.064 s−1 K4 1200 nM

V5 5 nM · s−1 K5 1200 nM

V6 5 nM · s−1 K6 1200 nM

V7 0.06 s−1 K7 300 nM

V8 0.06 s−1 K8 300 nM

V9 5 nM · s−1 K9 300 nM

V10 5 nM · s−1 K10 300 nM

Recall from Section 5.3 that, for each of the three modules, we have to verify
that (A) the open-loop subsystem has a monostable steady-state response to
constant inputs (also referred to as a well-defined steady-state I/O character-
istic) and that (B) there are no possible negative feedback loops, even when
the system is closed under positive feedback, which means the subsystem is
strongly I/O monotone. Exploiting the modularity of the system, we can state
that the whole system verifies properties (A) and (B) if they are satisfied by
all of the three modules.

The satisfaction of property (A) can be verified by simulation, as shown in
Fig. 5.8 where the steady-state I/O characteristics of the three submodules
are depicted.

To check whether property (B) is also verified, we have to build the signed
incidence graphs of the three modules (see Fig. 5.9). By visual inspection, it
is straightforward to see that there are no negative feedback loops in the three
graphs. Since the whole open-loop system is a cascade of these three modules,
then also the whole graph will not contain any negative feedback loop.

Now that properties (A) and (B) have been checked, we can investigate the
bistability of the MAPK cascade by drawing the steady-state I/O characteris-
tic of the whole system, reported in Fig. 5.10. The diagram shows that there
are two asymptotically stable equilibrium points, one at zero and one at a
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FIGURE 5.8: Steady-state I/O characteristics of the three submodules of the
MAPK cascade. The diagrams show that the three subsystems all have a
well-defined steady-state I/O characteristic.
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FIGURE 5.9: Signed incidence graphs of the three submodules of the MAPK
cascade. We have indicated with ω and η the input and output of each
module, respectively. The graphs show that the three subsystems have no
negative feedback.
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FIGURE 5.10: Steady-state I/O characteristic of the open-loop MAPK cas-
cade model (5.15). The intersections with the line ω = η identify the equi-
librium points: I and III are asymptotically stable, since the slope of the I/O
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high concentration of p42pp and an intermediate unstable equilibrium; thus
the system is bistable. Confirmation of this fact is provided in Fig. 5.11, which
shows the time-courses of the free evolution of the closed loop system, start-
ing from different initial concentrations of the kinases: the trajectories funnel
into one or other of the two stable states, depending on the initial condition.
Finally, in Fig. 5.12 a bifurcation diagram is used to show which values of

the feedback gain parameter ν give rise to bistability: the diagram confirms
that bistability occurs only for values of ν over a certain threshold. Moreover,
we can see that the two stable steady-states (and the middle unstable one)
coexist even for large values of ν, which is in agreement with what can be
derived from Fig. 5.10.
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the two stable equilibrium points.
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5.6 Case Study VIII: Coupled positive and negative feed-

back loops in the yeast galactose pathway

Biology background: The capability to adapt to changing environmen-
tal conditions is a key evolutionary pressure in all living organisms. One
of the primary needs of single-celled organisms such as yeasts is to adapt
to constantly changing sources of nutrients, according to their availability
in the surrounding environment. Saccharomyces cerevisiae has evolved
an elaborate biomolecular circuit to control the expression of galactose-
metabolising enzymes, in order to use galactose as an alternative carbon
source in the absence of glucose.
This system consists of two positive and one negative (repressing) feed-
back loops, which affect the uptake of galactose, the nucleoplasmic shut-
tling of regulator proteins and the transcription of GAL genes. The GAL
gene family in S. cerevisiae consists of three regulatory (GAL4, GAL80,
and GAL3 ) and five structural genes (GAL1, GAL2, GAL7, GAL10, and
MEL1 ), which enable it to use galactose as a carbon source. The struc-
tural genes GAL1, GAL7, and GAL10 are clustered but separately tran-
scribed from individual promoters.
The regulatory network of the yeast galactose pathway if depicted in
Fig. 5.13: gene GAL4 encodes a transcriptional activator Gal4p that binds
to the upstream activation sequences of GAL genes as a homodimer and
activates the transcription of the genes. The repressor protein, Gal80p,
self-associates to form a dimer and subsequently binds to the gene-Gal4p
dimer complex and prevents it from recruiting RNA polymerase II medi-
ator complex, thereby preventing the activation of GAL genes.
In the presence of inducer, galactose and adenosine triphosphate, Gal3p
is activated and forms a complex with Gal80p in the cytoplasm. Binding
of Gal3p affects the shuttling of Gal80p between the cytoplasm and the
nucleus, reducing the concentration of Gal80p in the nucleus and, thus,
relieving its inactivating effect on Gal4p and on the transcription of GAL
genes. The transcription and translation of Gal2 produces the permease
Gal2p, which mediates the transport of galactose into the cells. The in-
crease of internalised galactose, in turn, further activates Gal3p. In the
presence of glucose, on the other hand, the synthesis of Gal4p is inhibited
through Mig1p-mediated repression of GAL genes [14].
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FIGURE 5.13: Schematic diagram of the galactose signalling pathway, high-
lighting the coupled positive and negative feedback loops.

Due to the presence of two feedback loops, the GAL regulatory network
has the potential for exhibiting multistability. This capability has been evi-
denced experimentally [15] by growing wild-type cells for 12 hours either in
the absence of galactose or in the presence of 2% galactose. In the absence of
galactose, raffinose was used as a carbon source that does not induce or repress
the GAL regulatory network. Subsequently, the cells were grown for a fur-
ther 27 hours at various concentrations of galactose. It was observed that the
responses of the two groups depend strongly on the galactose concentration.
At low and high galactose concentrations the expression distributions after
27 hours do not depend on the previous treatment and they typically reach
a steady-state after 6 hours. This behaviour is classified as history indepen-
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dent (absence of memory), because the system approaches the same unique
expression distribution independently of the initial concentration. However,
for intermediate galactose concentrations the expression distributions of the
two groups are significantly different and the system displays a memory of
the initial galactose consumption state. This experiment reveals a persis-
tent memory, because cells become stably locked into two different expression
states for periods much longer than the history-independent system would
need to reach steady-state.

Several different models have been presented in literature to investigate
the behaviour of the galactose pathway, comprising simplified reduced-order
models [16],[17] and more comprehensive models also including the metabolic
subsystem [18]. Such models have been useful for obtaining a more thorough
understanding of the multistable dynamics of the GAL regulatory system,
however they have been mostly exploited by numerical simulations, in order
to validate the hypothesised mechanisms by comparison with experimental
results. Here, we show how it is possible to approach the issue of multi-
stability in the GAL system by means of CRNT, thus providing a sound
theoretical validation of the proposed mathematical model not solely based
on data/parameter fitting, but on the structural properties of the reaction
network.

Recall that, in order to exploit the CRNT Deficiency One Algorithm, we
must have a differential equation model which exhibits only mass action kinet-
ics. Therefore, we have built a novel model of the GAL system, focusing only
on the regulatory subnetwork illustrated in Fig. 5.13, including the species in
Table 5.2. Note that the purpose of this model is to study the bistability fea-
ture of the known galactose reaction network rather than providing a detailed
description of the kinetics. Therefore, a number of simplifying assumptions
have been made:

a) the regulatory mechanisms that are activated in the presence of glucose
are neglected;

b) only the G2-mediated uptake of galactose is considered (in reality there
is also a G2-independent intrinsic transport mechanism);

c) the cytoplasm and nucleus are not treated as separate compartments,
thus the shuttling is not modelled;

d) no binding/unbinding of G4 to/from DNA is modelled;

e) dimerisation of proteins is neglected;

The reaction diagram of the proposed model is as follows
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TABLE 5.2

State variables of model (5.16).

State variable Description

G3 Gal3p protein concentration

G4 Gal4p protein concentration

G80 Gal80p protein concentration

G3a Active Gal3p protein concentration

G4,80 Gal4p:Gal80p complex concentration

G3a,80 Active Gal3:Gal80p complex concentration

Gi Internalised galactose concentration

Ge Extracellular galactose concentration

G3+Gi

G2+G4G3+G4

G3a ØG4 Ø

G80 Ø

G3 Ø

G2 Ø

Gi Ø

G4+G80

G3a,80+G4
G4,80 Ø

G4,80+G3a

Gi+G2+GeGe+G2

G3a,80 Ø

where Ø denotes the null species, which allows us to model protein degradation
and generation. Note that, to model an extracellular medium with constant
concentration of galactose, the reaction describing G2-mediated uptake of
galactose,

Ge + G2 → Gi + G2 + Ge,

creates a new molecule of external galactose (Ge) for every internalised molecule
(Gi). Induction of transcription/translation of G2, G3, G80 is modelled by
simple reactions of the type G4 → Gx + G4, where G4 is both a reagent and
a product since it is not modified in the process. The inactivation of the
inhibitor is synthetically described by the reaction

G4,80 + G3a ⇄ G3a,80 + G4

which models only the binding of G3 to those G80 molecules which are bound
to the transcription factor G4 and the subsequent release of the latter protein.
Finally, the reaction

G3 + Gi ⇄ G3a

describes the activation of G3 by internalised galactose, assuming that the
latter is consumed in the reaction. From the reaction diagram, assuming
mass action kinetics for each reaction rate, it is easy to derive the dynamical
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model which describes the changes over time of the species concentrations.
The model is given by

Ġ3 = k9 G4 − k1 G3 Gi + k2G3a − µ1G3 (5.16a)

Ġi = k11 Ge G2 − µ8 Gi − k1 G3 Gi + k2 G3a (5.16b)

Ġ3a = k1 G3 Gi − k2 G3a − µ3 G3a − k5 G4,80 G3a + k6 G3a,80 G4 (5.16c)

Ġ4 = k10 − µ4 G4 + k5 G4,80 G3a − k6 G3a,80 G4 − k3 G4 G80 + k4 G4,80

(5.16d)

Ġ80 = −µ2 G80 − k3 G4 G80 + k4 G4,80 + k7 G4 (5.16e)

Ġ4,80 = k3 G4 G80 − k4 G4,80 − µ6 G4,80 − k5 G4,80 G3a + k6 G3a,80 G4

(5.16f)

Ġ3a,80 = k5 G4,80 G3a − k6 G3a,80 G4 − µ7 G3a,80 (5.16g)

Ġ2 = k8 G4 − µ5 G2 (5.16h)

Ġe = 0 (5.16i)

At this point we apply the CRNT toolbox to determine whether system (5.16)
can admit multiple steady-states. After introducing the species and the reac-
tions, the toolbox returns a basic report, which informs us about the graphical
properties of the network: there are seventeen complexes, fifteen reactions and
three linkage classes (note that all the reactions including the null species form
a single linkage class, although we have drawn them separately for clarity).
The software also informs us that there are four terminal strong linkage classes
and that the network is neither reversible nor weakly reversible. The rank of
the network is eight, the deficiencies of the three linkage classes are four, zero
and zero, respectively, while the whole network has deficiency six. Hence, the
basic theorems introduced in Section 5.4 cannot establish whether the network
is bistable, however the report states that further analyses can be conducted
using some extensions of the theory, namely the Mass Action Injectivity anal-
ysis [19] and Higher Deficiency analysis [20]. In particular, from the latter
analysis the network is proved to have the capacity for multiple steady-states,
and the software also provides an example set of rate constants for which two
steady-states (which are reported as well) exist. The values of the kinetic pa-
rameters and of the two steady-states are shown in Tables 5.3 and 5.4. These
values are found by means of an optimisation procedure without reference to
any experimental measurement, therefore they are assigned arbitrary units.
Moreover, they cannot be considered as valid measures of biological kinetic
parameters, because there is no guarantee that this is the only combination
of values that results in bistability of the model. Nevertheless, we can gain
further insight in the system’s basic mechanisms by examining these values.
For example, note that there are some quantities which do not change signifi-
cantly between the two equilibrium points, while others exhibit large changes.
This could lead us to conclude that changes in the concentrations of the latter
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TABLE 5.3

Kinetic parameters values (arbitrary units)
which make model (5.16) bistable.

Parameter Value Parameter Value

k1 7.353E-3 k2 7.078

k3 28.28 k4 0.1158

k5 12.03 k6 3.741

k7 31.67 k8 1

k9 86.79 k10 9.639

k11 86.79 µ1 1

µ2 1 µ3 1

µ4 1 µ5 1

µ6 1 µ7 1

µ8 1

TABLE 5.4

Species concentrations (arbitrary units) at steady-state
equilibrium points for the bistable model (5.16) with parameter
values given in Table 5.3.

State variable Value at equilibrium 1 Value at equilibrium 2

G3 63.87 105.3

Gi 63.87 105.3

G3a 1 4.056

G4 1 1.822

G80 1.116 1.116

G4,80 8.639 7.817

G3a,80 21.92 48.78

Ge 1 1

G2 1 1.822

species correspond to those that play the largest role in determining the final
steady-state.

In Fig. 5.14, we show the response of system (5.16) to different initial con-
ditions: the plots confirm the bistable behaviour of the proposed galactose
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FIGURE 5.14: Free evolutions, for different initial conditions, of the concen-
trations of four species of the galactose regulatory network model (5.16) with
parameters value given in Table 5.3. The curves funnel into either one of two
steady-states, confirming the bistable nature of the system.

model. In particular, when at time zero G3, Gi, G4 and G3a,80 are low, the
system reaches the low equilibrium value, while the high equilibrium value is
reached by imposing large initial concentrations. These simulations resemble
the experiments in which the cells have been precultured without and with
galactose, respectively. Indeed, pre-culturing the cells in the absence (resp. in
the presence) of galactose leads to a down-regulation (resp. an up-regulation)
of the GAL genes, that is initial low (resp. high) values of G2, G3 and G4 in
the subsequent experimental phase.
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chimique ouverts (on the existence of a limit cycle in the evolution
of open chemical systems). Comptes Rendus, Acad. Sci. Paris, (C),
274:1245–1247, 1972.

[4] Schnakenberg J. Simple chemical reaction systems with limit cycle be-
haviour. Journal of Theoretical Biology, 81(3):389–400, 1979.

[5] Angeli D, Ferrell JE, and Sontag ED. Detection of multistability, bi-
furcations, and hysteresis in a large class of biological positive-feedback
systems. PNAS, 101(7):1822-1827, 2004.

[6] Angeli D, and Sontag ED. Multistability in monotone input/output
systems. Systems and Control Letters, 51(3-4):185-202, 2004.

[7] Angeli D, and Sontag ED. Monotone control systems. IEEE Transac-
tions on Automatic Control, 48(10):1684–1698, 2003.

[8] Feinberg M. Chemical reaction network structure and the stabiliyt of
complex isothermal reactors - I. The deficiency zero and deficiency one
theorems. Chemical Engineering Science, 42(10):2229–2268, 1987.

[9] Feinberg M. Chemical reaction network structure and the stabiliyt of
complex isothermal reactors - II. Multiple steady states for network of
deficiency one. Chemical Engineering Science, 43(1):1–25, 1988.

[10] Conradi C, Saez-Rodriguez J, Gilles E-D, Raisch J. Using chemical re-
action network theory to discard a kinetic mechanism hypothesis. IEEE
Proceedings Systems Biology, 152(4):243–248, 2005.

[11] Siegal-Gaskins D, Grotewold E and Smith GD. The capacity for mul-
tistability in small gene regulatory networks. BMC Systems Biology,
3:96, 2009.

[12] Palsson BØ. Systems Biology: Properties of Reconstructed Networks.
Cambridge University Press, 2006.

[13] Ferrell JE, Pomerening JR, Young Kim S, Trunnell NB, Xiong W, Fred-
erick Huang C-Y, Machleder EM. Simple, realistic models of complex bi-
ological processes: Positive feedback and bistability in a cell fate switch
and a cell cycle oscillator. FEBS Letters, 583:3999–4005, 2009.



Positive feedback systems 187

[14] Pannala VR, Bhat PJ, Bhartiya S and Venkatesh KV. Systems biology
of Gal regulon in Saccharomyces cerevisiae. WIREs Systems Biology
and Medicine, 2:98-106, 2010.

[15] Acar M, Becskei A and van Oudenaarden A. Anhancement of cellular
memory by reducing stochastic transitions. Nature, 435:228–232, 2005.
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6

Model validation using robustness analysis

6.1 Introduction

Robustness, the ability of a system to function correctly in the presence of
both internal and external uncertainty, has emerged as a key organising prin-
ciple in many biological systems. Biological robustness has thus become a
major focus of research in Systems Biology, particularly on the engineering-
biology interface, since the concept of robustness was first rigorously defined
in the context of engineering control systems. This chapter focuses on one
particularly important aspect of robustness in Systems Biology, i.e. the use
of robustness analysis methods for the validation or invalidation of models
of biological systems. With the explosive growth in quantitative modelling
brought about by Systems Biology, the problem of validating, invalidating
and discriminating between competing models of a biological system has be-
come an increasingly important one. In this chapter, we provide an overview
of the tools and methods which are available for this task, and illustrate the
wide range of biological systems to which this approach has been successfully
applied.

The case for robustness being a key organising principle of biological sys-
tems was first made in an influential series of papers in the early 2000’s, [1, 2].
In these papers, the authors compare the robustness properties of biologi-
cal and engineered systems, and suggest that the need for robustness is a
key driver of complexity in both cases - radically simplified versions of both
jet aircraft and bacteria could be conceived of that would function in highly
controlled “laboratory” conditions, but would lack the robustness properties
necessary to function correctly in highly fluctuating real world environments.
Somewhat paradoxically, the highly complex nature of these systems renders
them “robust yet fragile”, that is, robust to types of uncertainty or varia-
tion that are common or anticipated, but potentially highly fragile to rare or
unanticipated events. For example, biological organisms are usually highly
robust to uncertainty in their environments and component parts but can
be catastrophically disabled by tiny perturbations to genes or the presence
of microscopic pathogens or trace amounts of toxins that disrupt structural
elements or regulatory control networks. Complex biological control systems
such as the heat shock response result in highly robust performance but also

189
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generate new fragilities which must be compensated for by other systems,
[3]. In a similar manner, modern high-performance aircraft are robust to
large-scale atmospheric disturbances, variations in cargo loads and fuels, tur-
bulent boundary layers, and inhomogeneities and aging of materials, but could
be catastrophically disabled by microscopic alterations in a handful of very
large-scale integrated chips or by software failures (in contrast to previous
generations of much more simple “mechanical” aircraft which had little or no
reliance on computers). This theme has since been developed to form the
basis of a coherent theory of biological robustness, [4]-[9].

In this chapter, we focus on one of the most practically useful ideas which
has emerged from this sometimes rather philosophical line of enquiry. This
idea was first made explicit in [10], and is perfectly encapsulated in the title
of the paper: Robustness as a measure of plausibility in models of biochem-
ical networks. The idea is of course an entirely logical consequence of the
recognition of the robust nature of biological systems: if a particular feature
of a system has been shown experimentally to be robust to a certain kind of
perturbation or environmental disturbance, then any proposed model of this
system should also demonstrate the same levels of robustness to simulated
versions of the same perturbations or disturbances. The great advantage of
this idea is that it provides a much more stringent “test” of a proposed model
than the traditional approach of simply asking: does there exist a biologically
plausible set of model parameter values for which the model’s outputs provide
an acceptable match to experimental data?

As the complexity of the quantitative models being developed in Systems
Biology research continues to escalate, it is obvious that it will often be the
case that many, conceptually quite different, models may be proposed to “ex-
plain” the workings of a biological system, and that each of these models
will often have biologically reasonable sets of parameter values which allow
the model to accurately reproduce the experimentally measured dynamics of
the system. Since each of these models encapsulates a different hypothesis re-
garding the workings of the underlying biology, it is clear that further progress
depends on the ability to reliably discriminate between different models, dis-
carding some and focussing on others for further refinement, development and
testing.

Here, we use the term “model validation” to describe this process, although
to be precise, as pointed out in [11], the complete validation of a particular
model is never possible in practice, as it would require infinite amounts of both
data and computational power. Usually, the best one can do is to proceed
by a process of elimination, invalidating more and more competing models
until a single un-invalidated model remains. This model then encapsulates
our current level of understanding of the underlying biology, which may stand
the test of time, or be subsequently refined in the light of new data. The
evaluation of model robustness provides a powerful tool with which to achieve
the goal of developing validated models of biological reality, and this approach
has now been used as an essential part of the model development process for
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a wide range of biological systems, [12, 13, 14, 15, 16, 17].

6.2 Robustness analysis tools for model validation

In this section, we describe the tools and techniques which are available to
evaluate the robustness of models of biological systems to various forms of un-
certainty and variability. Many of these methods were first developed within
the field of control engineering, where linear models, or models with partic-
ular forms of nonlinearity, are typically used for the purposes of design and
analysis. Biological systems, on the other hand, often display highly complex
behaviour, including strong nonlinearities, as well as oscillatory, time-varying,
stochastic and/or hybrid discrete-continuous dynamics. Thus, the application
of these methods in the context of Systems Biology is often far from straight-
forward, and care must often be exercised in interpreting the computed results.
As shown below, however, careful analysis of Systems Biology models using
these tools can often provide significant insight into both the validity of a
particular model, and the underlying biological mechanisms it represents.

6.2.1 Bifurcation diagrams

Biological systems typically operate in the neighbourhood of some nominal
condition, e.g. in biochemical networks the production and degradation rates
of the biochemical compounds are often regulated so that the amounts of each
species remain approximately constant at some levels. When such an equilib-
rium is perturbed by an unpredicted event (e.g. by the presence of exogenous
signalling molecules, like growth factors), a variety of different reactions may
take place, which in general can lead the system either to operate at a differ-
ent equilibrium point, or to tackle the cause of the perturbation in order to
restore the nominal operative condition.

Since, in nonlinear systems, the equilibrium points of a system, and their
stability properties depend not just on the structure of the equations but also
on the values of the parameters, even small changes in the value of a single
parameter can significantly alter the map of equilibrium points, and thus the
dynamic behaviour of the system: this phenomenon is called a bifurcation.
As described in Section 5.2, the variations in the map of equilibrium points
corresponding to changes in one or more model parameters can be effectively
visualised by using a bifurcation diagram, in which the equilibrium values of
some state variable are plotted against the bifurcation parameter.

Bifurcation diagrams are powerful tools for understanding how qualitative
changes in the behaviour of nonlinear Systems Biology models arise due to
parametric uncertainty. As tools for measuring robustness, however, they
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suffer from two significant limitations, namely, that analytical solutions are
available only for low-order models, and that they only provide information
on the effects of varying one or two parameters at a time.∗ Nonetheless, bi-
furcation analysis was the tool used in the first paper proposing the use of
robustness analysis for model validation: in [10], a model of the biochemi-
cal oscillator underlying the Xenopus cell-cycle was represented as a mapping
from parameter space to behavior space, and bifurcation analysis was used
to study the robustness of each region of steady-state behavior to parame-
ter variations. The hypothesis that potential errors in models will result in
parameter sensitivities was tested by analysis of the robustness of two differ-
ent models of the biochemical oscillator. This analysis successfully identified
known weaknesses in an older model and also correctly highlighted why the
more recent model was more plausible. In [18], a bifurcation analysis software
package named AUTO was employed to examine the robustness of a model of
cAMP oscillations in aggregating Dictyostelium cells to variations in each of
the kinetic constants ki in the model, while in [19], the authors use bifurcation
analysis to compare the validity of high and low order models describing regu-
lation of the cyclin-dependent kinase that triggers DNA synthesis and mitosis
in yeast. Finally, in [20], the authors introduce a novel robustness analysis
method for oscillatory models, based on the combination of Hopf bifurcation
analysis and the standard Routh-Hurwitz stability test from linear control
theory.

6.2.2 Sensitivity analysis

Sensitivity analysis is a well-established technique for evaluating the relative
sensitivity of the states or outputs of a model to changes in its parameters. In
this sense, therefore, sensitivity may be interpreted as the inverse of robust-
ness - parameter sensitivities yield a quantitative measure of the deviations in
characteristic system properties resulting from perturbation of system param-
eters, and thus a higher (absolute) sensitivity of a parameter implies a lower
robustness of the corresponding element of a model. The classical approach to
sensitivity analysis considers small variations in a single parameter at a time.
For the autonomous dynamical system described by the ordinary differential
equation

ẋ = f (x(t), p, t) (6.1)

with time t ≥ t0, the nS × 1 vector of state variables x, the nP × 1 vector of
model parameters p, and initial conditions x(t0) = x0, parameter sensitivities
with respect to the system’s states along a specific trajectory S(t) (the nS×nP

∗In principle, one could consider more parameters but the dynamic behaviour near bi-
furcations with codimension higher than three is usually so poorly understood that the
computation of such points is not worthwhile.
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matrix of state sensitivities) are defined by†

S(t) =
δx

δp
(6.2)

To allow for easier comparisons to be made between different models, the sen-
sitivity of each parameter pj may be integrated over discrete time points along
the system’s trajectory from T0 to TnT

, and normalised to relative sensitivity
(log-gain sensitivity) to give the overall state sensitivity for parameter pj

SOj(t) =
1

nS
pj

(

nT
∑

k=1

nS
∑

i=1

[

1

xi

δxi(tk, t0)

δpj

]2
)1/2

(6.3)

The sensitivity of each parameter with respect to any model output, or other
characteristic, may be evaluated in the same way, for example, the sensitivity
of the period and amplitude of an oscillatory system are evaluated, respec-
tively, as

Sτ =
δτ

δp
, and SAi

=
δAi

δp
. (6.4)

It is important to note that the above parameter sensitivities are only valid
locally with respect to a particular point in the model’s parameter space, that
is, in a neighborhood of a specific parameter set. They thus only provide
information on the robustness of a particular parameterisation of a model,
and care must be taken in interpreting their values globally.

To derive global measures of parametric sensitivity, [21], some kind of grid-
ding or sampling strategy must be used, in order to evaluate the relative
sensitivity of different parameters over the full range of their allowable val-
ues. Of course, this significantly increases the associated computational cost,
and also makes the direct comparison of the sensitivity of different parame-
ters more difficult (relative sensitivities may vary across different regions of
parameter space).

Nevertheless, in [22], the above sensitivity metrics were successfully used
to investigate the specific structural characteristics that are responsible for
robust performance in the genetic oscillator responsible for generating circa-
dian rhythms in Drosophila. By systematically evaluating local sensitivities
throughout the model’s parameter space, global robustness properties linked
to network structure could be derived. In particular, analysis of two math-
ematical models of moderate complexity showed that the tradeoff between
robustness and fragility was largely determined by the regulatory structure.
An analysis of rank-ordered sensitivities allowed the correct identification of
protein phosphorylation as an influential process determining the oscillator’s
period. Furthermore, sensitivity analysis confirmed the theoretical insight

†Of course, analytical expressions for the relevant derivatives will rarely be available and
thus numerical approximations will typically have to be employed
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that hierarchical control might be important for achieving robustness. The
complex feedback structures encountered in vivo were shown to confer robust
precision and adjustability of the clock while avoiding catastrophic failure.

Two recent papers have proposed effective strategies for overcoming the
local, one-parameter-at-a-time limitations of traditional sensitivity analysis.
In [23], the authors used sensitivity analysis to validate a new computational
model of signal transducer and activator of transcription-3 (Stat3) pathway
kinetics, a signaling network involved in embryonic stem cell self-renewal.
Transient pathway behaviour was simulated for a 40-fold range of values for
each model parameter in order to generate Stat3 activation surfaces - by ex-
amining these surfaces for local minima and maxima, non-monotonic effects of
individual parameters could be identified and isolated. This analysis provided
a range of parameter variations over which Stat3 activation is monotonic, thus
facilitating a global sensitivity analysis of parameter interactions. To do this,
groups of parameters which had a similar impact on pathway output were
clustered together, so that the effects of varying multiple parameters at a
time could be analysed visually using a clustergram.

This analysis allowed the identification of groups of parameters that con-
tribute to pathway activation or inhibition, as well as other interesting path-
way interactions. For example, it was found that simultaneously changing
the parameters determining the nuclear export rate of Stat3 and the rate of
docking of Stat3 on activated receptors influenced Stat3 activation more sig-
nificantly than either of these parameters in isolation or in combination with
any other parameters. It was further demonstrated that nuclear phosphatase
activity, inhibition of SOCS3, and Stat3 nuclear export most significantly
influenced Stat3 activation. These results were unaffected by how much pa-
rameters were changed, and could be averaged over different fold-changes in
parameter values. The results of the sensitivity analysis were experimentally
validated by using chemical inhibitors to specifically target different pathway
activation steps and comparing the effects on the resultant Stat3 activation
profiles with model predictions.

A different approach was adopted in [24], to produce what the authors refer
to as a “glocal” robustness analysis, (see Fig. 6.1), of two competing models
of the cyanobacterial circadian oscillator. This two stage approach begins by
sampling a large set of parameter combinations spanning several orders of
magnitude for each parameter. From this sampling a subset of “viable” pa-
rameter combinations is selected which preserves the particular performance
features of interest. Further sampling is conducted via an iterative scheme,
where in each step the sampling distribution is adjusted based on a Principle
Component Analysis (PCA) of the viable set of the previous step. After a
Monte Carlo integration, the volume occupied by the set provides a first, crude
characterisation of a model’s robustness and can aid in model discrimination
by proper normalisation. The second stage of the proposed approach defines
a set of appropriate normalised local robustness metrics, e.g. a measure of
how fast the oscillator returns to its cycling behavior when its trajectory is
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FIGURE 6.1: “Glocal” robustness analysis method, [24].

transiently perturbed with the use of Floquet multipliers, or the sensitivity
of the period to perturbations in individual parameters or parameter vectors.
These metrics are then evaluated for each viable parameter combination iden-
tified in the previous stage, and statistical tests are used to assess the analysis
results.

Using this approach, two models based on fundamentally different assump-
tions about the underlying mechanism of the cyanobacterial circadian oscilla-
tor, termed the autocatalytic and two (phosphorylation) sites models, respec-
tively, were compared in [24]. The results of this analysis showed that the
two-sites model had significantly better global and overall local robustness
properties than the other model, hence making the assumptions on which it
is based a more plausible explanation of the underlying biological reality.
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6.2.3 µ-analysis

In this section, we describe a tool for measuring the robustness of a model
to simultaneous variations in the values of several of its parameters. Since
its introduction in the early days of robust control theory, [25, 26, 27], the
structured singular value or µ has become the tool of choice among control
engineers for the robustness analysis of complex uncertain systems.

It is generally possible to arrange any linear time invariant (LTI) system
which is subject to some type of norm-bounded uncertainty in the form shown
in Fig. 6.2, where M represents the known part of the system and ∆ represents
the uncertainty present in the system. Partitioning M compatibly with the ∆

∆
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- y
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FIGURE 6.2: Upper LFT uncertainty description

matrix, the relationship between the input and output signals of the closed-
loop system shown in Fig. 6.2 is then given by the upper linear fractional
transformation (LFT):

y = Fu(M, ∆) r = (M22 + M21∆(I −M11∆)−1M12) r (6.5)

Now, assuming that the nominal system M in Fig. 6.2 is asymptotically stable
and that ∆ is a complex unstructured uncertainty matrix, the Small Gain
Theorem, [27], gives the following result:
The closed-loop system in Fig. 6.2 is stable if

σ(∆(jω)) <
1

σ(M11(jω))
∀ ω (6.6)

where σ denotes the maximum singular value. The above result defines a
test for stability (and thus a robustness measure) for a system subject to
unstructured uncertainty in terms of the maximum singular value of the matrix
M11.

Now, in cases where the uncertainty in the system arises due to variations
in specific parameters, the uncertainty matrix ∆ will have a diagonal or block
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diagonal structure, i.e.,

∆(jω) = diag(∆1(jω), .....,∆n(jω)), σ(∆i(jω)) ≤ k ∀ ω (6.7)

Now again assume that the nominal closed-loop system is stable, and consider
the question: What is the maximum value of k for which the closed-loop
system will remain stable? We can still apply the Small Gain Theorem to the
above problem, but the result will be conservative, since the block diagonal
structure of the matrix ∆ will not be taken into account. The SGT will in
effect assume that all of the elements of the matrix ∆ are allowed to be non-
zero, when we know that most of the elements are in fact zero. Thus the
SGT will consider a larger set of uncertainty than is in fact possible, and the
resulting robustness measure will be conservative, i.e. pessimistic.

In order to get a non-conservative solution to this problem, Doyle, [25],
introduced the structured singular value µ:

µ∆(M11) =
1

min(k s.t. det(I −M11∆) = 0)
(6.8)

The above result defines a test for stability (robustness measure) of a closed-
loop system subject to structured uncertainty in terms of the maximum struc-
tured singular value of the matrix M11. Singular value performance require-
ments can also be combined with stability robustness analysis in the µ frame-
work to measure the robust performance properties of the system.

An obvious limitation of the µ framework is that it can only be applied to
linear systems and thus only provides local robustness guarantees about an
equilibrium. A second complicating factor is that the computation of µ is an
NP hard problem, i.e. the computational burden of the algorithms that com-
pute the exact value of µ is an exponential function of the size of the problem.
It is consequently impossible to compute the exact value of µ for large di-
mensional problems, but an effective solution in this case is to compute upper
and lower bounds on µ, and efficient routines for µ-bound computation are
now widely available [28]. Note that to fully exploit the power of the struc-
tured singular value theory, tight upper and lower bounds on µ are required.
The upper bound provides a sufficient condition for stability/performance in
the presence of a specified level of structured uncertainty. The lower bound
provides a sufficient condition for instability, and also returns a worst-case ∆,
i.e. a worst-case combination of uncertain parameters for the problem. The
degree of difficulty involved in computing good bounds on µ depends on (a)
the order of the ∆ matrix, and (b) whether ∆ is complex, real or mixed - see
[28] for a full discussion.

In [18], µ-analysis was employed to evaluate the robustness of a biochemical
network model which had been proposed to explain the capability of aggre-
gating Dictyostelium cells to produce stable oscillations in the concentrations
of intra- and extra-cellular cAMP. Due to the large number of uncertain pa-
rameters in the model, standard routines for computing lower bounds on µ
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FIGURE 6.3: µ bounds for Dictyostelium network robustness analysis, [29].

failed for this problem, so that only an upper bound could be computed. In-
terestingly, and in contrast to the results of a parameter-at-a-time sensitivity
analysis, this upper bound suggested a possible high degree of fragility in
the model. This lack of robustness was subsequently confirmed by further
analyses using a newly-developed µ lower bound algorithm [29]. As shown
in Fig. 6.3, simultaneous perturbations in the models kinetic parameters of
1/723 = 0.14% are sufficient to destabilise the oscillations, in stark contrast
to the original claims that variations in model parameters over several orders
of magnitude had little effect on its dynamics.

µ-analysis was also successfully employed in [30, 31, 32] to investigate the
structural basis of robustness in the mammalian circadian clock. Systematic
perturbations in the model structure were introduced, and the effects on the
functionality of the model were quantified using the peak value of µ. Although
in principle only one feedback loop involving the Per gene is required in the
chosen clock model to generate oscillations, analysis using the structured sin-
gular value revealed that the presence of additional feedback loops involving
the Bmal1 and Cry genes significantly increases the robustness of the regula-
tory network. In, [33], a similar approach was also used to validate models of
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oscillatory metabolism in activated neutrophils.

6.2.4 Optimisation-based robustness analysis

In robustness analysis, numerical optimisation algorithms can be used to
search for particular combinations of parameters in the model’s parameter
space that maximise the deviation of the model’s dynamic behaviour from
experimental observations over a certain simulation time period. This type of
search can be formulated as an optimisation problem of the form

max
p

c(x, p) subject to p ≤ p ≤ p (6.9)

where x is a vector of model parameters with upper and lower bounds p and p,
respectively, and c(x, p) is an objective function or cost function representing
the difference between the simulated outputs of the model and one of more
sets of corresponding experimental data. By systematically varying the al-
lowed level of uncertainty (defined by p and p) in the model’s parameters,
and using the optimisation algorithm to compute the values of the model pa-
rameters which maximise this function, an accurate assessment of the model’s
robustness can be derived. A particular advantage of this approach is that
it places little or no constraints on the form or complexity of the model -
as long as it can be simulated with reasonable computational overheads, no
additional modelling or analytical work is required to apply this approach.
This is in sharp contrast to certain analytical approaches, such as µ-analysis
or Sum-of-Squares programming (see below) which require the model to be
represented in a particular form before any analysis can be conducted.

Due to the complex dynamics and large number of uncertain parameters
in many Systems Biology models, the optimisation problems arising in the
context of robustness analysis will generally be non-convex, and thus local
optimisation methods, which can easily get locked into local optima in the
case of multimodal search spaces, are often of limited use. Global optimisa-
tion methods, whether based on evolutionary principles, [34], or deterministic
heuristics, [35], are usually much more effective, especially when coupled with
local gradient-based algorithms via a hybrid switching strategy, [36]. This
was the approach adopted in [37], where numerical optimisation algorithms
were applied directly to a nonlinear biochemical network model to confirm
an apparent lack of robustness indicated by a linear analysis using the struc-
tured singular value. Interestingly, it appears that the idea of using global
optimisation to analyse the robustness and validity of complex simulation
models was not first proposed in an engineering context, but by social sci-
entists, who labeled the technique “Active Nonlinear Tests (ANTs)”, [38].
Optimisation-based approaches have also recently been successfully applied
to validate medical physiology simulation models in [39].



200 An Introduction to Feedback Control in Systems Biology

6.2.5 Sum-of-Squares polynomials

Sum-of-Squares (SOS) programming has recently been introduced in the Sys-
tems Biology literature as a powerful new framework for the analysis and
validation of a wide class of models, including those with nonlinear, contin-
uous, discrete and hybrid dynamics, [40, 41]. A polynomial p(y), with real
coefficients, where y ∈ Rn, admits an SOS decomposition if there exist other
polynomials q1, ..., qm such that

p(y) =
m
∑

i=1

q2
i (y) (6.10)

where the subscripts denote the index of the m polynomials. If p(y) is SOS,
it can be easily seen that p(y) ≥ 0 for all y, which means that p(y) is non-
negative. Polynomial non-negativity is a very important property (as many
problems in optimisation and systems theory can be reduced to it) which is
however very difficult to test (it has been shown to be NP-hard for polynomials
of degree greater than or equal to 4). The existence of a SOS decomposition
is a powerful relaxation for non-negativity because it can be verified in poly-
nomial time. The reason for this, [42], is that p(y) being SOS is equivalent to
the existence of a positive semidefinite matrix Q (ie, Q is symmetric and with
non-negative eigenvalues) and a chosen vector of monomials Z(y) such that

p(y) = ZT (y)QZ(y) (6.11)

This means that that the SOS decomposition of p(y) can be efficiently com-
puted using Semidefinite Programming, and software capable of formulating
and solving these types of problems is now widely available, [41]. To see how
this framework can be applied to the problem of model validation (or more
precisely, model invalidation), consider a model in the form of an autonomous,
ordinary differential equation (ODE)

ẋ = f(x, p) (6.12)

where p is a vector in the allowable set of parameters P for the model and f
satisfies appropriate smoothness conditions in order to ensure that given an
initial condition there exists a locally unique solution. Now, for the system in
question, assume that a set of experimental data (ti, x̂i) for i = 1, ..., N exists,
where the data points x̂i ∈ Xi. Thus the sets P and Xi encode the uncertainty
in the model parameters and the uncertainty in the data due to experimental
error, respectively. We assume that these sets are semi-algebraic, i.e., that
they can be described by a finite set of polynomial inequalities. For example,

if x̂
(i)
1 ∈

[

x̂
(i)
1 , x̂

(i)
1

]

for i = 1, ..., n, where x̂
(i)
1 refers to the ith element of

the experimental data taken at time t1, then we obtain the n-dimensional
hypercube:

X1 =
[

x̂i ∈ Rn|
(

x̂
(i)
1 − x̂

(i)
1

)(

x̂
(i)
1 − x̂

(i)
1

)

≤ 0, i = 1, ..., n
]

(6.13)
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To invalidate this model, using this set of data, we need to show that no choice
of model parameters from the set P will allow the model to match any data
point in the set Xi, i.e. that the set of measured experimental observations
is incompatible with the “set” of models defined by P . Note that in order to
invalidate a model, one data point at t = L where L ∈ {2, ..., N}, together
with the initial time point t1, is sufficient (usually the point with the largest
residual between the nominal model and the data is selected).

The above problem can be solved using SOS programming via a method
similar in concept to that of constructing a Lyapunov function to establish
equilibrium stability. Lyapunov functions ensure the stability property of a
system by guaranteeing that the state trajectories do not escape their sub-level
sets. In [40], the related concept of barrier certificates is introduced. These
are functions of state, parameter and time, whose existence proves that the
candidate model is invalid given a parameter set and experimental data, by
ensuring that the model behaviour does not intersect the set of experimental
data. Consider a system of the form given in Eq. (6.12), and assume that
x ∈ X ∈ Rn. Given this information, if it can be shown that for all possible
system parameters p ∈ P the model cannot produce a trajectory x(t) such that
x(t1) ∈ X1, x(tL) ∈ XL and x(t) ∈ X for all t ∈ [t1, tL], then the model and
parameter set are invalidated by X1,XL,X . This idea leads to the following
result, [40]:
Given the candidate model (6.12) and the sets X1,XL,X ,P , suppose there
exists a real valued function B(x, p, t) that is differentiable with respect to x
and t such that

B(xL, p, tL)−B(x1, p, t1) > 0, ∀(xL, x1, p) ∈ XL ×X1 × P ,

δB(x, p, t)

δx
f(x, p) +

δB(x, p, t)

δt
≤ 0, ∀(x, p, t) ∈ X × P × [t1, tL].

Then the model is invalidated by X1,XL,X and the function B(x, p, t) is called
a barrier certificate.

A key advantage of SOS programming is that these barrier certificates can
be constructed algorithmically using Semidefinite Programming and SOS-
TOOLS software. Using this approach, it was shown in [11] how a barrier cer-
tificate could be constructed for a simple generic biochemical network model,
hence invalidating the model over a certain range of its parameters for a given
set of time-course data, while in [44] it was shown how the same approach
could be used to test a model of G-protein signalling in yeast. In [43] SOS
tools were employed for the design of input experiments which maximise the
difference between the outputs of two alternative models of bacterial chemo-
taxis. This approach can be used to design experiments to produce data that
are most likely to invalidate incorrect model structures.

The main advantages of the SOS approach is that it can be applied to
nonlinear models and that it is simulation-free, i.e. the results are analytical
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and thus provide deterministic guarantees. This is in contrast to simulation-
based approaches which, for example, can never “prove” that a model with
a given set of uncertain parameters will not enter a defined region of state
space (although of course in practice one can obtain answers to such questions
with arbitrarily high statistical confidence if one is prepared to run enough
simulations - see below). The main limitation of SoS techniques, aside from
certain restrictions they place on the form of the model equations, is due
to the computational limitations of the semidefinite programming software,
which currently prohibits their application to high-order models.

6.2.6 Monte Carlo simulation

Monte Carlo simulation has for many years been the method of choice in
the engineering industry for examining the effects of uncertainty on complex
simulation models. The method is extremely simple, and relies on repeated
simulation of the system over a random sampling of points in the model’s
parameter space. The sampling of the system’s parameter space is usually
carried out according to a particular probability distribution, for example,
if there are reasons to believe that it is more likely for the system’s actual
parameter values to be near the nominal model values than to be near their
uncertainty bounds, then a normal distribution may be used, whereas if no
such information is available a uniform distribution may be chosen. For a
given number of samples of a system’s parameter space, statistical results can
be derived which may be used to evaluate the effects of uncertainty on the
system’s behaviour. For the purposes of robustness analysis, these results pro-
vide probabilistic confidence levels that the extremal behaviour found among
the Monte Carlo simulations is within some distance of the true “worst-case”
behaviour of the system.

The numbers of Monte Carlo simulations required to achieve various lev-
els of estimation uncertainty with different confidence levels were calculated
using the Chebyshev inequality and central limit theorem in [45] and are re-
produced here in Table 6.1. Alternatively, if we use the well-known Chernoff
bound, [46, 47], to estimate the number of simulations required, the numbers
are as shown in Table 6.2. Note that in both cases it is clear that the number
of samples required to produce a given set of statistical results is indepen-
dent of the number of uncertain parameters in the model, and this, together
with the absence of any requirements on the form of the model, represents
the main advantage of Monte Carlo simulation for robustness analysis. The
key disadvantage of the approach, however, is also readily apparent from the
tables, namely, the exponential growth in the number of simulations with re-
spect to the statistical confidence and accuracy levels required - typically at
least 1000 simulations would be required in engineering applications before the
statistical performance guarantees would be considered reliable. Although
the statistical nature of the results generated using Monte Carlo simulation
can sometimes hinder the comparison of the robustness properties of different
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Table 6.1: Numbers of simulations for various confidence and accuracy levels
(derived using the Chebyshev inequality and central limit theorem, [45])

Percent of estimation uncertainty 20% 15% 10% 5% 1%
Uncertainty probability range

0.750 → 0.954 25 45 100 400 10,000
0.890 → 0.997 57 100 225 900 22,500
0.940 → 0.999 100 178 400 1,600 40,000

Table 6.2: Numbers of Monte Carlo Simulations required for various confi-
dence and accuracy levels (derived using the Chernoff bound, [46])

% Confidence Accuracy level ǫ No. of simulations
99% 0.05 1,060

99.9% 0.01 27,081
99.9% 0.005 108,070

models, one very useful capability of this approach is that it allows the char-
acterisation of the size and shape of robust or non-robust regions of parameter
space. This is often an important issue in robustness analysis, since it is clear
that a model which fails a robustness test due to a single (perhaps biologically
unrealistic) parameter combination should not be considered equivalent to a
model which contains a large region of points which fail the same test. For
example, in [37], Monte Carlo simulation was used to establish that the loss of
oscillatory behaviour of a biochemical network model was not due to a single
point but to a significant region in its parameter space. In [48], the robustness
of models of the direct signal transduction pathway of receptor-induced apop-
tosis was evaluated via Monte Carlo simulation. By analysing the topology of
robust regions of parameter space, the robustness of the bistable threshold be-
tween cell reproduction and death could be evaluated in order to discriminate
between competing models of the network.

6.3 New robustness analysis tools for biological systems

The growth in interest in the notion of robustness in Systems Biology research
over the last decade has been remarkable, and must represent one of the most
striking examples of the wholesale transfer of an idea from the field of engi-
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neering to the life sciences. Along with this interest in biological robustness
per se, has come the recognition that many of the tools and methods that
have been developed within engineering to analyse the robustness of complex
systems can be usefully employed by Systems Biologists in their efforts to
develop and validate computational models. In a pleasing example of inter-
disciplinary feedback, this interest has recently spurred the development of
several new techniques which are specifically oriented towards the analysis of
biological systems.

In [49], for example, a computational approach was developed to investigate
generic topological properties leading to robustness and fragility in large-scale
biomolecular networks. This study found that networks with a larger number
of positive feedback loops and a smaller number of negative feedback loops
are likely to be more robust against perturbations. Moreover, the nodes of a
robust network subject to perturbations are mostly involved with a smaller
number of feedback loops compared with the other nodes not usually subject
to perturbations. This topological characteristic could eventually make the
robust network fragile against unexpected mutations at the nodes which had
not previously been exposed to perturbations. In [50, 51], novel analytical
approaches were developed for estimating the size and shape of robust regions
in parameter space, which could provide useful complements or alternatives
to traditional Monte Carlo analysis.

An evolutionary perspective on the generation of robust network topologies
is provided in [14], where several hundred different topologies for a simple bio-
chemical model of circadian oscillations were investigated in silico. This study
found that the distribution of robustness among different network topologies
was highly skewed, with most showing low robustness, and a very few topolo-
gies (involving the regulatory interlocking of several oscillating gene products)
being highly robust. To address the question of how robust network topolo-
gies could have evolved, a topology graph was defined, each of whose nodes
corresponds to one circuit topology that shows circadian oscillations. Two
nodes in this graph are connected if they differ by only one regulatory in-
teraction within the circuit. For the circadian oscillator under consideration,
it could be shown that most topologies are connected in this graph, thus fa-
cilitating evolutionary transitions from low to high robustness. Interestingly,
other studies of the evolution of robustness in biological macromolecules have
generated similar results, suggesting that the same principles may govern the
evolution of robustness on different levels of biological organisation.

A series of recent papers have introduced the notion of “flexibility” as an
important counterpoint to robustness, particularly in the context of circadian
clocks, [52, 53]. Flexibility measures how readily the rhythmic profiles of all
the molecular clock components can be altered by modifying the biochemi-
cal parameters or environmental inputs of the clock circuit. Robustness, on
the other hand, describes how well a biological function, such as the phase
of a particular clock component, is maintained under varying conditions. As
noted in [52, 53], the relationship between these two high-level properties can



Model validation using robustness analysis 205

be a rather complex one, depending on the particular properties of the sys-
tem of interest. This is because, although flexibility might be assumed to
imply decreased robustness by increasing sensitivity to perturbations, in cer-
tain cases it can also yield greater robustness by enhancing the ability of the
network to tune key environmental responses. This somewhat paradoxical
result was nicely illustrated through the analysis of a model of the fungal cir-
cadian clock, which is based on the core FRQ-WC oscillator that incorporates
both negative frq and positive wc-1 loops, as well as part of the light-signalling
pathway. By introducing a simple measure of the flexibility of the network,
based on quantifying how outputs of the entrained clock vary under parameter
perturbations achievable by evolutionary processes, the authors demonstrate
that the inclusion of the positive wc-1 feedback loop yields a more flexible
clock. This increased flexibility is shown to be primarily characterised by a
greater flexibility in entrained phase, leading to enhanced robustness against
photoperiod fluctuations.

Another fundamental topic in Systems Biology is the effect of intrinsic
stochastic noise on the stability of biological network models. Promising initial
adaptations of traditional control engineering analysis techniques to address
this issue were recently reported in [54, 55], and there is clearly tremendous
scope for extending these results to deal with related robustness analysis prob-
lems.

The outlook for future research in this area is very positive, as the range of
biological systems to which the approach to model validation outlined in this
chapter is applied will no doubt continue to grow. This process will necessitate
the development of new robustness analysis tools, which can handle models
which do not fall into the traditional category of differential equation-based
systems, e.g. Boolean network models, Bayesian networks, hybrid dynamical
systems, etc.. As usual, progress is likely to be most rapid on the interface
between traditionally separate domains of expertise, e.g. statistics and dy-
namical systems, [56], or evolutionary theory and control theory, [57, 58].
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6.4 Case Study IX: Validating models of cAMP oscilla-

tions in aggregating Dictyostelium cells

A series of recent papers have used robustness analysis to interrogate and
extend a model, originally proposed in [59] and shown in Fig. 2.23, of the
biochemical network underlying stable oscillations in cAMP in aggregating
Dictyostelium cells.

The dynamics of this network model, which is described in detail in Case
Study II, were shown in [59] to closely match experimental data for the period,
relative amplitudes and phase relationships of the oscillations in the concen-
trations of the molecular species involved in the network. Based on ad-hoc
simulations, the model was also claimed to be robust to very large changes
in the values of its kinetic parameters, and this robustness was cited as a key
advantage of the model over previously published models in the literature.
However, a formal analysis of the robustness of the model to simultaneous
variations in the values of its kinetic constants, using the structured singular
value µ and global nonlinear optimisation, revealed extremely poor robustness
characteristics, [37], as shown in Fig. 6.3. This rather surprising result merited
further investigation in a number of follow-up studies, since the experimental
justification for the proposed network structure appeared sound.

The first of these studies, [60], used Monte Carlo simulation to evaluate
the effects of intrinsic stochastic noise, as well as the effects of synchronisa-
tion between individual Dictyostelium cells, on the robustness of the resulting
cAMP oscillations. Interestingly, the effect of intrinsic noise was to enhance
the robustness of cAMP oscillations to variations between cells, while syn-
chronisation of oscillations between cells via a shared pool of external cAMP
also significantly improved the robustness of the system. Finally, two further
studies suggested a significant role for other subnetworks involving calcium
and IP3 in generating robust oscillations, [61, 62]. Using a combination of
structural robustness analysis [61] and biophysical modelling [62], an extended
model including these subnetworks (Fig. 6.4) was constructed which exhibited
significantly higher robustness than the original model, as shown in Fig. 6.5.
The results of these studies clearly illustrate the power of robustness analysis
techniques to analyse, develop and refine computational models of biochemical
networks.
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FIGURE 6.4: An extended model of the Dictyostelium cAMP oscillatory
network incorporating coupled sub-networks involving Ca2+ and IP3

FIGURE 6.5: A comparison of the robustness of the original and extended
model to variations in four kinetic parameters common to both models. Anal-
ysis conducted using Monte Carlo simulations with three different levels of
parametric uncertainty.
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6.5 Case Study X: Validating models of the p53-Mdm2

System

Several recent studies have attempted to develop computational models of the
complex dynamics of the p53-Mdm2 system. In [63], the authors developed
a model in which ATM, a protein that senses DNA damage, activates p53 by
phosphorylation. Activated p53 is modelled as having a decreased degradation
rate and an enhanced transactivation of Mdm2. The model includes two
explicit time delays, the first representing the processes (primarily, elongation
and splicing) underlying the transcriptional production of mature, nuclear
Mdm2 mRNA, and the second representing Mdm2 transport to the cytosol,
translation to protein and transport of Mdm2 protein into the nucleus. As
part of the model development process, the authors examined a large number
of variations in their model to evaluate its robustness. For example, they
explored other kinetics for ATM activation of p53 and Mdm2 ubiquitination
of p53 and considered the effects of adding both Mdm2-dependent and Mdm2-
independent ubiquitination of active p53. In all cases, the model was shown to
be robust to such changes, and the conclusions arising from its analysis did not
change. An investigation of the effects of varying different model parameters
was carried out using bifurcation analysis, and this analysis produced new
predictions regarding the source of robustness in the oscillatory dynamics.
For example, with activated ATM-stimulated Mdm2 degradation, sustained
oscillations occurred in the model if the total time delay is more than a 16
minute threshold. When the activated ATM-dependent degradation of Mdm2
was removed, however, while keeping the rest of the model parameters at their
nominal values, then there are no sustained oscillations regardless of how high
the time delay and the DNA damage is. Thus, the mechanism of activated
ATM-dependent degradation of Mdm2 appears to be a key factor in ensuring
oscillatory robustness in this system.

Another recent study of the p53 system considered six different mathe-
matical models of the p53Mdm2 system, [64]. All of the models include the
negative feedback loop in which p53, denoted by x, transcriptionally activates
Mdm2, denoted by y, and active Mdm2 increases the degradation rate of p53.
Three of the models were delay oscillators: Model I includes an Mdm2 pre-
cursor representing, for example, Mdm2 mRNA, and the action of y on x is
described by first-order kinetics in both x and y. In model IV, the action of y
on x is nonlinear, and described by a saturating Michaelis–Menten function.
In model III, the Mdm2 precursor is replaced by a stiff delay term, which
makes the production rate of Mdm2 depend directly on the concentration of
p53 at an earlier time. Note that the model of [63] described above com-
bines features of models III and IV. In addition to the three delay oscillators,
the authors also considered two relaxation oscillators (II and V) in which the
negative feedback loop is supplemented by a positive feedback loop on p53.
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This positive feedback loop might represent in a simplified manner the action
of additional p53 system components, which have a total upregulating effect
on p53. These models include both linear positive regulation (model V) and
nonlinear regulation based on a saturating function (model II). Models (I-V),
although differing in detail, all rely on a single negative feedback loop. The
last model (VI) considered in the study proposes a novel checkpoint mech-
anism, which uses two negative feedback loops, one direct feedback and one
longer loop that impinges on an upstream regulator of p53. In this model,
a protein downstream of p53 inhibits a signaling protein that is upstream of
p53.

In order to discriminate between these six different models of the p53 sys-
tem, all six models were numerically solved for a wide range of parameter
values and their robustness was evaluated. Models I-III were shown to be
incapable of robustly producing stable undamped oscillations, while, in con-
trast, models IV-VI could generate sustained or weakly damped oscillations
over a broad range of parameter values. Interestingly, most of the parameters
shared by these three models showed very similar best-fit values, indicating
that these models may provide estimates of the effective biochemical parame-
ters such as production rates and degradation times of p53 and Mdm2. When
low-frequency multiplicative noise was added to the protein production terms
in the model to take account of stochasticity in protein production rates, all
models showed qualitatively similar dynamics to those found in experiments,
including occasional loss of a peak. However, only model VI was able to
reproduce the authors’ experimental observations that p53 and Mdm2 peak
amplitudes had only a weak correlation (all other models had a strong cou-
pling in the variations of the peaks of these two proteins).

Finally, a recent study of the robustness of the p53 protein-interaction net-
work, [65], shows that the idea of robustness analysis can also be usefully
applied at the topological network level. By subjecting the model to both
random and directed perturbations representing stochastic gene knockouts
from mutation during tumourigenesis, the p53 cell-cycle and apoptosis con-
trol network could be shown to be inherently robust to random knockouts of
its genes. Importantly, this robustness against mutational perturbation was
seen to be provided by the structure of the network itself. This robustness
against mutations, however, also implies a certain fragility, as the reliance on
highly-connected nodes makes it vulnerable to the loss of its hubs. Evolution
has produced organisms that exploit this very weakness in order to disrupt the
cell-cycle and apoptosis system for their own ends: tumour inducing viruses
(TIVs) target specific proteins to disrupt the p53 network, and this study
identified these same proteins as the network hubs. Although TIVs had pre-
viously been likened to “biological hackers”, this study showed why the TIV
attack is so effective: TIVs target a specific vulnerability of the network that
can be explained by analysing the robustness of the network architecture.
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7

Reverse Engineering Biomolecular Networks

7.1 Introduction

Fundamental breakthroughs in the field of biotechnology over the last decade,
such as cDNA microarrays and oligonucleotide chips [1, 2], have made high-
throughput and quantitative experimental measurements of biological systems
much easier and cheaper to make. The availability of such an overwhelming
amount of data, however, poses a new challenge for modelers: how to reverse
engineer biological systems at the molecular level using their measured re-
sponses to external perturbations (e.g. drugs, signalling molecules, pathogens)
and changes in environmental conditions (e.g. change in the concentration of
nutrients or in the temperature level). In this chapter, we provide an overview
of some promising approaches, based on techniques from systems and control
theory, for reverse engineering the topology of biomolecular interaction net-
works from this kind of experimental data. The approaches provide a useful
complement to the many powerful statistical techniques for network inference
that have appeared in the literature in recent years, [3].

7.2 Inferring network interactions using linear models

A standard approach to model the dynamics of biomolecular interaction net-
works is by means of a system of ordinary differential equations (ODEs) that
describes the temporal evolution of the various compounds present in the sys-
tem [4, 5]. Typically, the network is modelled as a system of rate equations
in the form

ẋi(t) = fi(x(t), p(t), u(t)) , (7.1)

for i = 1, . . . , n with x = (x1, . . . , xn)T ∈ Rn, where the state variables
xi denote the quantities of the different compounds (e.g. mRNA, proteins,
metabolites) at time t, fi is a function that describes the rate of change of
the state variable xi and its dependence on the other state variables, p is the
parameter set and u is the vector of external perturbation signals.
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The level of detail and the complexity of these kinetic models can be ad-
justed, through the choice of the rate functions fi, by using more or less
detailed kinetics, i.e. specific forms of fi (linear or specific types of nonlinear
functions). Moreover, it is possible to adopt a more or less simplified set of
entities and reactions, e.g. choosing whether to take into account mRNA and
protein degradation, or delays for transcription, translation and diffusion time
[4]. When the order of the system increases, nonlinear ODE models quickly
become intractable in terms of parametric analysis, numerical simulation and
especially for identification purposes. Indeed, if the nonlinear functions fi

are allowed to take any form, determination of a unique solution to the infer-
ence problem becomes impossible even for quite small systems. Due to the
above issues, although biomolecular networks are characterised by complex
nonlinear dynamics, many network inference approaches are based on linear
models or are limited to very specific types of nonlinear functions. This is a
valid approach because, at least for small excursions of the relevant quantities
from the equilibrium point, the dynamical evolution of almost all biological
networks can be accurately described by means of linear systems, made up of
ODEs in the continuous–time case, or difference equations in the discrete–time
case (see [6, 7, 8, 9, 10, 11] and references therein).

Consider the continuous–time LTI model

ẋ(t) = Ax(t) + Bu(t) , (7.2)

where x(t) = (x1(t), . . . , xn(t))T ∈ Rn, the state variables xi, i = 1, . . . , n,
denote the quantities of the different compounds present in the system (e.g.
mRNA concentrations for gene expression levels), A ∈ Rn×n is the state tran-
sition matrix (the Jacobian of f(x)) and B ∈ Rn×1 is a vector that determines
the direct targets of external perturbations u(t) ∈ R (e.g. drugs, overexpres-
sion or downregulation of specific genes), which are typically induced during
in vitro experiments. Note that the derivative (and therefore the evolution)
of xi at time t is directly influenced by the value xj(t) iff Aij 6= 0. Moreover,
the type (i.e. promoting or inhibiting) and extent of this influence can be as-
sociated with the sign and magnitude of the element Aij , respectively. Thus,
if we consider the state variables as quantities associated with the vertices
of a directed graph, the matrix A can be considered as a compact numerical
representation of the network topology. Since, in graph theory, two vertices
are called adjacent when there is at least one edge connecting them, we can
also denote A as the weighted adjacency matrix of the underlying network,
where Aij is the weight of the edge j → i. Therefore, the topological reverse
engineering problem can be recast as the problem of identifying the dynam-
ical system (7.2). A possible criticism of this approach could be raised with
respect to the use of a linear model, which is certainly inadequate to capture
the complex nonlinear dynamics of certain molecular reactions. However, this
criticism would be reasonable only if the aim was to identify an accurate
model of large changes in the states of a biological system over time, and this
is not the case here. If the goal is simply to describe the qualitative functional
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relationships between the states of the system when the system is subjected to
perturbations, then a first–order linear approximation of the dynamics repre-
sents a valid choice of model. Indeed, a large number of approaches to network
inference and model parameter estimation have recently appeared in the lit-
erature which are based on linear dynamical models, e.g. [6, 12, 9, 10, 13].
In addition to their conceptual simplicity, the popularity of such approaches
arises in large part due to the existence of many well established and compu-
tationally appealing techniques for the analysis and identification of this class
of dynamical system.

Thus, the general problem of reverse engineering a biological interaction net-
work from experimental data may be tackled via methods based on dynamical
linear systems identification theory. The basic step of the inference process
consists of estimating, from experimental measurements (either steady–state
or time–series data), the weighted connectivity matrix A and the exogenous
perturbation vector B of the in silico network model (7.2). Many different
algorithms are available with which to solve this problem. The simplest ap-
proach is to use the classical least squares regression algorithm, which will be
illustrated in Section 7.3.

7.2.1 Discrete-time vs Continuous-time model

Since biological time-series data is always obtained from experiments at dis-
crete sample points, when we identify the matrices Â and B̂ using this data
we strictly speaking obtain not the estimates of A and B in Eq. (7.2), but
rather those of the corresponding matrices of the discrete–time system ob-
tained through the Zero-Order-Hold (ZOH) discretisation method ([14], p.
676) with sampling time Ts from system (7.2), that is

x(k + 1) = Adx(k) + Bdu(k) , (7.3)

where x(k + 1) is a shorthand notation for x(kTs + Ts), x(k) for x(kTs), u(k)
for u(kTs), and

Ad = eATs , Bd =

(

∫ Ts

0

eAτdτ

)

B . (7.4)

In general, the sparsity patterns of Ad and Bd differ from those of A and
B. However, if the sampling time is suitably small, (A)ij = 0 implies that
(Ad)ij exhibits a very low value, compared to the other elements on the same
row and column, and the same applies for Bd and B. Therefore, in order
to reconstruct the original sparsity pattern of the continuous-time system’s
matrices, one could set to zero the elements of the estimated matrices whose
values are below a certain threshold.
In order to validate this approach, we will analyse more precisely the relation-
ship between the dynamical matrices of the continuous-time and discrete-time
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systems. For the sake of simplicity, in what follows we will assume that A
has n distinct real negative eigenvalues, λi, |λi| < |λi+1|, i = 1, . . . , n and it
is therefore possible to find a nonsingular matrix P such that∗ A = PDP−1,
with D = diag (λ1, . . . , λn). Then, the matrix Ad can be rewritten as ([15],
p.525)

Ad = I + ATs +
(ATs)

2

2!
+

(ATs)
3

3!
+ . . .

= P diag
(

eλ1Ts , . . . , eλnTs
)

P−1 . (7.5)

If the sampling time is properly chosen, such as to capture all the dynamics
of the system, then Ts ≪ τi := 1/|λi|, i = 1, . . . , n, which implies |λiTs| ≪ 1.
Therefore the following approximation holds

eλiTs =

∞
∑

k=0

(λiTs)
k

k!
≈ 1 + λiTs .

From this approximation and Eq. (7.5), we obtain

Ad ≈ I + ATs .

As for the input matrix B, the following approximation holds

Bd = A−1
(

eATs − I
)

B ≈ A−1 (ATs)B = BTs

Note that the sparsity patterns of I + ATs and BTs are identical to those
of A and B, respectively. Only the diagonal entries of A can be significantly
different from those of Ad. However, this is not an issue, because in all
inference algorithms based on dynamical systems the optimisation parameters
corresponding to the diagonal entries of A are always a priori assumed to be
nonzero.

What can be concluded from the above calculations is that, in general,
(A)ij = 0 does not imply (Ad)ij = 0; however, one can reasonably expect
(Ad)ij to be much lower than the other elements on the i-th row and j-th col-
umn, provided that Ts is much smaller than the characteristic time constants
of the system dynamics (the same applies for B and Bd). Such considera-
tions can be readily verified by means of numerical tests, as illustrated in the
following example.

Example 7.1

Consider a continuous-time linear dynamical system with five state variables

∗The case of non-diagonalisable matrices is beyond the scope of the present treatment.
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and

A =













−2.1906 −0.7093 0 0 1.4131
0 −2.2672 −0.9740 −0.0522 0
0 −0.9740 −4.0103 0 1.4374

0.4597 −0.0522 0 −1.8752 0
1.4131 0 0 0.1242 −3.7822













. (7.6)

It is interesting to see what happens to the zero entries of A when the system
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FIGURE 7.1: The zeros pattern of A and of its discretised versions (nor-
malised matrices are shown), for different values of the sampling time. Ta is
the settling time of the step response of the continuous-time system.

is discretised, for different values of the sampling time, using the ZOH trans-
formation (7.4). The discrete-time versions of A are shown in Figure 7.1: the
pattern of the continuous-time A can be easily reconstructed when the sam-
pling time Ts is small, indeed the zero entries of A produce very small values
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in Ad. When Ts increases, the original pattern becomes hardly identifiable,
moreover all the values of Ad shrink toward zero. Note also that, when Ts

is too small, the elements on the diagonal are much larger than the others.
This is also problematic, because, as we will see later, small valued elements
are more difficult to estimate when the data are noisy. We conclude that the
sampling time plays a central role, no matter what inference technique will be
used later on, and in general the optimal choice is a tradeoff between the need
to capture the fastest dynamics of the system and the cost (both in terms of
time and money) of having to make a larger number of measurements.

The algorithms presented in the next sections are based on the above argu-
ments, indeed each algorithm chooses at each step only the largest elements
of the (normalised) estimated Ad and Bd matrices, and is therefore expected
to disregard the entries corresponding to zeros in the original matrix of the
continuous–time model.

7.3 Least squares

Least Squares (LS) is by far the most widely used procedure for solving linear
optimisation problems, especially in the field of identification. Assume that
we are given h values of an independent vector variable, x(k) ∈ Rn, and
the corresponding measured values of a dependent scalar variable, y(k) ∈ R,
k = 1, . . . , h, obtained through the linear mapping

y(k) =

h
∑

j=1

cj xj(k) + ν(k) = c x(k) + ν(k), (7.7)

where the parameters cj are unknown and ν represents the additive measure-
ment white-noise term, that is with normal distribution, zero mean and σ2

variance.
The LS method allows to estimate the linear model that best describes the
relationship between y and x, that is

ŷ =
h
∑

j=1

θj xj = xT θ, (7.8)

where ŷ is the model estimate of y and θ ∈ Rn is a vector of optimisation
variables. In this context, the xj are usually called regressors and the θj are
called regression coefficients . If we define the error e(k) := y(k) − ŷ(k), the
quality of the approximation is measured in the least squares sense, i.e., a
solution is optimal if it yields the minimal sum of squared errors

∑h
k=1 e(k)2.
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The problem can be conveniently reformulated in vector/matrix notation,
by defining the following quantities

X :=











x1(1) x2(1) · · · xn(1)
x1(2) x2(2) · · · xn(2)

...
...

...
x1(h) x2(h) · · · xn(h)











, y :=











y(1)
y(2)

...
y(h)











, ŷ :=











ŷ(1)
ŷ(2)

...
ŷ(h)











, e :=











e(1)
e(2)

...
e(h)











.

Now we can write the LS optimisation problem as

min
θ

eT e (7.9a)

s.t. e = y − ŷ = y −Xθ. (7.9b)

Setting to zero the derivative of the loss function, eT e, with respect to θ, one
can easily derive the classical formula for the least squares estimate

θ̂ =
(

XT X
)−1

XT y. (7.10)

The matrix
(

XT X
)−1

XT is called the (Moore-Penrose) pseudo-inverse of
X and is often denoted by X+. Note that, to compute X+, it is necessary
that XT X is invertible; this is possible if the n columns of X (the regression
vectors) are linearly independent, which requires h ≥ n, i.e., one should have
at least as many measurements as regression coefficients. Note that, in theory,
satisfaction of the latter inequality does not guarantee the invertibility of
XT X , however this is always true in practice, because the presence of noise
makes the probability of exact singularity equal to zero. On the other hand,
a nonsingular XT X does not guarantee an accurate solution: when XT X
is nearly singular the effects of noise and round-off errors on the estimated
coefficients are very high, undermining the chances to recovering the true
values.

If the real system is perfectly described by the model structure (7.7) and the
data are not affected by noise (σ2 = 0), then the optimal regression coefficients

θ̂j coincide with the model parameters cj . In practice, a linear model is often
an approximation of the real system behaviour and the measurement noise is
not negligible. Thus, it is interesting to investigate the relationship between
the estimated regression coefficients and the actual coefficients. Some insight
into the quality of the estimated model can be derived by inspecting the vector
of residuals , defined as y − ŷ. A good model estimate should yield residuals
that are close to white-noise.

The accuracy of the estimated parameters can be described by their covari-
ance matrix and it is possible to show that

cov(θ̂) = E

{

(

θ̂ − E{θ̂}
) (

θ̂ − E{θ̂}
)T
}

= σ2
(

XT X
)−1

. (7.11)
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 x2

 x4

 x1

 x3

FIGURE 7.2: Toy network used in the examples. The shape of the arrow
ending indicates the effect on the target node: △ and ⊤ shapes are used
for positive and negative effects, respectively (e.g. induction or repression of
transcription of a gene).

Since the diagonal entries of the matrix cov(θ̂) are the variances of the pa-
rameter estimates, Eq. (7.11) confirms the intuitive fact that the estimates
are more accurate when the noise level is lower. Additionally, we can also
conclude that, in general, the variance of the estimated parameters is smaller
when the number of rows of X is higher: indeed, it is reasonable to assume
that the absolute values of the entries of XT X increase linearly with h. Con-
sequently, even in the presence of large amounts of noise, good estimates can
still be obtained by increasing the number of measurements h.

Example 7.2

Let us consider the multivariable static linear relationship with additive noise

y = f(x, u) = Ax + Bu + ν, (7.12)

where

A =









0.7035 0.3191 0 0.0378
0 0.4936 0 −0.0482

0.3227 −0.4132 0.2450 0
0 −0.3063 0 0.7898









, B =









−1.2260
1.1211
−1.1653
0.1055









(7.13)

and ν is a vector of normally distributed random variables with zero mean and
σ2 variance. This is equivalent to four linear models in the form of Eq. (7.7),
where the unknown parameters cij , j = 1, . . . , n+1 of the i-th model are given
by the i-th row of the matrix [A B] and the independent vector variable is
z = [xT u]T . System (7.12)-(7.13) can be associated with an interaction net-
work of four nodes, whose topology is represented by the digraph in Fig. 7.2.
Note that the matrix A describes the interactions between the nodes, whereas
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the B vector identifies the targets of the external perturbation, which in this
case is assumed to directly affect all the nodes of the network. Note that
we are not considering the transient response of the system, rather we as-
sume that Eq. (7.12) yields the next state of the network, starting from an
initial state x and subject to a constant perturbation u = 1. Assume that
the perturbation experiment has been repeated twenty times, starting from
random initial values of x. Letting the measurements and regression matrices
be Y, Z ∈ R20×4, we want to identify the parameters of the model

Ŷ = ZΘ, (7.14)

from which we will get Θ̂T ∈ Rn×(n+1) as an estimate of [A B]. Denote
by Â the solution found by means of the LS formula (7.10). To evaluate
such an estimate in terms of network inference we have to normalise each
element, dividing it by the geometric mean of the norms of the row and
column containing that element. Thus, we compute the normalised estimated
adjacency matrix

Ãij =
Âij

(

‖Â⋆j‖ · ‖Âi⋆‖
)1/2

(7.15)

where Âi⋆ and Â⋆j are the i-th row and j-th column of Â. When the noise

is nonzero, all the elements of Ã are usually nonzero as well. How can we
translate this estimated matrix into an inferred network? The natural choice
is to sort the list of edges in descending order according to the absolute value
of their corresponding estimated parameters. Then, the elements at the top
of the list will correspond to high-confidence predictions, i.e., edges with high
probability of actually existing in the original network. This strategy is based
on the idea that small perturbations of the experimental data should cause
small variations in the coefficients, hence the zero entries of A should be
identified by values that are close to zero.

In order to provide a statistically sound confirmation of this assumption,
we can apply the LS-based identification procedure on a large number of ex-
periments conducted on system (7.12)-(7.13). Repeating the same experiment
many times allows us to compute a reliable average performance metric and
to estimate the variability introduced by the random choice of x and by the
additive measurement noise. Drawing the median absolute value of Ã as
a colormap allows us to effectively compare it with the normalised original
adjacency matrix, - see Fig. 7.3. Let us first consider the case σ = 0.05, fo-
cusing on the off-diagonal elements (the diagonal ones are always assumed to
be different from zero), we note that below the diagonal the results are quite
good, whereas there is some mismatch in the upper-right block of the matrix.
This can be intuitively explained by the relatively small original values of the
coefficients (1,4) and (2,4) (weights of the edges 4 → 1 and 4 → 2), which
renders their estimation more difficult. In general, we can conclude that, as
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FIGURE 7.3: Median of the absolute values of the estimated Â and of the
normalised original adjacency matrix in Example 7.2. Median obtained over
100 experiments, with 20 z-y pairs for each experiment and different noise
standard deviations.

it would be reasonable to expect, it is easier to infer the edges with larger
weights.

We can now ask what happens if the noise increases so that σ = 0.3.
From the Fig. 7.3 it is evident that, while the strong edges are still inferred
with good confidence, some new (wrong) low-confidence predictions appear.
Eventually, if the noise is further increased (panel D), the estimated matrix
becomes hardly useful in terms of network inference and we will obtain many
wrong predictions. Finally, we can visualise the variability introduced by
noise on each optimisation parameter: the box plots in Fig. 7.4 show that
the variability is much higher when the noise is higher. Due to this high
variability, the relative sorting of the parameters according to their absolute
value is more likely to change between experiments. Thus, the probability
of obtaining wrong predictions when using the LS on a single experiment is
fairly high in the latter case, whereas it is almost zero (at least for the first
four predictions) when σ = 0.05.
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FIGURE 7.4: Distribution of the normalised values of the optimised param-
eters over 100 experiments for two different noise levels (Example 7.2). The
first six box plots from the left are those corresponding to the actually existing
edges of the original network, the second six are incorrect predictions (labels
on the x-axis denote the row and column indexes in the Ã matrix.

7.3.1 Least squares for dynamical systems

So far, we have applied the LS method to estimate the parameters of a static
relationship between a vector of assigned independent variables, x, and a
dependent variable y, from noisy measurements. However, in many cases we
cannot neglect the fact that the measured quantities are evolving in time, that
is they are the state variables of an underlying dynamical system. Hence, we
would like to have a method for network inference based on time-series data.
In the following, we show how (and to what extent) it is possible to exploit
LS to estimate a dynamical model of a biomolecular interaction network and
its topology.

Assume the linearised discrete-time dynamical model of our network is

x(k + 1) = Adx(k) + Bdu(k) (7.16)

and that h + 1 experimental observations, x(k) ∈ Rn, k = 0, . . . , h, are avail-
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able. Let

Ŷ :=











x1(h) x2(h) . . . xn(h)
x1(h− 1) x2(h− 1) . . . xn(h− 1)

...
...

...
x1(1) x2(1) . . . xn(1)











, (7.17)

Ẑ :=











x1(h− 1) x2(h− 1) . . . xn(h− 1) u(h− 1)
x1(h− 2) x2(h− 2) . . . xn(h− 2) u(h− 2)

...
...

...
...

x1(0) x2(0) . . . xn(0) u(0)











. (7.18)

The identification model is then

Ŷ = ẐΘ, (7.19)

where Θ ∈ Rn×(n+1) is the optimisation matrix and the estimate of system
(7.16) is given by Θ̂T = [Âd B̂d]. Since Eq. (7.19) has the same structure
of Eq. (7.14), we are naturally led to apply the LS formula (7.10) to solve it.
Although, in principle, the solution is correct, some care must be taken due
to the intrinsic differences between the two problems.

The first thing to notice is that the regressor matrix is not made up of
independent variables, as in the static case: the columns of Ẑ include the
state vectors at the steps 0, 1, . . . , h− 1, while the columns of Ŷ are the same
state vectors, but shifted one step ahead. A second point, which stems from
the first, is that, in the LS formulation for dynamical system identification,
the regressor variables are affected by noise, whereas in the static case they
are deterministic. For this reason, Eq. (7.11) is no longer valid and we lack
an estimate of the parameters’ variance. A final consideration concerns the
correlation between the regressor columns of Ẑ: examining Eq. (7.16) and
looking at a typical step response of a dynamical system (see Fig.7.5), we can
clearly see that the value of the state vector at the k-th step is dependent on
the value at the previous step. If the dynamics of the system are smooth and
slow, then x(k) can be approximated by a linear combination of its values at
the previous step, x(k − 1), . . . , x(0). This is quite unfortunate, because it
means the columns of ZT Z are almost linearly dependent, which as we have
seen, renders the LS solution highly sensitive to noise and numerical round-off
errors.

Example 7.3

In order to compare the effectiveness of the LS algorithm in the static and
dynamical system cases, let us consider a dynamical system in the form of
Eq. (7.16), with A and B given by the same matrices (7.13) used for the
static system identification in Example 7.2. Figures 7.6-7.7 show the results
obtained by computing the LS solution to Eq. (7.19) for different noise lev-
els: the performance is clearly worse compared to the analogous experiments
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FIGURE 7.5: Step response of system (7.16), with the matrices Ad and Bd

given by Eq. (7.13) and additive measurement noise σ = 0.1.

conducted on the static system (7.12) (Figure 7.3). The effect of noise on the
median identified parameter values and on their variances is already signifi-
cant at σ = 0.05, at σ = 0.3 the chance of recovering the true edges is almost
equal to that obtained by a random guess.

A final comment is in order, regarding the possibility of improving the
identification results when using time-series measurements: for static systems
identification, Eq. (7.11) suggests that, to obtain better estimates, one can
increase the number of measurements. In the dynamical systems case, this
could induce us to increase the number of measurements in the time-course
experiments, by either reducing the sample time or by considering a longer
time interval. However, both these strategies are basically not useful: indeed,
having x(k) too close in time to x(k − 1) increases the approximate linear
dependence between the regression vectors. On the other hand, taking addi-
tional measurements after the signals have reached the steady-state will again
introduce new linearly dependent regression vectors (see Figure 7.5, after step
k = 15 the value of x(k) is almost equal to x(k−1)). Hence, the only chance to
improve the inference performance is by making many different experiments,
possibly using different perturbation inputs which affect different nodes of the
network.
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FIGURE 7.6: Median of the absolute values of the estimated Âd and of the
normalised original adjacency matrix in Example 7.3. Median obtained over
100 experiments, with 20 z-y pairs for each experiment and different noise
standard deviations.

7.3.2 Methods based on least squares regression

Many different algorithms for reverse-engineering biomolecular networks based
on the use of linear models and least squares regression have recently ap-
peared in the literature, including NIR (Network Identification by multiple
Regression, [6]), MNI (Microarray Network Identification, [16]) and TSNI
(Time-Series Network Identification, [17, 18, 19]). The NIR algorithm has
been developed for application with perturbation experiments on gene regu-
latory networks. The direct targets of the perturbation are assumed to be
known and the method uses only the steady-state gene expression. Under the
steady-state assumption (ẋ(t) = 0 in Eq. (7.2)) the problem to be solved is

n
∑

j=1

aijxj = −biu , (7.20)

The least squares formula is used to compute the network structure, that is
the rows ai,⋆ of the connectivity matrix, from the gene expression profiles
(xj , j = 1, . . . , n) following each perturbation experiment; the genes that
are directly affected by the perturbation are expressed through a nonzero
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FIGURE 7.7: Distribution of the normalised values of the optimised param-
eters over 100 experiments for two different noise levels (Example 7.3). The
first six box plots from the left are those corresponding to the actually existing
edges of the original network, the second six are wrong predictions (labels on
the x-axis denote the row and column indexes in the Ã matrix.

element in the B vector. NIR is based on a network sparsity assumption:
only k (maximum number of incoming edges per gene) out of the n elements
on each row are different from zero. For each possible combination of k out
of n weights, the k coefficients for each gene are computed so as to minimise
the interpolation error. The maximum number of incoming edges, k, can be
varied by the user. An advantage of NIR is that k can be tuned so as to avoid
underdetermined problems. Indeed, if one has Ne different (independent)
perturbation experiments, the exact solution to the regression problem can
be found for k ≤ Ne, at least in the ideal case of zero noise.

The MNI algorithm, similarly to NIR, uses steady-state data and is based on
relation (7.20), but it does not require a priori knowledge of the specific target
gene for each perturbation. The algorithm employs an iterative procedure:
first, it predicts the targets of the treatment using a full network model;
subsequently, it translates the predicted targets into constraints on the model
structure and repeats the model identification to improve the reconstruction.
The procedure is iterated until certain convergence criteria are met.
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The TSNI algorithm uses time-series data, instead of steady-state values,
of gene expression following a perturbation. It identifies the gene network
(A), as well as the direct targets of the perturbations (B), by applying the
LS to solve the linear equation (7.2). Note that, to solve Eq. (7.2), it is nec-
essary to measure the derivative values, which are never available in practice.
Also, numerical estimation of the derivative is not a suitable option, since it
is well known to yield considerable amplification of the measurement noise.
The solution implemented by TSNI consists of converting the system from
continuous-time to discrete-time. The identification problem admits a unique
globally optimal solution if h ≥ n + p, where h is the number of data points,
n is the number of state variables and p is the number of perturbations. To
increase the number of data points, after using a cubic smoothing spline fil-
ter, a piecewise cubic spline interpolation is performed. Then a Principal
Component Analysis (PCA) is applied to the data-set in order to reduce its
dimensionality and the problem is solved in the reduced dimension space.
In order to compute the continuous-time system’s matrices, A and B, from
the corresponding discretised Ad and Bd, respectively, the following bilinear
transformation is applied [20]:

A =
2Ad − I

TsAd + I

B = (Ad + I)ABd

where I ∈ Rn×n is the identity matrix and Ts the sampling interval.
Finally, the Inferelator technique [21] also belongs to this category of algo-
rithms. It uses regression and variable selection to infer regulatory influences
for genes and/or gene clusters from mRNA and/or protein expression levels.

Two significant limitations which are common to almost all of the algo-
rithms described above are their inability to (a) deal effectively with mea-
surement noise in the experimental data, and (b) exploit prior qualitative or
quantitative knowledge about parts of the network to be reconstructed. In
the following sections, we describe promising new techniques, base on con-
vex optimisation and extensions of the standard LS, which can address these
issues.

7.4 Exploiting prior knowledge

A serious limitation of most methods based on LS regression is their inability
to exploit any prior knowledge about the network topology in order to improve
the inference performance. This is a major failing, since for any given network
there is often a significant amount of information available in the biological
literature and databases about certain aspects of its topology. For example,
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it is often possible to derive qualitative information about some part of a net-
work from previously published experimental studies, e.g. “protein A inhibits
the expression of gene B”. When using standard regression techniques, a pa-
rameter can either be designated as a free optimisation variable or set to a
constant value (i.e., a precise quantitative information). This makes it diffi-
cult to take into account qualitative a priori information, a problem which
does not arise for statistical approaches such as Bayesian networks. Indeed,
since for topological inference one often uses simplified models, the value of
a certain model parameter does not necessarily correspond to a real experi-
mentally measurable quantity. Moreover, at the biomolecular level accurate
values of the system’s parameters are seldom available or measureable and
are often highly variable among different individuals of the same species. For
these reasons, a much more suitable approach consists of exploiting the a
priori available qualitative biological knowledge, by translating it into math-
ematical constraints on the optimisation variables, e.g. one can constrain a
parameter to belong to the set of real positive (or negative) numbers, to be
null or belong to an assigned interval.

In the following, we show how to recast the network inference as a convex
optimisation problem using linear matrix inequalities (LMIs) [22, 11]. Similar
approaches for identifying genetic regulatory networks using expression pro-
files from genetic perturbation experiments are described in [23], and [9, 10].
The distinctive feature of these approaches is that they easily enable the ex-
ploitation of any qualitative prior information which may be available from
the biological domain, thus significantly increasing the inference performance.
Furthermore, the wide availability of effective numerical solvers for convex
optimisation problems renders this formalism very well-suited to deal with
complex network inference tasks.

7.4.1 Network inference via LMI–based optimisation

Assuming that h + 1 experimental observations, x(k) ∈ Rn, k = 0, . . . , h, are
available, our goal is to formulate the problem of estimating matrices Ad and
Bd of system (7.16) in the framework of convex optimisation. In particular,
we want to cast the problem as a set of LMIs.

Using the same notation as in Eq. (7.17)-(7.19), the identification problem
can be transformed into that of minimising the norm of Ŷ − ẐΘ, and thus we
can state the following problem:
Given the sampled data set x(k), k = 0, . . . , h, and the associated matrices
Ŷ , and Ẑ, find

min
Θ

ε (7.21a)

s.t.
(

Ŷ − ẐΘ
)T (

Ŷ − ẐΘ
)

< εI . (7.21b)

Note that condition (7.21b) is quadratic in the unknown matrix variable Θ. In
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order to obtain a linear optimisation problem, we convert it to the equivalent
condition





−εI
(

Ŷ − ẐΘ
)T

(

Ŷ − ẐΘ
)

−I



 < 0 , (7.22)

by applying the properties of Schur complements (see [15], p. 123). The
equivalence between Eq. (7.21b) and Eq. (7.22) is readily derived as follows.
Let M ∈ Rn×n be a square symmetric matrix partitioned as

M =

(

M11 M12

MT
12 M22

)

, (7.23)

and assume that M22 is nonsingular. Defining the Schur complement of M22

as ∆ := M11 −M12M
−1
22 MT

12, then the following statements are equivalent:

i) M is positive (negative) definite;

ii) M22 and ∆ are both positive (negative) definite.

To see this, recall that M is positive (negative) definite iff

∀x ∈ R
n , xT Mx > 0 (< 0) ,

and moreover it can be decomposed as ([24], p.14)

M =

(

M11 M12

MT
12 M22

)

=

(

I M12M
−1
22

0 I

)(

∆ 0
0 M22

)(

I M12M
−1
22

0 I

)T

.

The latter is a congruence transformation ([15], p.568), which does not modify
the sign definiteness of the transformed matrix; indeed, ∀x ∈ Rn and ∀C, P ∈
Rn×n

P positive (negative) definite⇒ xT CT PCx = zT Pz > 0 (< 0) .

Therefore M is positive (negative) definite iff M22 and ∆ are both positive
(negative) definite. Problem (7.21) with the inequality constraint in the form
of Eq. (7.22) is a generalised eigenvalue problem ([25], p. 10), and can be
easily solved using efficient numerical algorithms, such as those implemented
in the Matlab LMI Toolbox [26].

A noteworthy advantage of the proposed convex optimisation formulation
is that the approach can be straightforwardly extended to the case of multiple
experimental data sets for the same biological network. In this case, there are
several matrix pairs (Ŷ (k), Ẑ(k)), one for each experiment: the problem can
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be formulated again as in Eq. (7.21), but using a number of constraints equal
to the number of experiments, that is

min
Θ

∑

k

εk

s.t.
(

Ŷ (k) − Ẑ(k)Θ
)T (

Ŷ (k) − Ẑ(k)Θ
)

< εkI, k = 1, . . . , Ne,

where Ne is the number of available experiments.

Except for the LMI formulation, the problem is identical to the one tackled
by classical linear regression, that is finding the values of n(n+1) parameters
of a linear model that yield the best fitting of the observations in the least
squares sense. Hence, if the number of observations, n(h + 1), is greater or
equal than the number of regression coefficients, that is h ≥ n, the problem
admits a unique globally optimal solution. In the other case, h < n, the in-
terpolation problem is undetermined, thus there exist infinitely many values
of the optimisation variables that equivalently fit the experimental measure-
ments. In the latter case, it is crucial to exploit clustering techniques to re-
duce the number of nodes, and smoothing techniques to increase the number
of samples, in order to satisfy the constraint h ≥ n. Furthermore, adopting a
bottom–up reconstruction approach (i.e. starting with a blank network and
increasingly adding new edges) may help in overcoming the dimensionality
problem: in this case, indeed, the number of edges incident to each node (and
therefore the number of regression coefficients) is iteratively increased and can
be limited to satisfy the above constraint.

As first noted in [22], the key advantage of the LMI formalism is that it
makes it possible to take into account prior knowledge about the network
topology by forcing some of the optimisation variables to be zero and other
ones to be strictly positive (or negative), by introducing the additional in-
equality Aij > 0 (< 0) to the set of LMIs. Similarly, we can impose a sign
constraint on the i-th element of the input vector, bi, if we a priori know the
qualitative (i.e. promoting or repressing) effect of the perturbation on the i-th
node. Also, an edge can be easily pruned from the network by setting to zero
the corresponding entry in the matrix optimisation variable in the LMIs.

In the next subsections we present two iterative algorithms based on the
convex optimisation approach described above.

The first algorithm prunes a fully connected network while the second al-
gorithm implements the opposite approach: it starts with an empty network,
then allows it to grow based on the mechanism of preferential attachment [27].
According to this evolutionary mechanism, when a new node is added to the
network it is more likely to establish a connection with highly connected node
(a hub) than with a loosely connected one.
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7.4.2 MAX-PARSE: An algorithm for pruning a fully con-
nected network according to maximum parsimony

The MAX-PARSE algorithm employs an iterative procedure: starting with
a fully connected network, the edges are subsequently pruned according to
a maximum parsimony criterion. The pruning algorithm terminates when
the estimation error exceeds an assigned threshold. The following basic ideas
underpin the pruning algorithm:

a) The optimal network model, among all those that yield an acceptably
small error with respect to the experimental data, is the one with the
minimum number of edges; this maximum parsimony criterion is based
on the principle that nature optimises systems through evolution aiming
at the most efficient use of resources. Clearly this is a simplistic ap-
proach, because it does not take into account the fact that redundancy
is implemented by many biological systems to achieve robustness.

b) Given the estimated (normalised) connectivity matrix at each iteration,
the regression coefficients with low values correspond to non-adjacent
(in the original network) nodes. Thus, these edges are the best can-
didates for pruning. This stems from the assumption that an indirect
interaction typically results in a smaller weight in the rate equation of
a certain species compared to the contributions of directly interacting
species. This is also supported by the numerical experiments illustrated
in Section 7.3.

Since the problem is formulated as a set of LMIs, the algorithm is also capable
of directly exploiting information about some specific interactions that are a
priori known, taking into account both the direction of the influence, and its
type (promoting or repressing). The reconstruction algorithm is structured
in the following steps.

P1) A first system is identified by solving the optimisation problem (7.21),
and adding all the known sign constraints.

P2) Let Â(k) be the matrix computed at the k-th step; in order to compare
the elements of Â(k) we compute the normalised matrix Ã(k) according
to Eq. (7.15).

P3) If the value Ã
(k)
ij is below an assigned threshold, εp, the edge j → i

is pruned and the corresponding regression coefficient is set to zero at
the next iteration. This rule reflects the idea that an edge is a good
candidate for elimination if its weight is low compared to the other
edges arriving to and starting from the same node.

P4) A new LMI problem is cast, eliminating the optimisation variables cho-
sen at the previous step, and a new solution is computed.
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P5) The evolution of the identified system is compared with the experimental
data: if the residual error exceeds a prefixed threshold, εres, then the
algorithm stops, otherwise another iteration starts from point P2).

The algorithm requires tuning two optimisation parameters: the thresholds
εp, used in the pruning phase, which affects the number of coefficients elimi-
nated at each step, and εres, defining the admissible estimation error, which
determines the algorithm termination. The first parameter influences the con-
nectivity of the final reconstructed network: the greater its value, the lower
the final number of connections. The algorithm terminates when either it
does not find any new edges to remove or the estimation error exceeds εres.

7.4.3 CORE-Net: A network growth algorithm using pref-
erential attachment

Similarly to MAX-PARSE, the CORE-Net algorithm is based on the formu-
lation of the network inference problem as a convex optimisation problem in
the form of LMIs. However, the latter adopts a different heuristics to recon-
struct the network topology: it uses an incremental reconstruction approach,
starting with an empty network (no edges) and then iteratively adding new
edges at each iteration.

The edges selection strategy implemented by CORE-Net is inspired by
the experimental observation that the connectivity degree in metabolic [28],
protein–protein interaction [29] and gene regulatory networks [30], as well as
other genomic properties [31], exhibits a power-law distribution. Roughly
speaking, this means that only a mall number of nodes (the hubs) are highly
connected, whereas there are many loosely connected ones. A plausible hy-
pothesis for the emergence of such a feature, as discussed in [27], is the prefer-
ential attachment (PA) mechanism, which states that during network growth
and evolution the hubs have greater probability to establish new connections.
In large networks, this evolution rule may generate particular degree distri-
butions, such as the well known power-law distribution that characterises
scale-free networks.

Employing the PA mechanism within the reconstruction process, CORE-
Net mimics the evolution of a biological network to improve the inference
performance. Finally, it is worth noting that, while MAX-PARSE starts with
a full adjacency matrix, CORE-Net progressively increases the number of
regression coefficients. This mechanism tends to limit the final number of
regression coefficients, in agreement with the maximum parsimony criterion
used also in MAX-PARSE. This strategy is also effective in avoiding under-
determined estimation problems and in limiting the computational burden.
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7.5 Dealing with measurement noise

The measurement error affecting the majority of biological experiments is
substantial. The level of measurement noise is often difficult to determine,
since it arises from different sources: 1) errors inherent in the measurement
technique, 2) errors occurring at the time of sampling (with absolute and
drift components), and 3) variability among different individuals of the same
species. The effects of the resulting noise could, in principle, be limited by
using more accurate measurement techniques and by data replication. These
strategies, however, are in conflict with the applicability of high-throughput,
fast and affordable measurement techniques, which is at the very base of the
Systems Biology paradigm. Therefore, it is paramount to devise methods to
address, in a principled manner, the network inference problem in the presence
of substantial, but poorly-defined, noise components. On the other hand, the
development of such approaches can also provide valuable suggestions on how
to optimise the experimental sampling strategies.

As noted in Section 7.3.1, the standard LS method is not capable of dealing
effectively with noisy regressors. In the following we introduce two extensions,
namely the Total Least Squares (TLS) [32, 33] and the Constrained Total
Least Squares (CTLS), [34, 35], which have been developed to deal with this
issue. Both of these algorithms are routinely used in advanced signal and
image processing applications, and their usefulness in the context of Systems
Biology is now also beginning to be appreciated.

7.5.1 Total Least Squares

Let us reconsider the formulation of the LS problem, by explicitly taking into
account the additive noise terms in the measurements. The regression model
for the i-th state variable becomes

Y⋆i + ∆Y⋆i = (Z + ∆Z) ·Θ⋆i , (7.24)

where Θ⋆i =
(

ai1 · · · ain bi

)T
is the vector of unknown parameters and

Y⋆i =







xi(h)
...

xi(1)






, Z =







x1(h− 1) · · · xn(h− 1) 1
...

. . .
...

...
x1(0) · · · xn(0) 1







∆Y⋆i =







νi(h)
...

νi(1)






, ∆Z =







ν1(h− 1) · · · νn(h− 1) 0
...

. . .
...

...
ν1(0) · · · νn(0) 0







and νi(k) is the additive noise term on the i-th state variable at time step
k. Although the exact values of the correction terms, ∆Z and ∆Y⋆i, will not
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generally be known, the structure, i.e. how the noise appears in each element,
can often be estimated.

First of all, let us write Eq. (7.24) in a more compact form, by defining

C(i) := (Z Y⋆i) ,

∆C(i) := (∆Z ∆Y⋆i) .

Then Eq. (7.24) is rewritten as

(

C(i) + ∆C(i)
)

(

Θ⋆i

−1

)

= 0 . (7.25)

The Total Least Squares (TLS) method computes the optimal regression pa-
rameters minimising the correction term ∆C. The TLS optimisation problem
is posed as follows [32]

min
v,Θ⋆i

‖∆C(i)‖2F

s.t.
(

C(i) + ∆C(i)
)

(

Θ⋆i

−1

)

= 0 , (7.26)

where || · ||F denotes the Frobenius norm. When the smallest singular value
of C(i) is not repeated, the solution of the TLS problem is

ΘTLS
⋆i =

(

ZT Z − λ2
i I
)−1

ZT Y⋆i , (7.27)

where λi is the smallest singular value of C(i). Comparing Eq. (7.27) to the
classical LS solution, we note that they differ in the correction term λ2

i in the
inverse of ZT Z. This reduces the bias in the solution caused by the noise.

The TLS solution can also be computed by using the singular value decom-
position ([36], p. 503)

C(i) = UΣV T ,

where U ∈ Rh×h and V ∈ R(n+2)×(n+2) are unitary matrices and Σ is a
square diagonal matrix of dimension k = min(h, n + 1), composed of the non-
negative singular values of C(i) arranged in descending order along its main
diagonal. The singular values are the positive square roots of the eigenvalues
of C(i)T C(i). Let V =

[

V⋆1 · · · V⋆n V⋆(n+1) V⋆(n+2)

]

, where V⋆i is the i-th
column of V . Then, the solution is given by

(

ΘTLS
⋆i

−1

)

= − V⋆(n+2)

V(n+2)(n+2)
, (7.28)

where V(n+2)(n+2) is the last element of V⋆(n+2). Numerically, this is a more
robust method than computing the inverse of a matrix.

The improvement with respect to the standard LS is that the TLS approach
allows us to consider uncertainty also on the regressors Z, not only on the
dependent variables Y . Therefore, in the TLS the unknown parameters are
optimised to minimise the deviation of the estimated model from both of these
quantities.
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7.5.2 Constrained Total Least Squares

Unfortunately, the TLS solution is not optimal when the noise terms in Z
and Y are correlated. Indeed, one of the main assumptions of the TLS is
that the two noise terms are independent of each other. If there is some
correlation between them, this knowledge can be used to improve the solution
by employing the Constrained Total Least Squares (CTLS) technique [35].
In the case of the problem in the form of Eq. (7.24), the two noise terms
are obviously correlated because many elements of Z and Y⋆i are coincident.
This prior information about the structure of ∆C(i) can be explicitly taken
into account in the optimisation. Let us first define a vector containing the
minimal set of noise terms

ν =
(

ν1(h) · · · νn(h) · · · ν1(0) · · · νn(0)
)T ∈ R

n(h+1) .

If ν is not white random noise, a whitening process using Cholesky factorisa-
tion is performed [35]. Here, ν is assumed to be white noise and this whitening
process is not necessary. The columns of ∆C(i) can be written as

∆C
(i)
⋆j =

(

νj(h− 1) · · · νj(0)
)T

, j = 1, . . . , n ,

∆C
(i)
⋆(n+1) = 0h×1, ∆C

(i)
⋆(n+2) = ∆Y⋆j . (7.29)

It is possible to rewrite each column as ∆C
(i)
⋆j = G(ij) ν. To obtain an explicit

form of the matrices G(ij), we first define the column vectors

e(j) = (0 · · · 0 1 0 . . . 0)T ∈ R
n, j = 1, . . . , n .

containing all zero elements, except for the j-th element, which is equal to 1.
We have

∆C
(i)
⋆j =

(

νj(h− 1) · · · νj(0)
)T

=
[

0h×n (Ih ⊗ ej)
T
]

ν.

and hence
G(ij) =

[

0h×n (Ih ⊗ ej)
T
]

for i = 1, . . . , n , where⊗ denotes the Kronecker product. Also, from Eq. (7.29)

G(i(n+1)) = 0h×n(h+1),

G(i(n+2)) =
[

(Ih ⊗ ei)
T

0h×n

]

.

Since ∆C(i) can be written as

∆C(i) =
(

G(i1)ν . . . G(i(n+2))ν
)

,
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then the TLS problem can be recast as

min
ν,Θ⋆i

‖ν‖2

s.t.
[

C(i) +
(

G(i1)ν . . . G(i(n+2))ν
)]

[

Θ⋆i

−1

]

= 0 . (7.30)

This is called the Constrained Total Least Squares (CTLS) problem. With
the following definition,

Hθ :=

n
∑

r=1

air Gr + br Gn+1 −Gn+2 =

n+1
∑

r=1

Θri Gr −Gn+2 , (7.31)

where Θri for r = 1, . . . , n is the r-th element of the i-th row of Ad and Θ(n+1)i

is the i-th element of Bd, Eq. (7.30) can be written in the following form:

C(i)

[

Θ⋆i

−1

]

+ Hθν = 0.

Solving for ν, we get

ν = −H†
θC(i)

[

Θ⋆i

−1

]

, (7.32)

where H†
θ is the pseudoinverse of Hθ. Hence, the original constrained minimi-

sation problem, Eq. (7.30), is transformed into an unconstrained minimisation
problem as follows:

min
ν,Θ⋆i

‖ν‖2 = min
Θ⋆i

[

ΘT
⋆i −1

]

C(i)T H†
θ

T
H†

θC(i)

[

Θ⋆i

−1

]

. (7.33)

Now, we introduce two assumptions, which make the formulation simpler.

1. The number of measurements are always strictly greater than the num-
ber of unknowns, i.e. we only consider the overdetermined case, explic-
itly h + 1 > n + 2, that is h > n + 1.

2. Hθ is full rank.

Then the pseudoinverse H†
θ is given by

H†
θ = HT

θ

(

HθH
T
θ

)−1

and the unconstrained minimisation problem can be further simplified as fol-
lows:

min
Θ⋆i

[

ΘT
⋆i −1

]

C(i)T
(

HθH
T
θ

)−1
C(i)

[

Θ⋆i

−1

]

. (7.34)
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The starting guess for Θ⋆i used in the above optimisation problem is simply
the value returned by the solution of the standard least squares problem.

The problem to be solved is to find the values of n(n + 1) parameters of
a linear model that yield the best fit to the observations in the least–squares
sense. Hence, as assumed above, if the number of observations are always
strictly greater than the number of regression coefficients, that is h > n + 1,
then the problem admits a unique globally optimal solution. In the other case,
h ≤ n + 1, the interpolation problem is under-determined, and thus there ex-
ist infinitely many values of the optimisation variables that equivalently fit
the experimental measurements. In this case, as noted previously, expedients
such as clustering or smoothing techniques, and using a bottom up approach
can be adopted. In particular, the introduction of sign constraints on the op-
timisation variables, derived from qualitative prior knowledge of the network
topology will result in a significant reduction of the solution space.

7.6 Exploiting time-varying models

Linear time-invariant models will not always be able to effectively capture
the dynamics of highly nonlinear biomolecular networks. For example, many
biomolecular regulatory networks produce limit cycle dynamics, e.g. circadian
rhythms [37], cAMP oscillations in aggregating Dictyostelium discoideum cells
[38], or Ca2+ oscillations [39]. Since such robust oscillatory dynamics cannot
be produced by purely linear time-invariant systems, it is unlikely that the
underlying network will be accurately identified using linear time-invariant
models. As discussed previously, however, the use of nonlinear models in the
network inference process almost always leads to ill-defined problem formu-
lations which are not computationally tractable. A potential solution to this
problem is to adopt linear time-varying systems as the model for inferring
biomolecular networks, as proposed in [13]. Although linear time-varying sys-
tems are still in a linear form, they have a much richer range of dynamic
responses than linear time-invariant ones. Hence, a wider range of time-series
expression profiles, including oscillatory trajectories, can be approximated by
such models.

Recall that the dynamics of most biomolecular regulatory networks arise
from complex biochemical interactions which are nonlinear, and can be written
as

dxi(t)

dt
= fi (x1(t), . . . , xn(t)) (7.35)

for i = 1, . . . , n, where fi(·) is a function that describes the dynamical inter-
actions on xi(t) from x1(t), . . . , xn(t). If fi(·) and xj(t) increase and decrease
in a synchronous fashion, i.e., fi(·) increases or decreases as xj(t) increases or
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decreases, it is said that xj(t) activates xi(t). On the other hand, if fi(·) and
xj(t) increase and decrease in an asynchronous fashion, i.e. fi(·) increases or
decreases as xj(t) decreases or increases, it is said that xj(t) inhibits xi(t).
Consider the following p-number of experimental data points:

x̃i(tk) = xi(tk) + νi(tk) (7.36)

for i = 1, 2, . . . , n− 1, n and k = 1, 2, . . . , p− 1, p, where the measurement
x̃i(tk) is corrupted by some measurements noise νi(tk) and tk is the sampling
time. Typically, in experiments the sampling interval tk+1 − tk is not nec-
essarily the same for all k and the statistical properties of the noise are also
generally unknown.

The estimation of fi(·), which involves fitting the time profile of the states
and finding the structure of the function, is an ill-posed problem. On the
other hand, if the model is assumed to be linear time-invariant, taking the
form

dxi(t)

dt
≈

n
∑

j=1

aij xj(t) (7.37)

for i = 1, . . . , n, then the constant coefficients, aij , may be estimated and the
problem is well-posed. In this case, however, the linear model may not be a
good fit for the experimental data, which has been generated from nonlinear
network interactions. A typical nonlinear phenomenon that cannot be ap-
proximated by a linear time-invariant model is a limit cycle. To render the
estimation problem well-posed while preserving the ability of the candidate
model to closely-fit the data, one can use the linear time-varying model

dxi(t)

dt
≈

n
∑

j=1

aij(t)xj(t) (7.38)

for i = 1, . . . , n, where aij(t) is a time-varying function. The estimation
problem can be further simplified by limiting the rate of change of aij(t) with
time. This is reasonable, since the measurement frequency of any biological
experiment is limited and therefore only information up to a certain frequency
in the data can be correctly uncovered from the measurements. In this case,
aij(t) can be written as a finite sum of Fourier series [40]

aij(t) = αij sin (ωt + φij) + βij (7.39)

where αij , ω, φij , and βij are the constants to be determined. βij represents
the linear part of the interactions and the sinusoidal term approximates any
nonlinear terms in the interactions. If needed, more sinusoidal terms can
easily be included to more closely approximate the nonlinearities, at the cost
of increasing the computational burden for the optimisation algorithm. By
using the linear time-varying model, the following optimisation problem can
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be formulated:

min
αij , βij , φij ,ω,xi(t1)

Ji =
1

maxtk
|x̂i(tk)|

p
∑

k=1

[xi(tk)− x̂i(tk)]
2

(7.40)

for i = 1, 2, . . . , n− 1, n, subject to Eq. (7.38), where x̂i(tk) is a numerically
perturbed measurement, and xi(t) is the solution of Eq. (7.38). For a fixed
i, the number of parameters to be estimated is 3n + 2 including the initial
condition of Eq. (7.38), xi(t1). The appropriate choice of optimisation algo-
rithm to solve the above problem depends on the number of parameters to be
estimated - for small scale problems, the simplex search method implemented
in MATLAB, [41], may be used as in [13], while for larger scale problems ran-
domisation based optimisation algorithms would be more appropriate, e.g.,
the simultaneous perturbation method in [42].

Note that the cost function is normalised by the maximum value of the
measurements of each state. The optimisation problem is formulated sepa-
rately for each dxi(t)/dt in order to reduce the rate of increase in the number
of parameters to be estimated as the dimension of xi(t) increases. If the prob-
lem is formulated for all xi(t), the number of parameters increases according
to 3n2 + n + 1. The price to be paid for reducing the number of parameters
to be computed in this way is the increased effect of noise, since in order
to solve Eq. (7.38) all the states except xi(t) have to be interpolated from
the measurements and this will necessarily introduce the direct effect of noise
on the estimate. To reduce this effect some elements of the noise could be
filtered out before the data are used in the interpolation, e.g. by using Prin-
cipal Component Analysis [43], or the noisy measurements could be replaced
by the solution of the differential equation (7.38). After the optimal solution
is obtained for Eq. (7.40), if the optimal cost is smaller than a certain bound,
for example 10% of the maximum of the measurements, the measurements are
replaced by the solution of the differential equations, under the assumption
that the model gives less noisy data without deteriorating the original mea-
surements significantly. As the optimisation problem is solved from x1 to xn,
more measurements may be replaced. At the final stage, all measurements
except the measurements for xn could be replaced by the filtered states. To
remove the unbalanced noise effect, the same procedure is repeated in the
opposite direction, i.e., starting from xn−1 to x1 since the earlier states may
be affected more by the noise.

The problem formulation of Eq. (7.40) is a very flexible one, since it can
cope with cases where the sampling time is not evenly distributed, and weight-
ing can also be used in the cost when the error bar at each sampling time is
different. The optimisation problem is, however, nonlinear, and hence it may
have many local solutions. If biologically plausible ranges for the parameters
are known, these can be used in choosing a better initial guess for the op-
timisation, in order to improve the chances of finding the globally optimal
solution. Initial values for the parameters may also be chosen by inspecting
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the finite difference magnitude of x̃i(tk), since, although the data are cor-
rupted by noise, the rate of change of xi(t) should still not be very different
from the magnitude of the finite difference. The initial guess for ω can be ob-
tained by calculating the dominant frequency of the measurement data using
Fourier transforms [40]. Results of the application of an inference algorithm
based on the above approach to a number of different biological examples are
described in [13].



244 An Introduction to Feedback Control in Systems Biology

7.7 Case Study XI: Inferring regulatory interactions in

the innate immune system from noisy measurements

Biology background: All organisms are constantly being exposed
to infectious agents and yet, in most cases, they are able to resist these
infections due to the action of their immune systems. The immune system
is composed of two major subdivisions, the innate or non-specific immune
system and the adaptive or specific immune system. The innate immune
system is made up of the cells and mechanisms that mediate a non-specific
defense of the host from infection by other organisms. In contrast to
the adaptive immune system, the innate immune system recognises and
responds to pathogens in a generic way and does not confer long-lasting or
protective immunity on the host. The innate immune system thus provides
the first line of defense against infection, and is found in all classes of plant
and animal life. From an evolutionary perspective, it is believed to be early
form of defense strategy, and indeed it is the dominant immune system
found in plants, fungi, insects, and in primitive multicellular organisms.
The main function of the immune system is to distinguish between self and
non-self, in order to protect the organism from invading pathogens and to
eliminate modified or altered cells (e.g. malignant cells). Since pathogens
may replicate intracellularly (viruses and some bacteria and parasites) or
extracellularly (most bacteria, fungi and parasites), different components
of the immune system have evolved to protect against these different types
of pathogens. Infection with an organism does not necessarily lead to
diseases, since the immune system in most cases will be able to eliminate
the infection before disease occurs. Disease occurs only when the bolus
of infection is high, when the virulence of the invading organism is great
or when immunity is compromised. Although the immune system, for
the most part, has beneficial effects, there can be detrimental effects as
well. During inflammation, which is the response to an invading organism,
there may be local discomfort and collateral damage to healthy tissue
as a result of the toxic products produced by the immune response. In
addition, in some cases the immune response can be directed toward self
tissues resulting in autoimmune disease.
The innate immune system functions by recruiting immune cells to sites of
infection, through the production of chemical factors called cytokines that
are secreted by macrophages. Cytokines are specialised regulatory pro-
teins, such as the interleukins and lymphokines, that are released by cells
of the immune system and act as intercellular mediators in the generation
of an immune response.
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Other functions of the innate immune response include the clearance of
dead cells or antibody complexes, the identification and removal of foreign
substances present in organs, tissues, the blood and lymph nodes, by
specialised white blood cells, and the activation of the adaptive immune
system through a process known as antigen presentation.
Proper regulation of the innate immune system is crucial for host sur-
vival, and breakdown of the immune system regulatory mechanisms can
lead to inflammatory disease. It therefore comes as no surprise that the
control mechanisms employed in nature to regulate the immune system
response are extraordinarily complex, making them a prime candidate for
investigation using Systems Biology approaches.

In [44], the authors used cluster analysis of a comprehensive set of tran-
scriptomic data derived from Toll-like receptor (TLR)-activated macrophages
to identify a prominent group of genes that appear to be regulated by acti-
vating transcription factor 3 (ATF3), a member of the CREB/ATF family
of transcription factors. Network analysis predicted that ATF3 is part of
a transcriptional complex that also contains members of the nuclear factor
(NF)-κB family of transcription factors. Promoter analysis of the putative
ATF3-regulated gene cluster demonstrated an over-representation of closely
apposed ATF3 and NF-κB binding sites, which was verified by chromatin im-
munoprecipitation and hybridisation to a DNA microarray. This cluster in-
cluded important cytokines such as interleukin (IL)-6 and IL-12b. ATF3 and
Rel (a component of NF-κB) were shown to bind to the regulatory regions
of these genes upon macrophage activation. Thus, the biochemical network
through which interleukin (IL)-6 and IL-12b interact with activating tran-
scription factor 3 (ATF3) and Rel (a component of NF-κB) appears to form
an important part of the innate immune system response. In [44], a kinetic
model for the expression of IL6 mRNA by ATF3 and Rel was proposed as
follows:

d(Il6)

dt
= −1

τ
Il6 +

1

τ (1 + e−βRelRel−βATF3ATF3)
(7.41)

where τ = 600/ ln(2), βRel = 7.8, and βATF3 = −4.9. This kinetic model
was developed to match the experimental data shown in Fig. 7.8. Similarly,
a kinetic model for IL12 is given by

d(Il12)

dt
= −1

τ
Il12 +

1

τ (1 + e−βRelRel−βATF3ATF3)
(7.42)

where τ = 600/ ln(2), βRel = 18.5, and βATF3 = −9.6. We now consider the
problem of estimating A, the Jacobian matrix of f(x) for this system, from
the noisy experimental data given in Fig. 7.8, [45]. Using the proposed kinetic
models, an analytical expression for one row of A can be obtained for Il6 as
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FIGURE 7.8: The measurements of Rel, ATF3, Il6, and Il12 are taken from
[44]. The actual data in [44] are measured at 0, 60, 120, 240 and 360 minutes.
To make the measurements equally spaced in time, the data shown at 180 and
300 minutes are interpolated.

follows:

∂(dIl6/dt)

∂Il6
= −1

τ
= − ln(2)

600
≈ −0.00116 (7.43a)

∂(dIl6/dt)

∂Rel
=
−βRele

−βRelRel−βATF3ATF3

τ (1 + e−βRelRel−βATF3ATF3)
2 (7.43b)

∂(dIl6/dt)

∂ATF3
=
−βATF3e

−βRelRel−βATF3ATF3

τ (1 + e−βRelRel−βATF3ATF3)
2 (7.43c)

and a similar result can be obtained for Il12. Unfortunately, the second and
the third partial derivatives above cannot be calculated unless the equilibrium
condition values for Rel and ATF3 are known. However, we can obtain the
following ratio:

∂(dIl6/dt)

∂Rel

[

∂(dIl6/dt)

∂ATF3

]−1

=
∂ATF3

∂Rel
=

βRel

βATF3
=

7.8

−4.9
= −1.59 (7.44)
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and therefore we can partially validate the Jacobian estimation from the data
against the proposed model by checking the value of this ratio. The equivalent
ratio for the case of Il12 is -1.93. Note that the negative sign of this value
is crucial, since it predicts that ATF3 is a negative regulator of Il6 and Il12b
transcription, a hypothesis which was subsequently validated using Atf3-null
mice in [44]. ATF3 seems to inhibit Il6 and Il12b transcription by alter-
ing chromatin structure, thereby restricting access to transcription factors.
Because ATF3 is itself induced by lipopolysaccharide, it seems to regulate
TLR-stimulated inflammatory responses as part of a negative-feedback loop.

To obtain the data shown in Fig. 7.8, wild type mice were stimulated (or
perturbed) by 10 ng ml−1 lipopolysaccharide (LPS). The data was sampled at
intervals of 10 minutes but the original data at 180 and 300 minutes were not
given, hence, they are interpolated for our study to make all data equally
spaced in time. Naturally, the measurement data will include significant
amounts of noise, and thus we expect that the direct calculation of the Ja-
cobian using the conventional least squares algorithm may produce biased or
inaccurate results. Note that since the number of states is 3, the number of
perturbations is 1, and the number of data points for each state is 7, there
is relatively little data with which to accurately estimate the Jacobian for
this particular example. In addition, since the equilibrium point is not given,
the measurements we have are not relative measurements ∆x̃k but absolute
measurements x̃k. This presents no difficulty, however, since the problem for-
mulation to estimate the Jacobian using x̃k is exactly the same as the one for
∆x̃k - see [46] for more details.

To investigate the effect of measurement noise on the quality of the in-
ference results, each of the three different least squares algorithms described
above (LS, TLS and CTLS) were applied to this problem. For Il6 the key
result obtained is that the standard least squares algorithm gives the wrong
(positive) sign for the ratio defined above, whereas the more advanced algo-
rithms give the correct sign. The correct ratio of Rel and ATF3 to Il6 is -1.59
and the estimated values computed with the LS, TLS, and CTLS algorithms
are 1.43, -3.73, and -6.35, respectively. Thus, only by using the TLS or CTLS
algorithms can the negative regulation effect of ATF3 be confirmed from the
noisy data shown in Fig. 7.8. For Il12, the ratio calculated from each method,
i.e., LS, TLS, and CTLS, is -4.53, -2.46, and -1.98, respectively. Therefore,
in this case all three algorithms predict the negative regulation role of ATF3
correctly. However, the ratio computed from the CTLS, -1.98, is by far the
closest to the true value (-1.93) predicted by the model.
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7.8 Case Study XII: Reverse engineering a cell-cycle reg-

ulatory subnetwork of Saccharomyces cerevisiae from

experimental micro-array data

Biology background: The cell-cycle is a series of events that takes
place inside a cell leading to its division and replication. In prokaryotic
cells, the cell-cycle occurs via a process called binary fission. In eukaryotic
cells, the cell-cycle consists of four distinct phases: the first three, G1
phase, S phase (synthesis) and G2 phase are collectively known as the
interphase, during which the cell grows and accumulates the nutrients
needed for mitosis and duplication of its DNA. The fourth phase is termed
the M phase (mitosis), which is itself made up of two tightly coupled
processes: mitosis, in which the cell’s chromosomes are divided between
the two daughter cells, and cytokinesis, in which the cell’s cytoplasm
divides in half forming distinct cells. Activation of each phase is dependent
on the proper progression and completion of the previous one. Cells that
have temporarily or reversibly stopped dividing are said to have entered
a state of quiescence called G0 phase. The cell-cycle is a fundamental
developmental process in biology, in which a single-celled fertilised egg
grows into a mature organism. It is also the process by which hair, skin,
blood cells, and many internal organs are renewed.
Correct regulation and control of the cell-cycle is crucial to the survival
of a cell, and requires the detection and repair of genetic damage as well
as the prevention of uncontrolled cell division. Progress through the cell-
cycle is controlled by two key classes of regulatory molecules, cyclins and
cyclin-dependent kinases (CDKs), and takes place in an sequential and
directional manner which cannot be reversed. Many of the genes encod-
ing cyclins and CDKs are conserved among all eukaryotes, but in general
more complex organisms have more elaborate cell-cycle control systems
that incorporate more individual components. Many of the key regu-
latory genes were first identified by studies of the yeast Saccharomyces
cerevisiae, where it appears that a semi-autonomous transcriptional net-
work acts along with the CDK-cyclin machinery to regulate the cell-cycle.
Several gene expression studies have identified approximately 800 to 1200
genes that change expression over the course of the cell-cycle - they are
transcribed at high levels at specific points in the cycle, and remain at
lower levels throughout the rest of it. While the set of identified genes
differs between studies due to the computational methods and criterion
used to identify them, each study indicates that a large portion of yeast
genes are temporally regulated.
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Disruption of the cell-cycle can lead to cancer. Mutations in cell-cycle
inhibitor genes such as p53 can cause the cell to multiply uncontrollably,
resulting in the formation of a tumor. Although the duration of the cell-
cycle in tumor cells is approximately the same as that of normal cells, the
proportion of cells that are actively dividing (versus the number in the
quiescent G0 phase) is much higher. This results in a significant increase
in cell numbers as the number of cells that die by apoptosis or senescence
remains constant. Many cancer therapies specifically target cells which are
actively undergoing cell-cycle, since in these cells the DNA is relatively
exposed and hence susceptible to the action of drugs or radiation. One
process, known as debulking, removes a significant mass of the tumor,
which leads a large number of the remaining tumor cells to change from
the G0 to G1 phase due to increased availability of nutrients, oxygen,
growth factors etc. These cells which have just entered the cell-cycle are
then targeted for destruction using radiation or chemotherapy.

In this Case-Study, we illustrate the application of the PACTLS algorithm
to the problem of reverse engineering a regulatory subnetwork of the cell-cycle
in Saccharomyces cerevisiae from experimental microarray data. The network
is based on the model proposed by [47] for transcriptional regulation of cy-
clin and cyclin/CDK regulators and the model proposed by [48], where the
main regulatory circuits that drive the gene expression program during the
budding yeast cell-cycle are considered. The network is composed of 27 genes:
ten genes that encode for transcription factor proteins (ace2, fkh1, swi4, swi5,
mbp1, swi6, mcm1, fkh2, ndd1, yox1) and seventeen genes that encode for cy-
clin and cyclin/CDK regulatory proteins (cln1, cln2, cln3, cdc20, clb1, clb2,
clb4, clb5, clb6, sic1, far1, spo12, apc1, tem1, gin4, swe1 and whi5). The
microarray data have been taken from [49], selecting the data set produced
by the alfa factor arrest method. Thus, the raw data set consists of n = 27
genes and 18 data points. A smoothing algorithm has been applied in order
to filter the measurement noise and to increase by interpolation the number of
observations. The gold standard regulatory network comprising the chosen 27
genes has been drawn from the BioGRID database [50], taking into account
the information of [47] and [48]: the network consists of 119 interactions, not
including the self-loops, yielding a value of the sparsity coefficient, defined by
η = 1−#edges/(n2 − n), equal to 0.87.



250 An Introduction to Feedback Control in Systems Biology

7.8.1 PACTLS: An algorithm for reverse engineering par-
tially known networks from noisy data

In this subsection, we describe the PACTLS algorithm, [51], a method de-
vised for the reverse engineering of partially-known networks from noisy data.
PACTLS uses the CTLS technique to optimally reduce the effects of mea-
surement noise in the data on the reliability of the inference results, while
exploiting qualitative prior knowledge about the network interactions with an
edge selection heuristic based on mechanisms underpinning scale–free network
generation, i.e. network growth and preferential attachment (PA).

The algorithm allows prior knowledge about the network topology to be
taken into account within the CTLS optimisation procedure. Since each el-
ement of A can be interpreted as the weight of the edge between two nodes
of the network, this goal can be achieved by constraining some of the opti-
misation variables to be zero and others to be strictly positive (or negative),
and using a constrained optimisation problem solver, e.g. the nonlinear opti-
misation function fmincon from the MATLAB optimisation Toolbox, to solve
Eq. (7.34). Similarly, we can impose a sign constraint on the i-th element of
the input vector, bi, if we a priori know the qualitative (i.e. promoting or
repressing) effect of the perturbation on the i-th node. Alternatively, an edge
can be easily pruned from the network by setting to zero the corresponding
entry in the minimisation problem.

So far we have described a method to add/remove edges and to introduce
constraints on the sign of the associated weights in the optimisation prob-
lem. The problem remains of how to devise an effective strategy to select the
nonzero entries of the connectivity matrix.

The initialisation network for the devised algorithm has only self–loops
on every node, which means that the evolution of the i-th state variable is
always influenced by its current value. This yields a diagonal initialisation
matrix, Â(0). Subsequently, new edges are added step-by-step to the network
according to the following iterative procedure:

P1) A first matrix, Ā, is computed by solving (7.34) for each row, without
setting any optimisation variable to zero. The available prior infor-
mation is taken into account at this point by adding the proper sign
constraints on the corresponding entries of A before solving the optimi-
sation problem. Since it typically exhibits all nonzero entries, matrix
Ā is not representative of the network topology, but is rather used to
weight the relative influence of each entry on the system’s dynamics.
This information will be used to select the edges to be added to the
network at each step. Each element of Ā is normalised with respect to
the values of the other elements in the same row and column, which
yields the matrix Ã, whose elements are defined as

Ãij =
Āij

(

‖Ā⋆,j‖ · ‖Āi,⋆‖
)1/2

.
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P2) At the k-th iteration, the edges ranking matrix G̃(k) is computed,

G̃
(k)
ij =

|Ãij |p(k)
j

n
∑

l=1

p
(k)
l |Ãil|

, (7.45)

where

p
(k)
j =

K
(k)
j

n
∑

l=1

K
(k)
l

(7.46)

is the probability of inserting a new edge starting from node j and K
(k)
l

is the number of outgoing connections from the l-th node at the k-th
iteration. The µ(k) edges with the largest scores in G̃(k) are selected
and added to the network; µ(·) is chosen as a decreasing function of k,
that is µ(k) = ⌈n/k⌉. Thus, the network grows rapidly at the begin-
ning and is subsequently refined by adding smaller numbers of nodes at
each iteration. The form of the function p(·) stems from the so–called
preferential attachment (PA) mechanism, which states that in a growing
network new edges preferentially start from popular nodes (those with
the highest connectivity degree, i.e. the hubs). By exploiting the mech-
anisms of network growth and PA, we are able to guide the network
reconstruction algorithm to increase the probability of producing a net-
work with a small number of hubs and many poorly connected nodes.
Note also that, for each edge, the probability of incidence is blended
with the edge’s weight estimated at point P1); therefore, the edges with
larger estimated weights have a higher chance to be selected. This en-
sures that the interactions exerting greater influence on the network
dynamics have a higher probability of being selected.

P3) The structure of nonzero elements of Â(k) is defined by adding the entries
selected at point P2) to those selected up to iteration k − 1 (including
those derived by a priori information), and the set of inequality con-
straints is updated accordingly; then Problem 7.34 for each row, with
the additional constraints, is solved to compute Â(k).

P4) The residuals generated by the identified model are compared with the
values obtained at the previous iterations; if the norm of the vector of
residuals has decreased, in the last two iterations, at least by a factor
ǫr with respect to the value at the first iteration, then the procedure
iterates from point P2), otherwise it stops and returns the topology
described by the sparsity pattern of Â(k−2). The factor ǫr is inversely
correlated with the number of edges inferred by the algorithm; on the
other hand, using a smaller value of ǫr raises the probability of obtaining
false positives. By conducting numerical tests for different values of ǫr,
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we have found that setting ǫr = 0.1 yields a good balance between the
various performance indices.

Concerning the input vector, we assume that the perturbation targets and
the qualitative effects of the perturbation are known, thus the pattern (but not
the values of the nonzero elements) of B̂ is preassigned at the initial step and
the corresponding constraints are imposed in all the subsequent iterations.

7.8.2 Results

Fig. 7.9 shows the results obtained by PACTLS assuming four different levels
of prior knowledge (PK) from 10% to 40% of the network. The performance
is evaluated by using two common statistical indices (see [52], p.138):

• Sensitivity (Sn), defined as

Sn =
TP

TP + FN
,

which is the fraction of actually existing interactions (TP:=true posi-
tives, FN:=false negatives) that the algorithm infers, also termed Recall,
and

• Positive Predictive Value (PPV),

PPV =
TP

TP + FP
,

which measures the reliability of the interactions (FP:=false positives)
inferred by the algorithm, also named Precision.

To compute these performance indexes, the weight of an edge is not consid-
ered, but only its existence, so the network is considered as a directed graph.
The performance of PACTLS is compared with one of the most popular sta-
tistical methods for network inference, dynamic Bayesian networks. For these
purposes we used the software BANJO (BAyesian Network inference with
Java Objects), [53], that performs network structure inference for static and
dynamic Bayesian networks (DBNs).

The performance of both approaches is compared in Fig. 7.9. In order to
further validate the inference capability of the algorithms, the figure shows
also the results obtained by a random selection of the edges, based on a bino-
mial distribution: given any ordered pair of nodes, the existence of a directed
edge between them is assumed true with probability pr, and false with prob-
ability 1 − pr. By varying the parameter pr in [0, 1], the random inference
algorithm produces results shown as the solid curves on the (PPV, Sn) plot
in Fig. 7.9.
The performance of PACTLS is consistently significantly better than the
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FIGURE 7.9: Results for the cell-cycle regulatory subnetwork of
Saccharomyces cerevisiae assuming different levels of prior knowledge
(PK=10,20,30,40%).

method based on DBNs: the distance of the PACTLS results from the random
curve is almost always larger than those obtained with the BANJO software,
which is not able to achieve significant Sn levels, probably due to the low
number of time points available. Moreover the results show that the perfor-
mance of PACTLS improves progressively when the level of prior knowledge
increases. Fig. 7.10 shows the regulatory subnetwork inferred by CORE–Net,
assuming 50% of the edges are a priori known. Seven functional interactions,
which are present in the gold standard network, have been correctly inferred.
Moreover, seven other functional interactions have been returned, which are
not present in the gold standard network. To understand if the latter should
be classified as TP or FP, we manually mined the literature and the biological
databases, and uncovered the following results:

• The interaction between mbp1 and gin4 is reported by the YEAS-
TRACT database [54]: mbp1 is reported to be a transcription factor
for gin4 ;

• A possible interaction between fkh2 and swi6 is also reported by the
YEASTRACT database: fkh2 is reported to be a potential transcription
factor for swi6 );

• The interaction between clb1 and swi5 appears in Figure 1 in [48], where
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FIGURE 7.10: Gene regulatory subnetwork of S. cerevisiae inferred by
CORE–Net with 50% of the edges a priori known (thin solid edges). Results
according to the gold–standard network drawn from the BioGRID database:
TP=thick solid edge, FN=dotted edge, FP=thick dashed edge. The thick
green dashed edges are not present in the BioGRID database, however they
can be classified as TP according to other sources. The FP thick orange
dashed edges are indirect interactions mediated by ndd1. No information has
been found regarding the interactions denoted by the thick red dashed edges.

the scheme of the main regulatory circuits of budding yeast cell-cycle is
described.

Thus, these three interactions can be classified as TP as well and are reported
as green dashed edges in Fig. 7.10.



Reverse Engineering Biomolecular Networks 255

Concerning the other inferred interactions, two of them can be explained
by the indirect influence of swi6 on fkh1 and fkh2, which is mediated by
ndd1 : in fact, the complexes SBF (Swi4p/Swi6p) and MBF(Mbp1p/Swi6p)
both regulate ndd1 [47], which can have a physical and genetic interaction
with fkh2. Moreover, fkh1 and fkh2 are forkhead family transcription factors
which positively influence the expression of each other. Thus, the inferred
interactions are not actually between adjacent nodes of the networks and have
to be formally classified as FP (these are reported as orange dashed edges in
Fig. 7.10).

Concerning the last two interactions, that is clb2→apc1 and mcm1→tem1,
since we have not found any information on them in the literature, in the
absence of further experimental evidences they have to be classified as FP
(reported as red dashed edges in Fig. 7.10).

The results obtained in this Case-Study highlight the potential of the ap-
proaches described in this chapter for reverse engineering biomolecular net-
works, and in particular confirm the importance of dealing with measurement
noise and exploiting prior knowledge to improve the reliability of the network
inference.
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8

Stochastic effects in biological control systems

8.1 Introduction

At macroscopic scales, the processes of life appear highly deterministic. At
molecular scales, however, biological processes are highly stochastic, due both
to the cellular environment and the nature of information flows in biological
networks. The effects of these stochastic variations or noise are neglected
in deterministic chemical rate equations (and their corresponding differential
equation models) and this is reasonable, because in most cases such effects dis-
appear when they are averaged over large numbers of molecules and chemical
reactions.

In the case of biological processes involving molecular species at very low
copy numbers, however, potentially significant stochastic effects may arise due
to the random variations in numbers of molecules present in different cells at
different times, [1]. A striking example is the process of transcription, where
only one or two copies of a particular DNA regulatory site may be present
in each cell. Clearly, in this case, the implicit assumption that the reactants
vary both continuously and differentiably, which underly the formulation of
deterministic models, do not hold. Indeed, recent research has shown how
deterministic models of a genetic network may not correctly represent the
evolution of the mean of the corresponding (actual) stochastic system [2].
Other research has revealed how stochastic noise can also play an important
role in the dynamics of other types of cellular networks. In developmental pro-
cesses, for example, it is often highly desirable to control or buffer stochastic
fluctuations, whereas in other situations noise allows organisms to generate
non-genetic phenotypic variability which may confer robustness to changes in
environmental conditions. Stochastic noise has been shown to have the poten-
tial to cause qualitative changes in the dynamics of some systems, for example
causing random switching between different equilibria in systems exhibiting
bistability, or inducing oscillations in otherwise stable systems [3, 4].

The theoretical machinery required to rigorously analyse stochastic biomolec-
ular networks is much less well developed than in the case of deterministic
systems. For this reason, the main focus of this book has been on deter-
ministic ODE-based models, for which many powerful analysis tools exist in
systems and control theory. Some recent research has, however, led to the de-
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velopment of promising approaches for characterising the effects of stochastic
noise on important system properties such as stability and robustness, and
these are described later in this chapter. In many cases, however, the analysis
of stochastic effects in biological control systems is still reliant on computer
simulation, and so, following the treatment of [2], we begin with a brief sum-
mary of the basic modelling and simulation tools which are available for this
purpose.

8.2 Stochastic modelling and simulation

Consider a system of molecules comprised of N chemical species (S1, ..., SN )
interacting via M chemical reaction channels (R1, ..., RM ). The system is
assumed to be spatially homogenous (well-stirred), operating in a constant
volume Ω and to be in thermal (but not chemical) equilibrium at some con-
stant temperature. Denote by Xi(t) the number of molecules of species Si

present in the system at time t. For some initial condition X(t0) = x0, we
want to compute the evolution of the state vector X(t) over time.

We assume that each reaction channel Rj describes a distinct physical event
which happens essentially instantaneously and can be characterised mathe-
matically by the quantities vj and aj . vj = (v1j , ..., vNj) is a state-change
vector, and vij is defined as the change in the population of species Si caused
by the reaction Rj . Thus, the reaction Rj will cause an instantaneous change
in the state of the system from some state X(t) = x to state x + vj , and the
array (vij) is the system’s stoichiometric matrix. aj is called the propensity
function, which is defined so that for a system at state X(t) = x, aj(x)dt is
the probability that one Rj reaction will occur somewhere in the volume Ω
in the next infinitesimal time interval [t, t + dt). If Rj is the monomolecular
reaction Si → products, then quantum mechanics implies the existence of
some constant cj such that aj(x) = cjxi. If Rj is the bimolecular reaction
Si +Si′ → products, then the underlying physics gives a different constant cj ,
and a propensity function aj(x) of the form cjxixi′ if i 6= i′, or cj

1
2xi(xi − 1)

if i = i′, [5, 6].

Since in this framework the underlying bimolecular reactions are stochas-
tic, the precise positions and velocities of all the molecules in the system are
not known. Thus, it is only possible to compute the probability that an Si

molecule and an Si′ molecule will collide in the next dt, and the probability
that such a collision will result in an Rj reaction. For a monomolecular reac-
tion, cj is equal to the reaction rate constant kj of conventional deterministic
chemical kinetics, while for a bimolecular reaction cj is equal to kj/Ω if the
reactants are different species, or 2kj/Ω if they are the same [6, 7, 8].

Now, we want to compute the probability that X(t) is equal to some value
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x, given that X(t0) is equal to some value x0, i.e. P (x, t | x0, t0). A time-
evolution equation for this probability is given by

P (x, t + dt | x0, t0) = P (x, t, | x0, t0)×



1−
M
∑

j=1

aj(x)dt



 +

M
∑

j=1

P (x− vj , t | x0, t0)× aj(x− vj)dt

The first term on the right hand side of the above equation is the probability
that the system is already in state x at time t and no reaction of any kind
occurs in the time interval [t, t + dt). The second term is the probability that
the system is one Rj reaction away from state x at time t and that one Rj

reaction occurs in the interval [t, t+dt). Note that dt is assumed to be so small
that no more than one reaction of any kind can occur in the interval [t, t+dt).
Now, we subtract P (x, t | x0, t0) from both sides of the above equation, divide
through by dt, and take the limit as dt→ 0 to obtain [5, 7]

δP (x, t | x0, t0)

δt
=

M
∑

j=1

[aj(x− vj)P (x− vj , t | x0, t0)− aj(x)P (x, t | x0, t0)]

The above equation is known as the chemical master equation (CME), and
it completely determines the function P (x, t | x0, t0). Unfortunately, however
the CME consists of almost as many coupled ordinary differential equations
as there are combinations of molecules that can exist in the system - it can
only be solved analytically in the case of a few very simple systems, and even
numerical solutions are usually prohibitively expensive computationally. A
solution to this problem is provided by the stochastic simulation algorithm
(SSA), which works by constructing numerical realisations of X(t), i.e. sim-
ulated trajectories of X(t) over time - when averaged over many realisations,
the resulting trajectories represent good approximations to exact numerical
solutions of the CME. The basis idea behind the SSA is to generate a new
function, p(τ, j | x, t) [9], such that p(τ, j | x, t)dτ is the probability, given
X(t) = x, that the next reaction in the system will be Rj and that this reac-
tion will occur in the infinitesimal time interval [t+τ, t+τ +dτ). This function
is thus the joint probability density function of the two random variables τ
(the time to the next reaction) and j (the index of the next reaction). An
analytical expression for p(τ, j | x, t)dτ can be derived as follows. First note
that if P0(τ | x, t) is the probability, given X(t) = x, that no reaction occurs
in the time interval [t, t + τ) then we have that

p(τ, j | x, t)dτ = P0(τ | x, t)× aj(x)dτ

P0(τ + dτ | x, t) = P0(τ | x, t)×
[

1−
M
∑

k=1

ak(x)dτ

]
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Rearranging the last equation and taking the limit as dτ → 0 gives a differen-
tial equation whose solution is easily found to be P0(τ | x, t) = exp(−a0(x)τ),

where a0(x) ≡∑M
k=1 ak(x). Inserting this into the previous equation gives

p(τ, j | x, t) = aj(x)exp(−a0(x)τ)

Note that the the above equation implies that the joint density function of τ
and j can be written as the product of the τ -density function, a0(x)exp(−a0(x)τ),
and the j-density function, aj(x)/a0(x). Using Monte Carlo theory, [9], ran-
dom samples can be drawn from these two density functions as follows: gener-
ate two random numbers r1 and r2 from the uniform distribution in the unit
interval and then select τ and j according to

τ =
1

a0(x)
ln

1

r1
(8.1)

j−1
∑

k=1

ak(x) ≤ r2a0(x) <

j
∑

k=1

ak(x) (8.2)

The SSA is then given as follows:

1. Initialise the time t = t0 and the system’s state x = x0.
2. Evaluate all the aj(x) and their sum a0(x) with the system in state x at
time t.
3. Generate values for τ and j according to Equations 8.1 and 8.2.
4. Simulate the next reaction by replacing t with t + τ and x with x + vj .
5. Record the new values of (x,t) and return to Step 2, or else end the simu-
lation.

The X(t) trajectory that is produced by the SSA can be interpreted as a
stochastic version of the trajectory that would be found by solving the stan-
dard reaction rate equation from deterministic chemical kinetics. Note also
that the exact value of τ used at each time step in the SSA is different - in
contrast to the time step used in most numerical solvers for deterministic sim-
ulations, τ is not a finite approximation to some infinitesimal dt. Although the
SSA is very straightforward to implement, it is often very slow, due primarily
to the factor 1/a0x in Eq. 8.1, which will be very small if the population of
any reactant species is sufficiently large, as is often the case in practice.

Much research in recent years has been devoted to attempts to find more
computationally efficient methods for the simulation of stochastic models.
Several variations to the above method for implementing the SSA have been
developed, some of which are more efficient than others [10, 11]. Inevitably,
however, any procedure that simulates every reaction event one at a time will
be highly computationally intensive. This has prompted several researchers
to develop more approximate but faster approaches. One approximate accel-
erated simulation strategy is tau-leaping, [12], which advances the system by
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a pre-selected time τ which encompasses more than one reaction event, but
is still sufficiently small that no propensity function changes its value by a
significant amount. τ -leaping has been shown to allow much faster simulation
of some systems [12, 13], but it can also lead to erroneous results if the chosen
leaps are too large [14]. In addition, large leaps cannot be taken in the case
of “stiff” systems with widely varying time-scales (which are very common
in cellular systems) since the maximum allowable leap is limited by the time
scale of the fastest mode.

Other related approaches are the Langevin leaping formula, [15], hybrid
methods which combine deterministic simulation of fast reactions involving
large populations with the use of the SSA to simulate slow reactions with
small populations, [16], and finite state projection algorithms [17, 18].

8.3 A framework for analysing the effect of stochastic

noise on stability

The development of efficient methods for the simulation of stochastic network
models is clearly an important research direction in Systems Biology. As in
the case of deterministic systems, however, analytical tools will also be re-
quired in order to obtain a detailed understanding of the design principles
of such systems. Such tools will be of even more importance for the design
of synthetic circuits, or of therapeutics aimed at altering existing networks,
since in these cases a systematic mapping of the parameter space is required.
For these purposes, it is likely that stochastic simulation will be prohibitively
time-consuming no matter what improvements in efficiency are produced, es-
pecially for large-scale networks. In light of this, it is perhaps surprising that
the problem of characterising the effects of stochastic noise on system prop-
erties has to date received relatively little attention from systems and control
theorists.

One approach which does appear to have significant potential is based on
the idea of incorporating approximate models of noise into deterministic mod-
elling frameworks using the so-called linear noise approximation, [19]. In par-
ticular, a recent extension of this approach, termed the “effective stability
approximation” method, [20], represents a potentially powerful framework for
the analysis of the effect of intrinsic noise on the stability of biological systems.
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8.3.1 The effective stability approximation

The basic idea of this approach is as follows. Consider a system of biomolec-
ular interactions represented by the nonlinear differential equation

dx(t)

dt
= f [x(t)] (8.3)

where x ∈ R
n, f [x(t)] satisfies the standard conditions for the existence and

uniqueness of the solution of the differential equation, R is the real number
field and n is a positive integer. Linear stability analysis of such equations
is performed around the equilibrium point, xs, which satisfies f(xs) = 0, as
follows:

d∆x(t)

dt
=

∂f(x)

∂x

∣

∣

∣

∣

x=xs

∆x(t) ≡ Γ∆x(t) (8.4)

where we assume that all real parts of the eigenvalues of Γ are strictly less
than zero, hence, the system is Hurwitz stable. Now, introduce a small per-
turbation which is added to ∆x(t), to represent some level of stochastic noise
Ωα(t), where Ω in the set of positive real numbers, R+, is in general inversely
proportional to the square root of the cell volume, Vcell, i.e. Ω ≈ 1/

√
Vcell,

and α(t) in Rn is the stochastic noise whose mean value is zero. Then, the
above perturbation including the stochastic fluctuation can be approximated
as follows:

dδx(t)

dt
≈ Γδx(t) + Ω

∂

∂Ω

[

∂f(x)

∂x

∣

∣

∣

∣

x=xs+Ωα(t)

]∣

∣

∣

∣

∣

Ω=0

δx(t)

≡ Γδx(t) + ΩJ [α(t)]δx(t) (8.5)

We are interested in the mean trajectory of δx(t), which is given by:

dE [δx(t)]

dt
≈ ΓE [δx(t)] + ΩE {J [α(t)]δx(t)} (8.6)

where E(·) is the expectation. The following Bourret’s approximation can be
derived by assuming that α(t) varies much faster than e−Γtδx(t) and neglect-
ing the terms in Ω higher than second order, [21]:

dE [δx(t)]

dt
≈ ΓE [δx(t)] + Ω2

∫ t

0

E [Jc(t− τ)] E [δx(τ)] dτ (8.7)

where Jc(t − τ) = J [α(t)]eΓ(t−τ)J [α(τ)]. Note that each term of Jc(t − τ)
is a linear combination of αi(t)αj(τ), αi(t) is the i-th element of α(t) and
the covariance of α(t) is derived from linearised Fokker-Plank equations as
follows:

E
[

α(t)αT (τ)
]

= eΓ(t−τ)Ξ, (8.8)

where Ξ is given by the solution of the Lyapunov equation:

Γ Ξ + ΞΓT + D = 0, (8.9)
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D = Sdiag[v]ST , f(x) = Sv, and S is the stoichiometry matrix for the network
[22]. Then, Jc(t − τ) is a function of the time difference only. Since the
integral in the right hand side of Eq. (8.7) is a convolution integral, the Laplace
transform of both sides is given by [20]

δX(s) =
[

sI − Γ− Ω2Ĵc(s)
]−1

δX(0) (8.10)

where I is the identity matrix and Ĵc(s) is the Laplace transform of E [Jc(t)].
The effect of the stochastic noise on the stability of the system can now
be analysed using this equation, however, notice that in the calculation of
Jc(t) the symbol t is involved in calculating the matrix exponential, eΓt. The
calculation of this matrix exponential will thus be extremely computationally
expensive, [23], and in practice restricts the method as formulated in [20] to
the analysis of very small-scale circuits, of the order of two or three states at
most. To extend the applicability of the approach to larger size problems, a
novel approximation for the dominant term in the stochastic perturbation to
the ordinary differential equation model was developed in [24] as described
below.

8.3.2 A computationally efficient approximation of the dom-
inant stochastic perturbation

Recall that the original linearised differential equation is assumed to be stable,
i.e. eΓt → 0 as t→∞. For all Hurwitz stable Γ and any δ greater than zero,
it is easy to show that there always exists a positive number, τc, such that

∥

∥E
{

J [α(t)]eΓtJ [α(0)]
}∥

∥ < δ, (8.11)

for all t > τc. Then, the Bourret’s representation may be approximated as
follows:

dE [δx(t)]

dt
≈ ΓE [δx(t)] + Ω2

∫ t

0

E [Tc(t)]E [δx(t− τ)] dτ (8.12)

where

Tc(t) =

{

Jc(t), for t ≤ τc

0, for t > τc

(8.13)

and the approximation error is bounded by

(approximation error) ≤ Ω3

∥

∥

∥

∥

∫ t

τc

E [δx(t − τ)] dτ

∥

∥

∥

∥

(8.14)

This approximation does not introduce any significant additional error beyond
the level of approximation that is imposed in the standard Bourret’s repre-
sentation. To see this, split the integral in Eq. (8.12) into two subintervals,
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i.e. τ ∈ [0, τc) and τ ∈ [τc, t). Setting δ equal to Ω, we have that the integral
from τ = τc to τ = t is bounded by

Ω2

∥

∥

∥

∥

∫ t

τc

E [Jc(t)] E [δx(t − τ)] dτ

∥

∥

∥

∥

= Ω2

∥

∥

∥

∥

∫ t

τc

E
{

J [α(t)]eΓtJ [α(0)]
}

E [δx(t− τ)] dτ

∥

∥

∥

∥

≤ Ω2

∥

∥

∥

∥

∫ t

τc

∥

∥E
{

J [α(t)]eΓtJ [α(0)]
}∥

∥E [δx(t − τ)] dτ

∥

∥

∥

∥

= Ω3

∥

∥

∥

∥

∫ t

τc

E [δx(t− τ)] dτ

∥

∥

∥

∥

(8.15)

Since the standard Bourret’s representation ignores all terms higher than Ω2,
no significant additional error is introduced in the approximation. Note that
since the local stability around the equilibrium point is checked by inspecting
the eigenvalues of the perturbed equation, the norm of the perturbed state is
assumed to be sufficiently small so that the last integration of the perturbed
state in Eq. (8.15) from time τc to t remains smaller than 1/Ω. The stability
of the stochastic network can thus be checked by analysing the following
equation:

δX(s) =
[

sI − Γ− Ω2T̂c(s)
]−1

δX(0) (8.16)

where

T̂c(s) =

∫ ∞

0

E [Tc(t)] e
−stdt =

∫ τc

0

E [Jc(t)] e
−stdt (8.17)

It is still difficult in general to obtain an exact closed form solution for this
integral, but it can be approximated numerically by using the following result.
The Laplace transform of Tc(t) is given by

T̂c(s) =

N
∑

k=1

Fk [k∆t, Γ, Ξ]
e−s(k−1)∆t − e−sk∆t

s
(8.18)

where
Fk [k∆t, Γ, Ξ] = E

{

J [α(k∆t)]eΓk∆tJ [α(0)]
}

(8.19)

∆t = τc/N and the error between T̂c(s) and the Laplace transform of Jc(t)
can be made arbitrarily small for all s = jω, ω ∈ [0,∞), by increasing N and
τc while keeping ∆t small. The matrix exponential eΓk∆t is approximated
by [I + (∆t/r)Γ]

rk
and E

[

α(t)αT (0)
]

is approximated by [I + (∆t/r)Γ]
rk

Ξ,
where r is a positive real number greater than or equal to ∆t. To see that
the approximation error can be made arbitrarily small, note that to obtain
an approximate integral, the interval from 0 to τc is divided into the sum of
N subintervals, whose length equals ∆t = τc/N such that

E
{

J [α(t)]eΓtJ [α(0)]
}

≈ E
{

J [α(k∆t)]eΓk∆tJ [α(0)]
}

(8.20)
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for a sufficiently large N , for all t ∈ [(k − 1)∆t, k∆t). Then

T̂c(s) =

∫ τc

0

E [Jc(t)] e
−stdt

=
N
∑

k=1

∫ k∆t

(k−1)∆t

E
{

J [α(t)]eΓtJ [α(0)]
}

e−stdt

≈
N
∑

k=1

E
{

J [α(k∆t)]eΓk∆tJ [α(0)]
} e−s(k−1)∆t − e−sk∆t

s
(8.21)

where the matrix exponential for k is approximated as mentioned in the above.
The approximation error for T̂c(s) is bounded by

∥

∥

∥

∥

∥

N
∑

k=1

∫ k∆t

(k−1)∆t

{E [Jc(k∆t)]−E [Jc(t)]} e−stdt

∥

∥

∥

∥

∥

≤ ∆t2
N
∑

k=1

∆Jk ≤
τ2
c

N
∆J̄ (8.22)

where the first inequality is satisfied because the integral of e−st for the given
interval is bounded by ∆t, ∆Jk is the maximum of ‖E [Jc(k∆t)]−E [Jc(t)]‖
for t ∈ [(k − 1)∆t, k∆t), and ∆J̄ is the maximum of ∆Jk for k ∈ [1, N ].
Thus, as N and r grow, ∆J̄ converges to zero and the approximation error
approaches to zero.

Hence, the stability of the stochastic network may be checked via the fol-
lowing characteristic equation:

∣

∣

∣

∣

∣

sI − Γ− Ω2
N
∑

k=1

Fk [∆t, Γ, Ξ]
e−s(k−1)∆t − e−sk∆t

s

∣

∣

∣

∣

∣

= 0 (8.23)

where | · | is the determinant and ∆t is a fixed positive real number.

8.3.3 Analysis using the Nyquist stability criterion

Before proceeding, we note several properties of the irrational term in Eq. (8.23),
(e−s(k−1)∆t − e−sk∆t)/s.

1. The irrational term is analytic over the whole complex plane.

2. The magnitude is bounded by ∆t.

3. The irrational term is BIBO (bounded input bounded output) stable.

For stability analysis, we need to check the signs of the real parts of all
roots of the characteristic equation, and hence we need to obtain all roots of
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Eq. (8.23). To avoid dealing with infinite polynomials, we first write Eq. (8.16)
as follows:

δX(s) = [I −M(s)∆(s)]−1 M(s)δX(0) (8.24)

where M(s) = [sI − Γ]
−1

and ∆(s) = Ω2T̂c(s). Note that since the irrational
term is BIBO stable, ∆(s) does not have any pole in the right half of the
complex plane. Also, since the irrational term is analytic on the whole complex
plane, it does not affect the number of encirclements of the origin. Therefore,
the following result is an immediate consequence of the application of the
generalised Nyquist stability criterion:

Let τc be generated as described in the previous section, let N is a suf-
ficiently large integer and let ∆t = τc/N . Then the deterministic differen-
tial equation, (8.4), is stable with respect to stochastic perturbation ∆(s) =
Ω2T̂c(s), where T̂c(s) is defined in Eq. (8.17), if and only if

∣

∣

∣

∣

∣

I −M(jω)Ω2
N
∑

k=1

Fk [∆t, Γ, Ξ]
e−jω(k−1)∆t − e−jω∆t

jω

∣

∣

∣

∣

∣

(8.25)

does not encircle the origin for ∀ω ∈ (−∞, ∞).
Checking the above necessary and sufficient condition for stability involves

counting the number of encirclement of the origin made by the Nyquist plot,
which can sometimes be cumbersome, and requires a certain number of fre-
quency evaluations. The following sufficient conditions for stability, which
are direct consequences of the Nyquist stability criterion and the triangle in-
equality, can be checked even more efficiently, at the expense of some possible
conservatism.

Let the norm of M(jω) be bounded by a positive real number, γ, for all
ω ∈ [0,∞) and let τc, N and ∆t = τc/N be as above. The deterministic
differential equation, Eq. (8.4), is stable with respect to the stochastic pertur-
bation ∆(s) = Ω2T̂c(s), where T̂c(s) is defined in Eq. (8.17), if either of the
following holds:

‖M(jω)∆(jω)‖

= Ω2

∥

∥

∥

∥

∥

M(jω)

N
∑

k=1

Fk [∆t, Γ, Ξ]
e−jω(k−1)∆t − e−jω∆t

jω

∥

∥

∥

∥

∥

≤ 1 (8.26)

or

Ω2γ∆t

N
∑

k=1

‖Fk [∆t, Γ, Ξ]‖ ≤ 1 (8.27)

The results presented above provide a striking example of how classical
analysis methods from control engineering can be adapted to provide powerful
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tools for the analysis of stochastic biological systems. Other recent research
has fused control theory with information theory to generate important new
results characterising the “limits of performance” of cellular systems when it
comes to dealing with stochastic noise, [25]. Clearly in this, and many other
fields of biological research, we are only just beginning to exploit the huge
potential of ideas and methods from systems and control engineering.
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8.4 Case Study XIII: Stochastic effects on the stability

of cAMP oscillations in aggregating Dictyostelium

cells

We consider the same deterministic model for cAMP oscillations in aggregat-
ing Dictyostelium cells which was used in Case Study II, [26]

d[ACA]/dt = k1[CAR1]− k2[ACA][PKA]

d[PKA]/dt = k3[cAMPi]− k4[PKA]

d[ERK2]/dt = k5[CAR1]− k6[PKA][ERK2]

d[RegA]/dt = k7 − k8[ERK2][RegA]

d[cAMPi]/dt = k9[ACA]− k10[RegA][cAMPi]

d[cAMPe]/dt = k11[ACA]− k12[cAMPe]

d[CAR1]/dt = k13[cAMPe]− k14[CAR1]

(8.28)

where ACA is adenylyl cyclase, PKA is the protein kinase, ERK2 is the mi-
togen activated protein kinase, RegA is the cAMP phosphodiesterase, cAMPi
and cAMPe are the internal and the external cAMP concentrations, respec-
tively, and CAR1 is the cell receptor. Uncertainty in each kinetic parameter
in the model is represented as ki = k̄i (1 + pδδi/100) for i = 1, 2, . . . , 13, 14.
k̄i is the nominal value of each ki, which are given by [27, 28]: k̄1 = 2.0 min−1,
k̄2 = 0.9 µM−1min−1, k̄3 = 2.5 min−1, k̄4 = 1.5 min−1, k̄5 = 0.6 min−1, k̄6 =
0.8 µM−1min−1, k̄7 = 1.0 µM min−1, k̄8 = 1.3 µM−1min−1, k̄9 = 0.3 min−1,
k̄10 = 0.8 µM−1min−1, k̄11 = 0.7 min−1, k̄12 = 4.9 min−1, k̄13 = 23.0 min−1,
and k̄14 = 4.5 min−1, while δi represents uncertainty in the kinetic parame-
ters. In [29], the worst-case direction for perturbations in the parameter space
which destroy the stable limit cycle was identified as δ1 = −1, δ2 = −1, δ3 = 1,
δ4 = 1, δ5 = −1, δ6 = 1, δ7 = 1, δ8 = −1, δ9 = 1, δ10 = 1, δ11 = −1, δ12 = 1,
δ13 = −1 and δ14 = 1. pδ represents the magnitude of the parameter-space
perturbation in percent.

For pδ equal to zero, the above set of differential equations exhibits a stable
limit cycle. However, for values of pδ greater than 0.6, the equilibrium point
becomes stable and the limit cycle disappears. Here, we are going to study
whether this is also true for the corresponding stochastic model.

To transform the above ordinary differential equations into the correspond-
ing stochastic model, the following fourteen chemical reactions are deduced
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from the ODE model, [1]:

CAR1
k1−→ ACA + CAR1,

ACA + PKA
k2/nA/V/10−6

−−−−−−−−−−→ PKA,

cAMPi
k3−→ PKA + cAMPi,

PKA
k4−→ ∅,

CAR1
k5−→ ERK2 + CAR1,

PKA + ERK2
k6/nA/V/10−6

−−−−−−−−−−→ PKA,

∅
k7×nA×V×10−6

−−−−−−−−−−−→ RegA,

ERK2 + RegA
k8/nA/V/10−6

−−−−−−−−−−→ ERK2,

ACA
k9−→ cAMPi + ACA,

RegA + cAMPi
k10/nA/V/10−6

−−−−−−−−−−→ RegA,

ACA
k11−−→ cAMPe + ACA,

cAMPe
k12−−→ ∅,

cAMPe
k13−−→ CAR1 + cAMPe,

CAR1
k14−−→ ∅,

(8.29)

where ∅ represents some relatively abundant source of molecules or a non-
interacting product, nA is Avogadro’s number, 6.023×1023, V is the average
volume of a Dictyostelium cell, 0.565× 10−12l [30], and 10−6 is a multiplica-
tion factor due to the unit µM. The probability of each reaction occurring is
defined by the rate of each reaction. For example, the probabilities during a
small length of time, dt, that the first and the second reactions occur are given
by k1 × CAR1 and k2/nA/V/10−6 × ACA × PKA, respectively. The proba-
bilities for all the other reactions are defined similarly. To conduct stochastic
simulations of this system, the chemical master equation was obtained and
solved approximately using standard software implementations of the SSA,
[8].

For the Bourret’s approximation, the system volume, Vcell, has the following
relation to the density and the number of molecules,

Vcell = x
(# of molecules)

µM
= 1µM× V

=
10−6 × 6.023× 1023

liter
× V = 3.403× 105 (8.30)

For this problem, since the state dimension is seven, calculating the matrix
exponential symbolically as required in the original formulation of the effective
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stability approximation in [20] is not computationally feasible. Hence, the
new approximation proposed in [24] has to be used. With N fixed at 200, τc

is chosen such that τc = ln 0.01/ maxi=1,2,...7ℜ(λi), where ℜ(λi) is the real
part of the eigenvalues of Γ and r, the number of intervals to approximate the
exponential function, is chosen equal to 1000. The Nyquist plot for this system
is shown for pδ = 0.6 in Fig. 8.1. As shown in Fig. 8.2, the deterministic
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FIGURE 8.1: Nyquist Plot: pδ = 0.6.

model with this set of parameter values converges to a steady-state and ceases
to oscillate. However, since the Nyquist plot given in Fig. 8.1 has more than
one encirclement of the origin, the system cannot converge to a steady-state if
the stochastic effect is taken into account. The stochastic simulations shown
in Fig. 8.2 using Gillespie’s-direct method confirm this result, i.e the model
including stochastic noise continues to oscillate. We note that this result is
of independent biological interest, since it represents an example of stochastic
noise changing the qualitative behaviour of a network model even at very
high molecular concentrations. Here, however, we are primarily interested in
the computational complexity of the stability calculation. It takes about 54
hours to perform the stochastic simulation, however, the proposed analytical
method for determining the stability of the stochastic model gives the answer
in less than one hour.

When the magnitude of the perturbation in the model’s parameters pδ

is increased to 1.5 and 2.0, the analysis results are shown in Figs. 8.3 and
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FIGURE 8.2: The internal cAMP time history: pδ = 0.6.

8.4. In both cases, the first sufficient condition for stability, Eq. (8.26), is now
satisfied. For pδ = 2.0 the second sufficient condition is also satisfied as the left
hand side of Eq. (8.27) is approximately equal to 0.3. We can thus conclude
that the stochastic model will be stable (i.e. will not oscillate) without even
checking the Nyquist plot. The stochastic time histories shown for both cases,
of course, do not converge exactly to steady-states in a deterministic sense
because of the existence of noise. However, the oscillation amplitudes are
almost negligible compared to the case of pδ = 0.6 and therefore we can
conclude that these two cases are not oscillating. The calculation time for
the stochastic simulations for both cases takes about 15 hours while for the
Nyquist analysis the computations takes less than 15 minutes (on a 3.06 GHz
Pentium IV machine with 1GB of RAM).
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FIGURE 8.3: The sufficient condition and the internal cAMP time histories
of the deterministic and the stochastic simulations for pδ = 1.5.
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FIGURE 8.4: The sufficient condition and the internal cAMP time histories
of the deterministic and the stochastic simulations for pδ = 2.0.
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8.5 Case Study XIV: Stochastic effects on the robustness

of cAMP oscillations in aggregating Dictyostelium

cells

In the previous case study, we observed that stochastic noise could act to
change the stability properties of a biochemical network underlying the gen-
eration of stable cAMP oscillations in aggregating Dictyostelium cells. For
particular sets of parameter values, we were able to establish that the stochas-
tic model would oscillate, while the corresponding deterministic model would
not. By itself, this result does not say anything conclusive about the effect
of noise on the robustness properties of the network, since it could simply be
that different sets of parameter values are required to make the deterministic
and stochastic models oscillate. In this case study, which is based on the re-
sults in [31], we consider the same network, and systematically compare the
robustness properties of the two models.

Since there are currently no analytical tools available with which to quan-
tify the effect of noise on the robustness properties of biochemical networks,
we resort to a simulation-based robustness analysis technique which is widely
used in control engineering, Monte Carlo simulation. We generate 100 ran-
dom samples of the kinetic constants, the cell volume and initial conditions
from uniform distributions around the nominal values for several different
uncertainty ranges. The kinetic constants are sampled uniformly from the
following: :

ki
j = k̄j

(

1 + pδδ
i
j

)

(8.31)

for i = 1, 2, . . . , nc − 1, nc and j = 1, 2, . . . , 13, 14, where k̄i
j is the nominal

value of kj , pδ is the level of perturbation, i.e. 0.05, 0.1, or 0.2, δi
j is a uniformly

distributed random number between -1 and +1, and nc is the number of
cells. The initial condition for internal cAMP is randomly sampled from the
following:

cAMPii = cAMPi
i (

1 + pδδ
i
cAMPi

)

(8.32)

for i = 1, 2, . . . , nc−1, nc, where cAMPi is the nominal initial value of cAMPi
for the i-th cell and δi

cAMPi is a uniformly distributed random number between
-1 and +1. The sampling for the other molecules is defined similarly. The nom-
inal initial value for each molecule is given by [26] as: ACA = 7290, PKA =
7100, ERK2 = 2500, RegA = 3000, cAMPi = 4110, cAMPe = 1100, and
CAR1 = 5960. Similarly, the cell volume is perturbed as follows:

V = V̄
(

1 + pδδ
i
V

)

(8.33)

where V̄ = 3.672× 1014 l and δi
V is a uniformly distributed random number

between -1 and 1.
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FIGURE 8.5: Robustness analysis of the period of the internal cAMP oscilla-
tions with respect to perturbations of 20% in the model parameters and initial
conditions: deterministic model.

The simulations for the deterministic model and the stochastic model are
performed using the Runge-Kutta 5th order adaptive algorithm and the τ -
leap complex algorithm [12] with maximum allowed relative errors of 1×10−4

and 5 × 10−5, respectively, which are implemented in the software Dizzy,
version 1.11.4 [32]. From the simulations, the time series of the internal cAMP
concentration is obtained with a sampling interval of 0.01 min from 0 to 200
min. Taking the Fourier transform using the fast Fourier transform command
in MATLAB [33], the maximum peak amplitude is checked and the period
is calculated from the corresponding peak frequency. If the peak amplitude
is less than 10% of the bias signal amplitude, the signal is considered to be
non-oscillatory.

The robustness of the period of the oscillations generated by the deter-
ministic and stochastic models was compared for several different levels of
uncertainty in the kinetic parameters. In each case the level of robustness
observed was significantly higher for the stochastic model. Sample results
are shown in Figs. 8.5 and 8.6 for a 20% level of uncertainty in the kinetic
parameters. In the figures, the peak at the 20 minute period denotes the
total number of cases where the trajectories converged to some steady-state
value, i.e. failed to oscillate. Similar improvements in the robustness of the
amplitude distributions were found in all cases, [31].

One important mechanism which is missing in the model of [26] is the com-
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FIGURE 8.6: Robustness analysis of the period of the internal cAMP oscilla-
tions with respect to perturbations of 20% in the model parameters and initial
conditions: stochastic model.

munication between neighbouring Dictyostelium cells through the diffusion
of extracellular cAMP. During aggregation, Dictyostelium cells not only emit
cAMP through the cell wall but also respond to changes in the concentration
of the external signal which result from the diffusion of cAMP from large
numbers of neighbouring cells. In [34], it was clarified how cAMP diffusion
between neighbouring cells is crucial in achieving the synchronisation of the
oscillations required to allow aggregation. Interestingly, similar synchronisa-
tion mechanisms have been observed in the context of circadian rhythms - the
consequences and implications of such mechanisms are discussed in [35].

In order to investigate the effect of synchronisation on the robustness of
cAMP oscillations in Dictyostelium, the stochastic version of the model of
[26] must be modified to capture the interactions between cells. To consider
synchronisation between multiple cells, the set of fourteen chemical reactions
in the model is extended under the assumption that the distance between cells
is small enough that diffusion is fast and uniform. In this case, the reactions
for each individual cell just need to be augmented with one reaction that
includes the effect of external cAMP emitted by all the other cells. Since
the external cAMP diffuses fast and uniformly, the reaction involving k13 is
modified as follows:

cAMPe/nc

k13i−−→ CAR1i + cAMPe/nc (8.34)
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FIGURE 8.7: Robustness analysis of the period of the internal cAMP oscilla-
tions with respect to perturbations of 20% in the model parameters and initial
conditions: extended stochastic model with 5 synchronised cells.

for i = 1, 2, . . . , nc − 1, nc, where cAMPe is the total number of external
cAMP molecules emitted by all the interacting cells, nc is the total number
of cells, ki

13 is the i-th cell’s kinetic constant for binding cAMP to CAR1, and
CAR1i is the i-th cell’s CAR1 number.

Sample robustness analysis results for the extended stochastic model in the
case of five and ten interacting cells with a 20% level of uncertainty are shown
in Figs. 8.7 and 8.8. For all levels of uncertainty, the resulting variation
in the period of the oscillations reduces as the number of synchronised cells
in the extended model increases. Similar results were found for variations in
the amplitude of the oscillations. Because of the computational complexity
of stochastic simulation, the maximum number of interacting cells that could
be considered in the above analysis was limited to 10. In reality, some 105

Dictyostelium cells form aggregates leading to slug formation, and each cell
potentially interacts with far more than 10 other cells. The analysis of the
stochastic model presented here suggests how either direct or indirect inter-
actions will lead to even stronger robustness of the cAMP oscillations as well
as entrapment and synchronisation of additional cells. The dependence of
the dynamics of the cAMP oscillations on the strength of synchronisation be-
tween the individual cells, as well as on the level of cell-to-cell variation may
be critical mechanisms for developing morphogenetic shapes in Dictyostelium
development. In [36], for example, it was shown experimentally that cell-to-
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FIGURE 8.8: Robustness analysis of the period of the internal cAMP oscilla-
tions with respect to perturbations of 20% in the model parameters and initial
conditions: extended stochastic model with 10 synchronised cells.

cell variations desynchronise the developmental path and it was argued that
they represent the key factor in the development of spiral patterns of cAMP
waves during aggregation.

The results of this case study make some interesting contributions to the
“stochastic versus deterministic” modelling debate in Systems Biology. Gen-
erally speaking, the arguments in favour of employing stochastic modelling
frameworks have focused on the case of systems involving small numbers of
molecules, where large variabilities in molecular populations favour a stochas-
tic representation. Of course, this immediately raises the question of what
exactly is meant by “small numbers” - see [37] for an interesting discussion
of this issue. Here, we have analysed a system in which molecular numbers
are very large, but the choice of a deterministic or stochastic representation
still makes a significant difference to the robustness properties of the network
model. The implications are clear - when using robustness analysis to check
the validity of models for oscillating biomolecular networks, stochastic mod-
els should be used. The reason for this is that intracellular stochastic noise
can constitute an important source of robustness for oscillatory biomolecular
networks, and therefore must be taken into account when analysing the ro-
bustness of any proposed model for such a system. Finally, we showed how
biological systems which are composed of networks of individual stochastic
oscillators can use diffusion and synchronisation to produce wave patterns
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which are highly robust to variations among the components of the network.
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