
Robustness Analysis of DNA-based Biomolecular Feedback Controllers
to Parametric and Time Delay Uncertainties

Rucha Sawlekar, Mathias Foo, and Declan G. Bates

Abstract— Recent advances in DNA computing have greatly
facilitated the design of biomolecular circuitry based on DNA
strand displacement reactions. An important issue to consider in
the design process for such circuits is the effect of biological and
experimental uncertainties on the functionality and reliability
of the overall circuit. In the case of biomolecular feedback
control circuits, such uncertainties could lead to a range of
adverse effects, including achieving wrong concentration levels,
sluggish performance and even instability. In this paper, we
analyse the robustness properties of two biomolecular feedback
controllers; a classical linear proportional integral (PI) and a re-
cently proposed nonlinear quasi sliding mode (QSM) controller,
subject to uncertainties in the experimentally implemented rates
of their underlying chemical reactions, and to variations in
accumulative time delays in the process to be controlled. Our
results show that the nonlinear QSM controller is significantly
more robust against investigated uncertainties, highlighting its
potential as a practically implementable biomolecular feedback
controller for future synthetic biology applications.

I. INTRODUCTION

A design framework that uses abstract chemical reaction
networks (CRNs) as a programming language to imple-

ment enzyme-free, enthalpy–entropy driven DNA elementary

reactions [1] has recently attracted much attention in the

synthetic biology community [2]-[4]. The designed circuitry

is implementable in DNA by means of a toehold-mediated

DNA strand displacement (DSD) mechanism, through the

well-known Watson-Crick base-pairing (i.e. adenine-thymine

and guanine-cytosine) [5]. The selection of appropriate DNA

sequences allows precise control over the dynamics of the

implemented DNA reactions, thus facilitating an accurate

molecular programming of the desired function, operator or

circuit. Also, design of synthetic circuits using this approach

is now being facilitated by sophisticated CAD tools, such

as the Visual DSD software package [6]. Examples of suc-

cessfully designed and implemented biomolecular circuitry

using this approach include linear and nonlinear feedback

controllers [4], [7], [8], dynamics of predator-prey systems

[9], and oscillators [10].

In recent work we have developed a nonlinear QSM con-

troller [7] using four activation-deactivation CRNs inspired

by the ultrasensitive behaviour exhibited by mitogen acti-
vated protein kinase (MAPK) cascade [11] and implemented

using the DSD mechanism. An important requirement for any

embedded bimolecular controller is that its design provides
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robustness to various forms of uncertainty and variability

that could arise in its final implementation in DNA. Here,

we focus on two important sources of such uncertainty -

variability in the rate constants of the abstract chemical

reactions underlying the closed-loop control system, and

uncertain time delays in the biomolecular process to be

controlled. In practice, experimental biologists are rarely able

to specify the reaction rates of chemical reactions exactly,

and additionally, as highlighted in [8], unregulated chemical

devices or leaky expression can potentially affect production

and degradation rates and subsequently alter the behaviour

of the designed components. There are also many reasons

why we might wish to include time delays in CRN mod-

els of biomolecular processes, since this avoids cataloging

potentially large numbers of intermediate species and their

reactions, in favour of describing the dynamic relationships

between the concentrations of key species. As a result,

fewer concentration variables will generally be required,

thus simplifying the overall circuit design problem. Also,

in preliminary investigations of a new system, the level

of description afforded by a low-order time delayed CRN

model is often closer to our state of knowledge than is a

detailed model, in which a certain amount of speculation

about intermediate species is required, [15].

II. SYSTEM DESCRIPTION AND METHODOLOGY
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Fig. 1: The biomolecular closed-loop feedback control sys-

tem with the accumulative process time delay.

The system configuration considered here is shown in

Fig. 1, that is a biomolecular closed-loop feedback circuit

consisting of a number of dynamic components, namely,

a subtractor, a controller and a second order nonlinear

biomolecular process with an accumulative time delay. The

controller analysed here is a nonlinear quasi sliding mode
(QSM) controller, adapted from [12] - for the purposes of

comparison, we also illustrate the level of performance that

is achieved using a classical linear proportional integral (PI)

controller.

Whereas signals in systems theory can take both positive

and negative values, biomolecular concentrations can only
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take non-negative values. To resolve this difficulty, following

the approach in [8] and [14], we represent a signal x as the

difference in concentrations of two DNA strands, such that

x = x+− x−. Here, x+ and x− are respectively the positive

and negative components of x. In this paper, x±i
k−→ x±o denotes

the set of the following two reactions: x+i
k−→ x+o and x−i

k−→ x−o .
The abstract chemical reactions describing the QSM con-

troller in Fig. 1, are given by:

X±1 +B±
kb1−−→ X±2 , (1a)

X±2
kc1−−→ A±+X±1 , (1b)

X+
2 +X−2

η−→ φ , (1c)

A++A− η−→ φ , (1d)

A±+X±3
kb2−−→ X±4 , (1e)

X±4
kc2−−→ B±+X±3 , (1f)

X+
4 +X−4

η−→ φ , (1g)

B++B− η−→ φ . (1h)

where, X1 is the input and A is the output of the QSM

controller. The above CRNs realise an ultrasensitive switch-

like input-output response that approximates an ideal sliding

mode controller [16]-[18]. By tuning the concentration of

the DNA strands X±3 , the input-output response of the set of

CRNs can be made to closely approximate the ideal switch

implemented by a sliding mode controller (SMC) [16]-[18],

so that it implements a QSM controller. Here, kb1
and kb2

denote the binding reaction rates whereas kc1
and kc2

denote

the catalytic reaction rates and η is the annihilation rate. The

tuning of the QSM controller involves adjusting kb1
, kb2

, kc1

and kc2
. Now, using mass action kinetics (see eg. [19]), the

set of reactions given by Eqns. (1) may be represented by

the following set of ODEs:

dA
dt

= kc1
X2− kb2

AX3, (2a)

dX2

dt
= kb1

X1B− kc1
X2, (2b)

dB
dt

=−kb1
X1B+ kc2

X4, (2c)

dX4

dt
= kb2

AX3− kc2
X4. (2d)

From Eqns. (2), we can see that Sqsm
.
= A+B+X2 +X4

is constant. Thus, the signal B is variable and depends on

the dynamic signals A, X2 and X4. Since, X1 also varies

over time; this means that the term kb1
X1B in Eqn. (2b) is

nonlinear. The linear PI controller is constructed following

the approach of [8] and [4] using three CRNs for the

integration and seven for the proportional gain as:

[Integrator]: X±1
kI−→ X±1 +X±2 , (3a) X+

2 +X−2
η−→ φ . (3b)

[Proportional]:
X±1

kp−→ X±1 +A±, (4a)

X±2
kc−→ X±2 +A±, (4b)

A± kd−→ φ , (4c)

A++A− η−→ φ . (4d)

Here, the signal X1 is the input and A is the output.

Furthermore, kp and kc denote the catalytic reaction rates

while kd denotes the degradation rate. Using mass action

kinetics, the following ODE representation is obtained for

the PI controller:

dX2

dt
= kIX1, (5a)

dA
dt

= kpX1 + kcX2− kdA. (5b)

We consider a second order nonlinear process that can be

formed using a combination of unimolecular and bimolecular

CRNs, given as follows:

A±+X±5
kr1−→ X±6 , (6a)

X±6
kr2−→ Y±+X±5 , (6b)

Y (t + τ)±
kr3−→ φ , (6c)

Y++Y− η−→ φ . (6d)

where, kr1
, kr2

, kr3
are binding, catalytic and degradation

reaction rates, respectively. The input signal to the process

module is A and the output is Y . The term τ in Eqn.

(6c) indicates the accumulative time delay involved in the

production of the output species Y . Applying mass action

kinetics, we get:

dX6

dt
= kr1

AX5− kr2
X6, (7a)

dY
dt

= kr2
X6− kr3

Y (t− τ). (7b)

where, XTotal
.
= X5 +X6 is constant and conserved through

the entire time of the process. For the closed-loop feedback

control, we need a module to compute the difference of the

reference signal (U) and output signal (Y ). Following [8],

[14] and as implemented in [12], the CRNs that perform the

subtraction are given by:

U± ks−→U±+X±1 , (8a)

Y± ks−→ Y±+X∓1 , (8b)

X±1
ks−→ φ , (8c)

X+
1 +X−1

η−→ φ . (8d)

where, ks is the subtraction rate. Here, signals U and Y are

the inputs and X1 is the output of the subtractor. In other

words, the value of signal X1 being produced is equivalent

to the difference between the two input signals, U and Y . In

addition, both the catalysis reaction rates in Eqns. (8a) and

(8b) are set to be equal to the degradation rate. Applying

mass action kinetics to Eqns. (8) gives:

dX1

dt
= ks(U−Y −X1). (9)

In the context of our feedback system shown in Fig. 1, the

inputs to the subtractor comprise the reference input signal

U and the process output Y while its output X1 is used as

the input to the controller.

III. SIMULATION RESULTS

The performance of the QSM controller with τ = 0s and

τ = 1000s is shown in Fig. 2. In both the cases, the QSM

controller is seen to accurately track the reference signal,

with nearly the same settling time of approximately 12,000s.

However, when the response of the PI controller is evaluated

in the presence of τ = 1000s, as shown in Fig. 2, large

overshoots can be observed.

To analyse the robustness of closed-loop responses

achieved with the QSM controller, a formal Monte Carlo

simulation campaign was performed. All the parameters

determining the rate constants of the chemical reactions

underlying the closed-loop system are randomly drawn from

a uniform distribution over repeated simulations. The number

of Monte Carlo simulations required to achieve various
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Fig. 2: Comparing system performance of QSM controller

with PI controller for τ = 1000s. The dashed line shows the

response of the QSM controller for τ = 0s.

levels of estimation uncertainty with known probability were

calculated using the well-known Chernoff bound [20]. An

accuracy of 0.05 and a confidence level of 90% were chosen

for the Monte Carlo simulation analysis, which requires

1060 number of simulations, as discussed in [20]-[22]. To

investigate the effect of different levels of uncertainty we

varied the parameters within ranges of 20% and 50% around

their nominal values. Mathematically, we have p(1+ΔP(x))
where, p∈ {ks,kb1

,kb2
,kc1

,kc2
,kI ,kp,kc,kd ,kr1

,kr2
,kr3
}, P(x)

is the probability distribution and Δ ∈ {0.2,0.5}.
In the simulations, the given step input U changes from

0 to 4 nM at time t = 0s and the role of the controller is to

ensure that the process output Y tracks the reference input.

As quantitative measures of control system performance,

we measure the step response characteristics, which include

settling time (ts), rise time (tr), percentage overshoot (MOS)

and steady state error (ess). It is desirable to achieve small

values of ts, tr and MOS, while ess = 0. We first calculate

the closed-loop response without parameter uncertainty, i.e.

with nominal parameter values to use it as a benchmark

TABLE I: Step response characteristics and worst-case pa-

rameter ranges for the PI controller.

Characteristics Nominal Δ = 0.2 Δ = 0.5
ts (s) 12,652 15,958 unstable
tr (s) 718 11,259 unstable
MOS (%) 43.75 283.17 unstable
ess (M) 0 0 unstable

Parameters Nominal Δ = 0.2 Δ = 0.5
Subtractor
ks (/s) [10−3] 2.4 2.714-2.831 2.863-3.530
PI controller
kI (/M/s) [10−6] 1.6 1.616-1.907 1.631-2.110
kp (/M/s) 0.2 0.232-0.233 0.272-0.299

kc (/s) [10−4] 1.6 1.722-1.894 1.934-2.351

kd (/s) [10−1] 3.2 3.255-3.364 3.223-4.497
Nonlinear process
kr1

(/M/s) [102] 5 5.732-5.926 6.951-7.455
kr2

(/s) 1.6 1.818-1.884 1.804-2.242

kr3
(/s) [10−6] 8 8.033-8.696 9.561-11.335

Time delay
τ (s) 1000 700-1118 695-1436

for comparison. Tables I and II detail the results of the

Monte Carlo simulation campaign for both the QSM and PI

controllers. The PI controller was observed to lose closed-

loop stability for Δ = 0.5. The worst case values of each

of the step response characteristics and their associated

parameter values are shown for each of the analysed un-

certainty sets in Tables I and II. Ranges are shown for the

uncertain parameters since their worst-case values for each

step response characteristic are different, e.g. the parameters

yielding the worst ts may not yield the worst tr, Mos and ess
and vice versa. Figs. 3(a) and 3(b) show the step responses

produced by the Monte Carlo simulation campaign for each

controller when Δ = 0.2 and similarly, Figs. 3(c) and 3(d)

show the step responses when Δ = 0.5. As shown, the QSM

controller displays significantly greater robustness to the

applied levels of uncertainty, highlighting its potential for

successful experimental implementation.

IV. CONCLUSIONS

Within the framework of CRNs, we designed an em-

bedded synthetic biomolecular feedback circuit that can be

implemented using enzyme-free, enthalpy and entropy driven

DNA elementary reactions. We analyzed and compared the

performance of a nonlinear QSM controller with a linear PI

controller, when subjected to potential accumulative process

time delays in the production of the output species of interest.

We introduced different levels of uncertainty in the parame-

ters representing the reaction rates of the underlying chemical

reactions, and in the process time delay to investigate the

robustness of both controllers to these variabilities. Our

results highlight the strong robustness properties of the QSM

controller, indicating its suitability for implementation in

wet-lab experiments.
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TABLE II: Step response characteristics and worst-case

parameter ranges for the QSM controller.

Characteristics Nominal Δ = 0.2 Δ = 0.5
ts (s) 9,654 15,562 15,954
tr (s) 1,281 1,471 1,631
MOS (%) 12.36 38.23 181.29
ess (M) 0 0 oscillatory

Parameters Nominal Δ = 0.2 Δ = 0.5
Subtractor
ks (/s) [103] 1 1.139-1.175 1.059-1.267
QSM controller
kb1

(/M/s) [10−3] 40 41.060-47.587 40.642-59.807

kb2
(/M/s) [10−3] 40 43.094-47.103 42.489-54.347

kc1
(/s) [103] 9 9.122-10.732 12.423-13.410

kc2
(/s) [103] 10 10.201-11.946 10.269-14.694

Nonlinear process
kr1

(/M/s) [102] 5 5.077-5.900 5.038-7.185
kr2

(/s) 1.6 1.769-1.884 1.651-2.368

kr3
(/s) [10−6] 8 9.040-9.310 9.079-11.390

Time delay
τ (s) 1000 853-1169 853-1469
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Fig. 3: Comparing system performance for 20% and 50% uncertainty in parameters and time delay; for the Monte Carlo

simulation analysis (no. of simulations = 1060). Plots (a) and (b) are the closed-loop responses with the PI controller and

the QSM controller, respectively, with Δ = 0.2, Plots (c) and (d) are the closed-loop responses with the PI controller and

the QSM controller, respectively, with Δ = 0.5.
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