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Abstract— Competition for gene expression resources within
cellular systems limits the modularity of synthetic circuits, and
can lead to the emergence of hidden regulatory interactions
between different circuit genes. Experimental evidence suggests
that the finite number of free ribosomes in the cell limits protein
synthesis capacity and can create unforeseen coupling between
co-expressed circuit genes that can result in performance
degradation or even circuit failure. Recent work has shown
that the cell’s ribosome population can be subdivided into host-
specific and circuit-specific functions by the production of quasi-
orthogonal ribosomes. In this paper, we investigate the design
of an integral feedback controller which acts to dynamically
allocate ribosomes between host and circuit genes in order
to reduce circuit-circuit coupling. We show that whilst the
controller is able to successfully allocate resources and improve
circuit performance, a non-zero steady state error remains. We
show that interactions between the host cell’s physiology and
the synthetic circuitry act to prevents perfect integral action
for the proposed controller architecture.

I. INTRODUCTION

To control cellular processes, synthetic biologists and
biotechnologists design regulatory interactions between
genes; by regulating the activity of genes (i.e. controlling
transcription), it is assumed protein levels will follow. How-
ever, the use of a common pool of gene expression resources
results in the emergence of hidden interactions, which we
term couplings, between genes which are not immediately
apparent from circuit topologies. This results in a break-
down in the relationship between transcriptional regulation
(input) and protein levels (output) [1]. Experimental evidence
suggests that it is the number of free ribosomes which
limits protein synthesis capacity and therefore creates these
non-regulatory linkages (e.g. [2], [3], [4]). The effect of
resource limitation is demonstrated in Fig. 2 (open loop); we
consider a simple two gene circuit where one gene is induced
(increasing ωA) and a second is constitutively expressed
(constant ωB). Utilisation of the same ribosome pool results
in the emergence of coupling between the genes: as the first
gene is induced its mRNA number increases and sequesters
more ribosomes, reducing their availability for the second
gene hence resulting in the decrease in its protein levels
(pB) while its mRNA remains constant. This coupling effect
can be quantified by considering the gradient of the resulting
isocost line where steady state protein levels are plotted (Fig.
2).
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We have recently shown that the the cell’s ribosome
population can be subdivided into host-specific and circuit-
specific functions by the production of quasi-orthogonal ribo-
somes (‘o-ribosomes’) [5]. These circuit-specific ribosomes
can be created by expressing a synthetic version of the
16S rRNA which mediates mRNA ribosome binding site
recognition (e.g. [6]). By producing the rRNA in response
to the circuit’s demand for translational capacity, resource
allocation controllers can be designed to match demand with
supply and hence reduce resource-mediated gene coupling.
In this paper we consider the design of an integral controller
which acts to dynamically allocate ribosomes between host
and circuit genes in order to reduce circuit-circuit coupling.

Integral control is receiving increasing interest in synthetic
biology as it allows a system to undergo perfect adaptation
[7], [8]. Biological implementation of such designs usually
takes the form of a process which produces an activator
which itself activates an inhibitor, which inhibits the original
process. If the process output is increased by a disturbance
then the process is subjected to greater inhibition. If the
process output falls, the level of inhibitor production falls
and so the process input increases, allowing adaptation. We
review recent work on implementing integral controllers
using chemical reaction networks in Section II, and then in
Section III we propose an architecture for an integral re-
source allocation controller for synthetic circuits. We develop
a mathematical model of the controller which takes into
account key host processes, and in Section IV we investigate
the ability of the integral controller to decouple genes in a
simple two gene circuit. In Section V we demonstrate that
host-circuit interactions prevent the controller from achieving
perfect adaptation.

II. REALISING INTEGRAL CONTROL IN A CHEMICAL
REACTION NETWORK

In [8], Briat et al. propose the following chemical reaction
network which implements perfect integral control: Some
output X is produced in response to the input reference
species Z1 by some function f (Eq. 2). This activates the
production of a sensor species Z2 by some function g and
therefore the output is measured via the concentration of a
sensor species Z2 (Eq. 3). Both f and g are monotonically
increasing functions. The action of the controller is through
a ‘comparison’ reaction in which Z1 and Z2 are eliminated
(Eq. 4). This elimination reaction is the proposed source of



the integral action:

∅ µ−−−−→ Z1 (1)

∅ f(Z1)−−−−−−−→ X (2)

∅ g(X)−−−−−−−→ Z2 (3)

Z1 + Z2
η−−−−→ ∅ (4)

This chemical reaction network acts to reject disturbances to
the species X .

III. INTEGRAL CONTROL FOR TRANSLATIONAL
RESOURCE ALLOCATION

The architecture for integral control described above re-
quires the use of multiple proteins. Given that additional
protein production would impose even greater competition
for o-ribosomes (and reduce cellular growth rate through
increased ‘burden’), in our proposed controller architecture
we instead propose the use of small RNAs. The expression of
small RNAs requires only transcription by RNA polymerase
and not translation by ribosomes. Experimental evidence
shows that in most cases RNA polymerase is not limiting
and that the production of RNAs is also less energy intensive
than the production of proteins, so further reducing the whole
cell burden of their expression [9]. Taking inspiration from
[8], [10], we propose that the required inhibitory action takes
the form of sequestration of the o-rRNA by a synthetic small
RNA.

A. A chemical reaction network implementing integral re-
source allocation

The proposed topology for our putative controller is
depicted in Fig. 1. We first consider the production of
o-ribosomes. The synthetic rRNA (ρ) is consitutively ex-
pressed. This co-opts host ribosomal components (referred
to here as the ‘naive ribosome’, pR) to produce o-ribosomes
(P ) (Eq. 5):

∅ ωρ−−−−−→ ρ pR + ρ
bρ

↼−−−−−−−−−−⇁
uρ

P (5)

The input species, equivalent to Z1, is the o-rRNA. The f(·)
function is carried out by the following chemical reactions:
(i) the mRNA mG is constitutively expressed (Eq. 6), (ii) this
reversibly binds o-ribosomes to form a translation complex
(cG) and (iii) translation produces the functional activatory
transcription factor protein pG (Eq, 7).

∅ ωG−−−−−→ mG (6)

mG + P
bG↼−−−−−−⇁
uG

cG
TL(cG,e)−−−−−−−→ mG + P + pG (7)

The protein pG takes the place of species X above; use of
the o-ribosome pool for the translation of circuit genes will
result in a resource-mediated perturbation to the level of pG.
In this way pG acts a sensor of o-ribosome demand as its
levels are determined only by competition for translational
resources (see Fig. 3b).

The sensor species (equivalent to Z2 in Eq. 3) takes the
form of a small RNA (sRNA, denoted s). The transcription

of this RNA is activated by (pG) (where H is a function
describing the activation, see Eq. 29):

∅ ωsH(pG)−−−−−−−−−→ s (8)

Hence pG carries out the g(·) function action in Briat et al.
The comparison reaction (equivalent to Eq. 4) takes the form
of a bimolecular reaction between ρ and s to form the RNA
duplex (d) which is degraded (Eq. 9). Note that we consider
the comparison reaction to be reversible.

ρ+ s
bs↼−−−−−−−−−−⇁
us

d
δd−−−−−→ ∅ (9)
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Fig. 1. Structure and function of the controller. (a) Low demand circuit.
When competition is low, pG expression is high and so sRNA transcription
is activated resulting in high sequestration of, and hence degradation of, the
o-rRNA. Therefore co-option of ribosomes to the o-ribosome pool is low. (b)
High demand circuit. As pA is induced, the o-ribosome pool redistributes
across circuit and controller genes (width of purple ribosome flux lines)
due to competition between mRNAs. This reduces translation of pG and
hence reduced activation of s transcription. This results in less sequestration
of the o-rRNA and so increased co-option of ribosomes to the orthogonal
pool. The ribosome flux for mB translation despite the increase in mA is
maintained.

B. Host-circuit interaction model

We have recently developed and validated a model of
microbial physiology which includes the production of o-
ribosomes [5]. This model captures (i) that energy production
is limited by enzymatic activity, (ii) that ribosomes are au-
tocatalytic, (iii) that genes compete for ribosomes (i.e. there
is a finite translational capacity), (iv) that the proteome mass



is finite (competition for space) and, (v) the ‘quasi’ nature
of orthogonal ribosomes due to competition for the naive
protein component. It consists of 16 differential equations
which track the time evolution of a simple metabolism (in-
cluding production of an ‘energy’ species, e, from a substrate
si) and proteome, which consists of metabolic enzymes (pT
and pE), host factors (pH ), the large protein-component of
the ‘naive’ ribosome (pR), functional ribosomes (host, R,
and orthogonal, P ) and the rRNAs (host, r, and orthogonal,
ρ). The naive ribosomes are specified by interaction with the
rRNAs which we model as a reversible reaction (Eq. 5). See
[5] for a full description of model derivation:

The dynamics of the metabolism describe the import of an
external substrate (se) to become an internal substrate (si)
by a transporter enzyme (pT ). This is then converted into
an ‘energy’ species (e) by an enzyme (pE). We model the
enzymatic reactions using Michaelis-Menton kinetics:

dsi
dt

=
vT pT se
kT + se

− vEpEsi
kE + si

− λsi (10)

de

dt
= ϕe

vEpEsi
kE + si

−
∑
X

(
nXTL(cX , e)

)
− λe (11)

mRNAs are born spontaneously at a rate proportional to
the energy status of the cell (TX(e)) and any regulatory in-
teractions (represented by Hill functions, H(·)). Free (host or
orthogonal) ribosomes (denoted R) bind mRNAs reversibly
to form translation complexes (cX ). Proteins are produced
from translational complexes at the rate TL(cX , e). Protein
production liberates mRNA and free ribosomes. All species
are degraded and/or diluted by cell growth (λ). Applying the
law of mass action to these interactions yields the following
dynamics:

dmX

dt
= ωXHTX(e)− bXRmX + uXcX ... (12)

− (δmX + λ)mX

dcX
dt

= bXRmX − uXcX − (δR + λ)cX (13)

dpX
dt

= TL(cX , e)− (δpX + λ)pX (14)

If translated by the host pool then R = R and if by
the orthogonal pool R = P . For the host genes (X ∈
{T, E, R, H}) the regulatory interactions are:

H(·) = 1 where X ∈ {T,E,R} (15)

H(·) =
1

1 + (pH/kH)hH
where X = H (16)

The expressions describing the energy dependence of tran-
scription and translation are given by:

TX(e) =
e

oX + e
(17)

TL(cX , e) =
1

nX

( γmaxe
κγ + e

)
cX (18)

In addition to the reactions described above the naive ri-
bosome (pR) reacts reversibly with either the host (r) or

orthogonal (ρ) 16S-rRNA to produce functional free host
(R) or orthogonal (P ) ribosomes:

dpR
dt

= TL(cR, e)− (δR + λ)pR ... (19)

− brpRr + urR ...

− bρpRρ+ uρP

The dynamics of the host rRNA and free host ribosomes are:

dr

dt
= ωrTX(e)− brpRr + urR− (δr + λ)r (20)

dR

dt
= brpRr − urR− (δR + λ)R ... (21)

+
∑
X

(
TL(cX , e)− bXRmX + uXcX

)
where the

∑
term represents the dynamics of translating the

host genes (X ∈ {T, E, H, R}). The dynamics of the
orthogonal rRNA and free host ribosomes are:

dρ

dt
= ωρTX(e)− bρpRρ+ uρP − (δρ + λ)ρ (22)

dP

dt
= bρpRρ− uρP − (δR + λ)P ... (23)

+
∑
Y

(
TL(cY , e)− bY PmY + uY cY

)
where Y is the set of genes translated by the o-ribosome
pool, such as circuit genes (in this paper denoted A and B).

All components are diluted at the cell’s growth rate (λ).
λ is dynamically calculated within the model based on
the number of translation complexes translated by the host
ribosomes (the set X) and the o-ribosome pool (the set Y ):

λ =
1

M

( γmaxe
κγ + e

)(∑
X

(
cX
)

+
∑
Y

(
cY
))

(24)

The parametrisation of this host model is given in Table I.

C. Controller model

To introduce the proposed controller described in Section
III-A we implemented the following ODEs into the host
model above. We first introduced the additional equations
describing the production of the new transcription factor
pG. Applying the law of mass action to Eq. 6 and 7 (and
including dilution and decay of the species) results in:

dmG

dt
= ωGTX(e)− bGmGP + uGcG... (25)

− (λ+ δmG)mG

dcG
dt

= bGmGP − uGcG − (λ+ δpR)cG (26)

dpG
dt

= TL(cG, e)− (λ+ δpG)pG (27)

We modify dρ/dt (Eq. 22) by applying the law of mass
action to Eq. 9 to include the dynamics due to the comparison
reaction:

dρ

dt
= ωρTX(e)− bρpRρ... (28)

+ uρP − bsρs+ usd− (δρ + λ)ρ



TABLE I
HOST MODEL PARAMETERS [5]

Parameter Value Units
se 104 molecules
ϕe 0.5 –
vT 728 molecules·min−1

vE 5800 molecules·min−1

k{T,E} 1000 molecules
ω{T,E} 4.14 molecules·min−1

ωH 948.93 molecules·min−1

ωR 930 molecules·min−1

ωr 3170 molecules·min−1

ωρ ∗ molecules·min−1

o{T,E,H,ρ} 4.38 molecules
o{R,r} 426.87 molecules

b{T,E,H,R} 1 molecules−1·min−1

u{T,E,H,R} 1 molecules−1

b{r,ρ} 1 molecules−1·min−1

u{r,ρ} 1 min−1

δm{T,E,H,R,r,ρ} 0.1 min−1

δp{T,E,H} 0 min−1

δR 0 min−1

n{T,E,H} 300 amino acids
nR 7459 amino acids
kH 152219 molecules
hH 4 –
γmax 1260 amino acids·min−1·(e molecules)−1

κγ 7 (e molecules)
M 108 aa

∗, ωρ is optimised as part of the controller design process.

The dynamics of the free orthogonal ribosome pool remain
unchanged bar the addition of the controller gene G to the
set Y . The dynamics of the small RNA (s) are:

ds

dt
= ωsTX(e)

(
(pG/kG)hG

1 + (pG/kG)hG

)
... (29)

− bsρs+ usd− (δs + λ)s

(note the additional scaling of ωs by the activatory Hill
function – the pG term – as referred to in Section III-
A). The production dynamics of RNA duplex (d) and its
degradation/dilution are given by:

dd

dt
= bsρs− usd− (δd + λ)d (30)

We assume the interaction between the o-rRNA and the
small RNA is diffusion limited and reversible (such that
bs = us = 1, Eq. 9). We account for the rapid degradation
of double stranded RNA by setting the decay constant (δrd )
to 0.5 molecules per minute (∼ 5 times greater than single
stranded RNAs). Assuming the small RNA has the same
kinetics as the host’s mRNAs we set os = 4.38 and δs = 0.1.

We assume that all protein-encoding genes of the circuit
and controller (i.e. Y ∈ {A,B,G}), have characteristics
similar to that of the host factor gene pH and therefore set
oY = 4.38, bY = 1, uY = 1, nY = 300, δmY = 0.1
and δpY = 0. Other parameters were optimised as described
below.

The host equations describing the energy status and growth
rate were also modified to take account of the new controller
genes as described in [5].

D. Controller design process

To achieve specific designs (i.e. controller paramerisations
for this fixed topology), we utilised the ga function from
MATLAB’s Global Optimisation Toolbox (version 3.4), to-
gether with the Parallel Computing Toolbox (version 6.8),
to optimise the experimentally variable parameters (i.e., ωρ,
ωs, ωG, bG, kG and hG) within biologically feasible ranges
to minimise gene coupling. To design our controller, we
consider the behaviour of two genes, p1 and p2. The first
is induced (i.e., ω1 is increased) while the induction of p2
is constant (ω2 is constant). We quantify coupling by taking
logs of the varying input ω1 and the two outputs p1 and p2.
Using the in-built polyfit function we fit lines through these
transformed points. The impact of p1 induction on p2 is given
by the gradient, ∆, of the line log10(ω1) v log10(p2). In the
absence of p2, p1 should increase linearly with increasing ω1.
The impact of p2 on the induction profile of p1 is quantified
by observing the deviation of the simulated values log10(p1)
(φsim) from those expected by fitting a line through the
points log10(ω1) v log10(p1) (φfit). Individual input–output
responses, where ω2 is constant, were scored as:

score(ω1, ω2) =
∑(

(φfit − φsim)2
)

+
∑(

∆2
)

(31)

To ensure the controller can function across a range of
different circuit inductions we simulate a number of different
ω2 values, we define ω2 as a vector of N induction values.
We use the cost function in the optimisation:

cost(ω1,ω2) =

N∑
1

score(ω1,ω2) (32)

All models were simulated using ode15s in MATLAB
2016b using a time span of [0...104] minutes. Simulations
were deemed to have reached steady state if the maximum
value of the derivative was less than 1 (which is negligible
on the scale of protein production in the model, total protein
at steady state is 108).

IV. ANALYSIS OF CONTROLLER PERFORMANCE

The optimal controller successfully decouples co-
expressed genes in a simple two gene circuit (Fig. 2). We
simulate the response of a constitutively expressed gene (pB)
as a second gene is induced (pA). In the absence of the
controller the resulting isocost line has a gradient of -0.98
(meaning approximately one pB molecule is lost for each
pA molecule gained). In the presence of the controller, pB is
almost unaffected, with an isocost gradient of only -0.0032.

To demonstrate the changing distribution of controller
components and begin to investigate the dynamic properties
of the controller, we consider the induction point when
approximately equal amounts of protein are being made
(ωA = ωB = 100 mRNAs per min) (Fig. 3). As before,
we consider the response of a constitutively expressed gene



Fig. 2. The proposed controller decouples co-expressed genes. Simula-
tion of the action of the controller. ωA is varied between 1 and 104 mRNAs
per minute. ωB is held constant at 100 mRNAs per minute throughout. The
simulation time span is increased until it reaches steady state. Controller
parameters: ωρ = 200 rRNAs per min; ωs = 103 sRNAs per min;
ωG = 103 mRNAs per min; Hill function parameters kG = 8 × 104

and hG = 4. Open loop ωρ = 1.8 rRNAs per min (ωρ is set such that the
initial pB levels are equivalent).

(pB) to the induction of second (pA). When circuit demand
is low, the expression of pG is high. This results in high
expression of the sRNA (ri) and so high sequestration of the
o-rRNA (Figure 3c). Upon induction of the second gene (and
so an increase in demand), the expression of pG falls due to
a decrease in translation because of resource competition.
This results in a large decrease in sRNA production and
so liberates o-rRNA, whose levels rise by nearly 40%.
This results in greater co-option of host ribosomes to the
o-ribosome pool and therefore decouples the co-expressed
genes, although note that a error persists at steady state – i.e.
pA does not reach its pre-pB induction value (Fig. 3c). The o-
ribosome pool (i.e. the controlled species) is not maintained
in the presence of the disturbance but the perturbation is
reduced from 50% (in the absence of control) to only 6%
(in the presence of the controller).

V. HOST-CIRCUIT INTERACTIONS CAUSE LOSS OF
PERFECT INTEGRAL ACTION

From Fig. 3, we note that after the induction of the second
gene, the first does not fully recover – a small steady state
error remains, indicating that this design is not functioning
as a perfect integral controller. We propose that this loss of
integral control may be due to the effects of additional host
factors that are included in our model. To test this hypothesis,
we gradually remove host factors to derive a simple model
which does show perfect integral action.

We initially removed the host enzymes and other proteins
to reduce competition and metabolism-based feedback by

b

c
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Fig. 3. Controller dynamics. pA is induced at t = 0. ωA = ωB =
100 mRNAs per min. The system reaches steady state at t = 103 min.
(a) Changing distribution of the controller components. ρ, o-16S rRNA;
s, sRNA; d, RNA duplex (dsRNA); P , free o-ribosome; pG, controller
protein. Normalised by their maximum value. (b) Changing distribution of
the translation complexes over time, cY , in response to pA induction. Σ P ,
sum of all o-ribosomes. Normalised by maximum Σ P . (c) Protein output
over time normalised by sum of the final circuit protein concentration.

setting Eq. 10–14 (where X ∈ {T,E,H,R}) to zero. We
set the initial value of internal energy levels (e) and this
is held constant throughout the simulation. This removes
the production of pR, which we reintroduce considering the
spontaneous resource-free production of pR:

∅ γR−−−−−→ pR (33)

We parameterised the new reduced model using the same
values as before and we scaled the transcription rates (ω
terms) by the TX(ẽ) where ẽ is the value of the internal
energy molecule in the host model. We calculated γR as
TL(c̃R, ẽ), where c̃R is the steady state concentration of
the translation complex of the naive ribosomes in the host
model. We set the protein decay rates δpX to 0.022 per min.
Therefore the dynamics of the naive ribosome in the reduced
model (with species denoted with a ∼ above) are:
dp̃R
dt

= γR − δpR p̃R − brp̃Rr̃ + urR̃− bρp̃Rρ̃+ uρP̃ (34)

All other controller and circuit equations remain unchanged.
The simple removal of host components in this manner does
not restore perfect integral action. To remove further host-
circuit interactions we also removed competition for the pR
species by setting the host rRNA transcription rate ωr to
zero throughout (therefore r̃ = 0 throughout). This model
still does not exhibit perfect integral action.

We note that in the model described in Section II the
reference and sensor species (Z1 and Z2) are only removed
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Fig. 4. Integral action is lost due to host-circuit interactions. Simulations
showing the change in pA in response to the induction of a second gene pB .
Both genes induced at ωA = ωB = 100 mRNAs per min. pB is induced at
2500 minutes. (a) Simulation of the full model with all host reactions. (b)
Simulations of the reduced model. Host processes are removed as described
in the main text. λ is approximated for the protein species. The reversible
reactions are removed (i.e. ui = uρ = 0). Inset, ωr = 3, 1750 host
rRNAs per min. (c) Same simulation as in (b) but with reversible reactions
reinstated (uρ = ui = 1). Inset, ωr = 3, 1750 host rRNAs per min. (d)
Same simulations as in (b) but with the o-rRNA and sRNA degradation
reactions reintroduced (δρ = δs = 0.1 per min.)

due to the ‘comparison’ reaction, and there interaction is
uni-directional not reversible (Eq. 4). To replicate this we
removed the dynamic nature of cellular growth by setting
the growth rate, λ, to zero. We set the decay rates of the
o-rRNA and sRNA to zero (δρ = δs = 0) and remove
the reversibility of their reactions. We also set the reverse
reaction rates to zero, i.e., uρ = us = 0. To maintain
the removal of the protein species we set the decay rates
δR = δpG = δpA = δpB = 0.022 per min. Perfect integral
action is now obtained (Fig. 4b).

If the assumption that the sRNA–o-rRNA and o-rRNA–
‘empty’ ribosome binding reactions are reversible is restored
(i.e. uρ = ui = 1) then perfect integral action is maintained
provided that the transcription rate of the sequestering sRNA
is increased (Fig. 4c). However, reinstating the RNA decay
rates (δρ = δs = 0.1 per min) results in loss of perfect
integral action (Fig. 4d).

VI. CONCLUSIONS

In this paper we proposed a novel architecture for an inte-
gral feedback controller which acts to dynamically allocate
ribosomes between host and circuit genes in order to reduce
circuit-circuit coupling. We showed that the controller is able

to successfully allocate resources and significantly improve
circuit performance. Our analysis showing that interactions
between the host cell’s physiology and the synthetic circuitry
act to prevents perfect integral action corroborates the recent
results reported in [11], which show that the dilution of
the sequestration components (here the o-rRNA and sRNA)
due to growth results in a ‘leak’ effect which destroys the
integral action of this proposed topology. It was shown in
[11] that this controller topology functions as an integral
controller in the absence of this dilution effect, and that the
dilution effect can be overcome to create a quasi-integral
action by increasing the transcription rates of the controller
components (as we have show in the context of resource
allocation here) and increasing the affinity of the RNA
target species (which we have not varied as we assume it
is diffusion limited). If competition for naive ribosomes (the
pR species) is reconsidered by relaxing the ωr = 0 condition
this results in sustained oscillations regardless of removal
of the other host protein species (insets in Fig. 4b and c).
This suggests that the non-linearities caused by these host-
circuit interactions may make the emergence of oscillatory
behaviour or even instability more likely, as suggested in
our previous work [12]. Much work remains for control
theorists to do in analysing the suitability of this and other
possible controller architectures for providing robust and
reliable resource allocation in complex synthetic circuits.
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