Chapter 1

Control Engineering
Approaches to Reverse

Engineering Biomolecular
Networks

The last decade has witnessed a tremendous griwth in interdisciplinary re-
search on the application of systems and control engineering techniques to
biological problems. A fundamental challenge in this field is the development
of appropriate modelling and simulation frameworks for biological networks
at the molecular level: gene regulatory, metabolic, signal transduction and
protein—protein interaction networks provide a rich field of application for
mathematicians, engineers and computer scientists. The reason for this re-
newed appeal can be largely ascribed to recent breakthroughs in the field of
biotechnology, such as cDNA microarrays and oligonucleotide chips [1, 2],
which have made high-throughput and quantitative experimental measure-
ments of biological systems much easier and cheaper to make. The availabil-
ity of such an overwhelming amount of data, however, poses a new challenge:
how to reverse engineer the biological systems (especially at the molecular
level) starting from the measured response to external perturbations (e.g.
drugs, signalling molecules, pathogens) and changes in the environmental
conditions (e.g. change in the concentration of nutrients or in the temper-
ature level). In this chapter, we provide an overview of several promising

techniques, based on dynamical systems identification theory, for reverse en-
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2 Reverse Engineering Biomolecular Networks

gineering the topology of biomolecular interaction networks from this kind

of experimental data.

1.1 Dynamical models for network inference

A standard approach to model the dynamics of biomolecular interaction net-
works is by means of a system of ordinary differential equations (ODEs) that
describes the temporal evolution of the various compounds [3, 4]. Typically,

the network is modeled as a system of rate equations in the form

i(t) = filz(1),p(t), u(t)), (1.1)

fori =1,...,n with z = (z1,...,2,)7 € R", where the state variables z;
denote the quantities of the different compounds present in the system (e.g.
mRNA, proteins, metabolites) at time ¢, f; is the function that describes the
rate of change of the state variable x; and its dependence on the other state
variables, p is the parameter set and w is the vector of external perturbation
signals.

The level of detail and the complexity of these kinetic models can be
adjusted, through the choice of the rate functions f;, by using more or less
detailed kinetics, i.e. specific forms of f; (linear or specific types of nonlinear
functions). Moreover, it is possible to adopt a more or less simplified set of
entities and reactions, e.g. choosing whether to take into account mRNA
and protein degradation, delays for transcription, anf translation or diffusion
time [3].

The use of systems of ODEs as a modelling framework for biological
networks presents several challenges to control engineering approaches to
network reconstruction, which typically stem from classical system identifi-
cation procedures. The problem is typically tackled in two steps: the first
step is to determine the model structure, i.e. the mathematical form of f;,
that is most appropriate to describe the experimental dynamics; the second
step aims to compute the values of the parameters that yield the best fit
of the experimental data. The two steps are strictly interconnected: the
number and type of parameters is defined by the model structure; on the
other hand, the interpolation of the experimental data provides important

hints about how to modify the model structure to get better results.
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When the order of the system increases, nonlinear ODE models quickly
become intractable in terms of parametric analysis, numerical simulation
and especially for identification purposes. If the nonlinear functions f; are
allowed to take any form, indeed, determination of the network topology
becomes impossible. A more sensible approach, therefore, is to use equations
composed of as few mathematical terms as possible. Even assuming that
the model structure if perfectly known, each equation in the model requires
knowledge of one or more parameter values (thermodynamic constants, rate
constants), which are difficult to estimate using current data production
techniques. This fact, along with the low number of measurements, typically
renders the ODE system not uniquely identifiable from the data at hand.

Due to the above issues, although biomolecular networks are character-
ized by complex nonlinear dynamics, many network inference approaches
are based on linear models or are limited to very specific types of nonlinear
functions. In what follows, we will illustrate some of the most significant
advances that have been achieved in the development of effective network
reconstruction methods based on dynamical systems identification. As will
become clear, the reverse engineering methods are closely related to the
choice of model structure. Therefore, before illustrating the reverse engi-
neering methods, we briefly introduce the most common model structures

which may be chosen within this identification framework.

1.1.1 Linear models

The dynamical evolution of a biological network can be described, at least
for small excursions of the relevant quantities from the equilibrium point,
by means of linear systems, made up of ODEs in the continuous—time case,
or difference equations in the discrete—time case (see [5, 6, 7, 8, 9, 10] and
references therein).

We consider the continuous—time LTI model
#(t) = Az(t) + Bu(t), (1.2)

where z(t) = (z1(t),...,7,(t))T € R?, the state variables z;, i = 1,...,n,
denote the quantities of the different compounds present in the system (e.g.
mRNA concentrations for gene expression levels), A € R"*™ is the dynamic

matrix and B € R"*! is a vector that determines the direct targets of ex-
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ternal perturbations u(t) € R (e.g. drugs, overexpression or downregulation

of specific genes), which are typically induced during in vitro experiments.

Note that the derivative (and therefore the evolution) of z; at time ¢ is
directly influenced by the value z;(t) iff A;; # 0. Moreover, the type (i.e.
promoting or inhibiting) and extent of this influence can be associated with
the sign and magnitude of the element A;;, respectively. Thus, if we consider
the state variables as quantities associated with the nodes of a network, the
matrix A can be considered as a compact numerical representation of the
network topology. Therefore, the topological reverse engineering problem
can be recast as the problem of identifying the dynamical system (1.2). A
possible criticism of this approach could be raised with respect to the use
of a linear model, which is certainly inadequate to capture the complex
nonlinear dynamics of certain molecular reactions. However, this criticism
would be reasonable only if the aim was to identify an accurate model of
large changes in the states of a biological system over time, and this is not
the case here. If the goal is simply to describe the qualitative functional
relationships between the states of the system when the system is subjected
to perturbations then a first—order linear approximation of the dynamics
represents a valid choice of model. Indeed, a large number of approaches to
network inference and model parameter estimation have recently appeared
in the literature which are based on linear dynamical models, e.g. [5, 11,
8, 9, 12]. In addition to their conceptual simplicity, the popularity of such
approaches arises in large part due to the existence of many well established
and computationally appealing techniques for the analysis and identification

of this class of dynamical system.

1.1.2 Nonlinear models

In the following, we introduce several nonlinear models which have also
been used for the purposes of network inference. As discussed above, gen-
eral nonlinear ODE models quickly become intractable for identification
purposes and thus, in order to overcome this limitation, alternative mod-
elling approaches have been devised which exploit the particular dynamical

characteristics of biological networks.

In general the dynamics of a biomolecular network of m species (x) and
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r reactions (v), can be described by a system of ODEs in the form
d{L'Z' -
dt - jzlnijvj )

fori =1,...,m, where n;; is the stoichiometric coefficient of the i-th species
in the j-th reaction (n;; > 0 for products and n;; < 0 for reactants) and
vj is the rate of the j-th reaction. For the sake of simplicity, we assume
that the changes of concentrations are only due to reactions (i.e. we neglect
the effect of convection or diffusion). We can then define the stoichiometric
matrix N = n;;, fors =1,...,m, and for j = 1,...,r, in which columns
correspond to reactions and rows to concentration variations. Therefore, the
mathematical description of a biomolecular network can be given in matrix
form as J

d—‘f = Nv. (1.3)
The reaction rate v; is typically a polynomial (e.g. mass-action kinetics) or
rational (e.g. Michaelis-Menten or Hill functions) function of the concen-
trations of the chemical species taking part in a reaction. A particular case
is when these reaction rates are approximated through power-law terms,

yielding the so-called S-system models.

Polynomial and rational models

The behavior of a biomolecular network can be described by a system of
differential equations obtained from the reaction mechanism by the law of
mass action: the rate of an elementary reaction (a reaction that proceeds
through only one transition state, that is one mechanistic step) is propor-
tional to the product of the concentrations of the participating molecules.

For example, for the following interaction
k
A+B = C,

the rate of change of protein C' with respect to time can be described as a

polynomial function
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where [A], [B] and [C] denote the concentrations of the molecules A, B and
C, respectively, and k represents the rate constant that depends on reaction

conditions such as temperature, pH, solvents, etc.

To occur at significant rates, almost all biological processes in the cell
need enzymes, proteins that catalyze chemical reactions. Consider the sim-
plest enzymatic reaction, in which there is a reversible association between
an enzyme F and a substrate S, yielding an intermediate enzyme-substrate

complex C which irreversibly breaks down to form a product P:

StE4C 2 pyE, (1.4)
k-1

where k1, k1 and ky are relative reaction constants. By applying the law

of mass action we obtain

Wl ks + koo
% = — k1 [E][S] + (k—1 + k2)[C]
% =k [E][S] — (k_1 + k2)[C]
d[P] _

W —kZ[C] )

where the [E], [S], [C] and [P] denote the concentrations of the relative
proteins, with the initial conditions ([S],[E],[C],[P]) = ([So], [Ev],0,0) at
time £ = 0. Note that, by summing the second and third equation, the total

amount of free and bound enzyme is invariant over time

dE] |, dC] _

S+ T2 = 0= [Bl() + [C)(t) = Eo,

and thus we obtain the simplified model described by the following two

equations:
% = — k1 Eo[S] + (k1[S] + k_1)[C]
% =k1 Eo[S] — (k1[S] + k1 + ko) [C],

with the initial conditions ([S],[C]) = ([So],0) at time ¢ = 0. As the for-

mation of the complex C' is very fast it may be considered to be at the
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equilibrium state (% = 0), and we obtain

] = BolS] _ d[P] _ dS] _ vmalS]
[S]+ Km ~ dt dt — [S]+ Kn’
where vper = k2Ep is the maximum reaction velocity and K, = —k*}g‘l"h

is known as the Michaelis-Menten constant. Clearly this kinetic term is a
rational function. This type of rate law exhibits saturation at high substrate
concentrations, a well known behavior of enzymatic reactions. Empirically,
for many reactions the rate of product formation follows sigmoidal kinet-
ics with the substrate concentration. In 1910, Hill devised an equation to
describe the cooperative binding (i.e. the affinity of a protein for its ligand
changes with the amount of ligand already bound) of oxygen to haemoglobin,

which is of the form for enzyme-substrate reactions:

dP] _ d[S] _ vmaslS)"
dt dt  [S]" + K

where n is the Hill coefficient. From the Hill equation we see that in the
absence of cooperativity n = 1. n > 1 is called positive cooperativity and

n < 1 negative cooperativity.

The Michaelis-Menten reaction (1.4), in the form of the stoichiometric

model (1.3), is given by

[E] 1 1 1
v
[S] ! “1 1 0
T = 0= 1]uvy| ,N= ,
[ES] 1 -1 -1
v
P] ’ 0 0 1

where vy, vy and vs represent the reaction rates of the complex [ES] for-
mation, of the [ES] dissociation and of [P] production, respectively. The
relation (1.3) hides the underlying chemical network structure that we are
trying to identify. Hence, in the following, we introduce the notation used in
chemical reaction network theory: N and v are decomposed into the so called
bookkeeping matriz Y, which maps the space of complexes into the space of
species, the concentration vector of the different complexes ¥(x) and matrix

Ay, which defines the network structure. For the Michaelis-Menten reaction
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(1.4), the vector of complexes is given by

[E]1S]
v =| [ES]
[E][P]

The matrix Y is determined in the following way: the elements of the i-th
row tell us in which complexes species 7 appears and how often; equivalently,
the entries to the j-th column tell us of how much of each species make up

complex j. Thus, for (1.4),

1 01
1

v 0 0
010
0 01

Matrix K is the transpose of the weighted adjacency matrix of the digraph
representing the chemical reaction network; that is, entry K;; is nonnegative
and corresponds to the rate constant associated with the reaction from com-

plex j to i. The so called kinetic matrix Ay, is given by Ay = K —diag(K"e),

where e = (1,...,1)7 € R” and n is the number of complexes. For (1.4),
0 k-1 O —k1 k_1 0
K=k 0 0| ,K=]|k —(ki1+k2) 0
0 ko O 0 ko 0

The set of nonlinear ODEs given by (1.2) can be rewritten as [13]:

dx

— =Y AU 1.5
dt k ($) ) ( )
where InW(z) = YT Inz. Then, from experimental data (in addition YV is
often known), the identification problem corresponds to the reconstruction

of the network structure given by Ag.

An example of a mathematical model of a biological pathway, based
on the mass-action law for protein interactions and the saturating rate law
for transcriptional reactions using a Hill-type function, is presented in [14],
where the authors constructed a model of the aryl hydrocarbon receptor

(AhR) signal transduction pathway.
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Rational terms do not necessarily have to arise from the law of mass
action, but can also be used as a phenomenological description of some
biological events exhibiting a sigmoidal response. For instance, in [15] the
authors modelled a gene network, consisting of genes, mRNA and proteins,
by the following ODE system:

dlz;

5;] =m; - fi(y) = NN
dly; ro
EZZ]:W‘%—MP "y

where m; is the maximum transcription rate, r; the translation rate, A,V A

and >\Z_PT‘Ot

are the mRNA and protein degradation rates, respectively. f;()
is the so-called input function of gene 7, which determines the relative acti-
vation of the gene, modulated by the binding of transcription factors (TFs)

to cis-regulatory sites, and is approximated using Hill-type terms.

S-systems

Power-law models have been developed as an alternative approach for mod-
elling reactions following non-ideal kinetics in various biological systems [16].
The basic concept underlying power-law models is the approximation of clas-
sical ODE models by means of a uniform mathematical structure. Michaelis-
Menten kinetics of the form

_ _ Umaz|X]
A

can be approximated by power-law functions as
v aX]?.

A particular class of power-law models are the S-systems (synergistic-systems),
where the rate of change of a state variable is equal to the difference of two

products of variables raised to non-integer powers:

d[X; L o h
—[dt ] = OziHng” — ﬁiHX]‘h“J , (16)
j=1 j=1
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for s = 1,...,n, where the first term represents the net production and the
second term the net removal rate for the i-th species, «; and S; are multi-
plicative parameters called rate constants, and g; ; and h; ; are exponential
parameters called kinetic orders for the production and degradation term,
respectively. By changing to a logarithmic scale, the relation (1.2) becomes
a linear system that is much more tractable to analyze than the original
nonlinear system. However the generalized aggregation may introduce a
loss of accuracy, the model may conceal important structural features of the
network, and it is not able to describe many important biochemical effects

such as saturation and sigmoidicity [17].

1.2 Reconstruction methods based on linear mod-

els

The general problem of reverse engineering a biological interaction network
from experimental data may be tackled via methods based on dynamical
linear systems identification theory. The basic step of the inference process
consists of estimating, from experimental measurements (either steady-state
or time—series data), the weighted connectivity matrix A and the exogenous
perturbation vector B of the in silico network model (1.2). With this objec-
tive, the problem may be tackled by means of regression algorithms based
on the classical Least Squares Estimator (LSE), extensions of the LSE algo-
rithm, such as the Constrained Total Least Squares (CTLS) technique, or
by using efficient convex optimization procedures cast in the form of linear

matrix inequalities (LMIs).

1.2.1 Least Squares

In this subsection, approaches based on the classical Least Squares method
are presented. The problem tackled consists of identifying the original net-
work topology starting from the experimental measurements of the temporal

evolution of each node.
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Identification of the connectivity matrix by Least Squares methods

Assuming that h + 1 experimental observations, z(k) € R", k = 0,...,h,

are available, we can recast the problem in the discrete—time domain as

= (w(h) :1:(1)) = 010, (1.7)

where

Since we are dealing with a linear model, it is possible to separately
estimate each row, 6; ,, of the connectivity matrix © to be identified. Let
Z = QT e R0+ X, = (zi(h), ..., 2;(1))T € R" and g = 0F, € R™L.
The problem to be solved in a standard Least Squares (LS) setting can then
be formulated as follows

X, =7-0. (1.8)

Now, if we assume that the measurements are noisy, relation (1.8) can be

written in the following form

Xi+AX;=(Z+AZ)-3, (1.9)
where
]"Uhfl L 0
AZ = : . : ] e ’th(”Jrl) ,
lyy o+ My O
AX; = (iy, i) €R",
and i,; is the i-th noise component of v;, for: =1,...,nand for j = 0,..., h.

AZ and AX; are unknown terms caused by the noise in the data. Although
the exact values of the correction terms, AZ and AXj;, are not known,
the structure, i.e. how the noise appears in each element, is known. If the
unknown terms are ignored, then the problem is solved by the standard least
squares (LS) method as follows. The optimal estimator for the regression

coefficients vector is given by

(Z"7) Brs = 72" X3,
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which admits the unique solution
Bus = (272)" 77X,

if the number of samples is greater or equal than the number of regression
coefficients, that is h > n + 1, and the matrix Z has full rank, n + 1. When

7 does not have full rank, there are infinitely many LSEs of 3, in the form
Brs = (772) 27 X;,

where (Z7Z )Jr is a generalized inverse of (Z7Z) [18].

1.2.2 Methods based on Least Squares

In this section, we introduce some methods for reverse-engineering biomolec-
ular networks based on linear models and least squares regression. In this
field, important contributions have been produced by the groups of Gardner
and Collins, that devised NIR (Network Identification by multiple Regres-
sion, [5]) and MNI (Microarray Network Identification, [19]) algorithms, and
by the group of di Bernardo, that devised TSNT (Time-Series Network Iden-
tification, [20, 21]). A common motif of these approaches is the use of linear
ODE models and multivariate regression to identify the targets of exogenous
perturbations in a biomolecular network.

The NIR algorithm has been developed for application with perturbation
experiments on gene regulatory networks. The direct targets of the pertur-
bation are assumed to be known and the method uses only the steady-state
gene expression. Under the steady-state assumption (z(¢) = 0 in (1.2)) the

problem to be solved is

n
Zai]‘x]‘ = —biu, (1.10)
j=1

The least squares formula is used to compute the network structure, that is
the rows a;, of the connectivity matrix, from the gene expression profiles
(zj,5 = 1,...,n) following each perturbation experiment; the genes that
are directly affected by the perturbation are expressed through a nonzero
element in the B vector. NIR is based on a network sparsity assumption:
only k£ (maximum number of incoming edges per gene) out of the n elements

on each row are different from zero. For each possible combination of k£ out of
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n weights, the k coefficients for each gene are computed such as to minimize
the interpolation error. The maximum number of incoming edges, k, can be
varied by the user. An advantage of NIR is that k£ can be tuned so as to avoid
underdetermined problems. Indeed, if one has N, different (independent)
perturbation experiments, the exact solution to the regression problem can

be found for k£ < N., at least in the ideal case of zero noise.

The MNT algorithm, similarly to NIR, uses steady-state data and is based
on relation (1.10), but it does not require a priori knowledge of the specific
target gene for each perturbation. The algorithm employs an iterative pro-
cedure: first, it predicts the targets of the treatment using a full network
model; subsequently, it translates the predicted targets into constraints on
the model structure and repeats the model identification to improve the re-
construction. The procedure is iterated until certain convergence criteria

are met.

The TSNI algorithm uses time-series data, instead of steady-state values,
of gene expression following a perturbation. It identifies the gene network
(A), as well as the direct targets of the perturbations (B), by applying the
LS to solve the linear equation (1.2). Note that, to solve (1.2), it is neces-
sary to measure the derivative values, which are never available. Numerical
estimation of the derivative is not a suitable option, since it is well known
to yield considerable amplification of the measurement noise. The solu-
tion implemented by TSNI consists in converting (1.2) to the corresponding

discrete-time system
z(k + 1) = Agz(k) + Bau(k),

As discussed above (see Section 1.2.1) this problem admits a unique globally
optimal solution if A > n + p, where h is the number of data points, n
is the number of state variables and p the number of perturbations. To
increase the number of data points, after using a cubic smoothing spline
filter, a piecewise cubic spline interpolation is performed. Then a Principal
Component Analysis (PCA) is applied to the data-set in order to reduce its
dimensionality and the problem is solved in the reduced dimension space.
In order to compute the continuous-time system’s matrices, A and B, from

the corresponding discretized Ay and By, respectively, the following bilinear
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transformation is applied [22]:

24— 1
TeAg+ 1

B =(A4+1)ABy,

A=

where I € R"*™ is the square identity matrix and T is the sampling interval.

Bonneau et al. devised another algorithm, named Inferelator [23], which
uses regression and variable selection to infer regulatory influences for genes

and/or gene clusters from mRNA and/or protein expression levels.

Finally, the group of K.-H. Cho have developed a number of algorithms
based on dynamical linear systems theory and convex optimization to infer
biological regulatory networks from time-series measurements. In [9] the
identification procedure leads to a convex optimization problem with regu-
larization [24] in order to achieve a sparse network and to take into account
any a priori information on the network structure. In [8] an optimization
method was presented which allows the inference of gene regulatory net-
works from time-series gene expression data taking into account time-delays

and noise in the measurement data.

1.2.3 Dealing with Noise: Constrained Total Least Squares

To write (1.9) in a more compact form, we make the following definitions:
C:= (Z Xz) y

AC = (AZ AX;).

Then the relation (1.8) is written as

(c+ac) (i) ~0. (1.11)

An extension of the LS algorithm, namely the Total Least Squares (TLS)

technique, was developed to solve exactly this problem by finding the cor-
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rection term AC. The TLS problem is then posed as follows [25]:

min ||AC'||%
v,8

5.t (0+A0) (_ﬁl) ~0, (1.12)

where || - ||F is the Frobenius norm defined by ||A||p = \/tr(AAT) for a
matrix A in which tr(AAT) is the trace of the matrix, i.e. the sum of
the diagonal terms. When the smallest singular value of (Z X;) is not

repeated, the solution of the TLS problem is given by:
Bris = (272 - X1)"' 27 X;, (1.13)

where X is the smallest singular value of (Z X;). The TLS solution has
a correction term, A%, at the inverse of the matrix, compared to the LSE.
This reduces the bias in the solution, which is caused by the noise in C'. The

TLS solution can be also computed using the singular value decomposition
as follows ([26], p. 503):
c=uxv’,

where UXV is the singular value decomposition of the matrix C, U € R"*"
and V e R("+2)x(+2) re unitary matrices and & € R"*(+2) i5 a diagonal
matrix with ¥ = min(h,n 4+ 2) non-negative singular values, o;, arranged in
descending order along its main diagonal, the other entries are zero. The
singular values are the positive square roots of the eigenvalues of CTC. Let
V=1 VUn VUny1 Vnyal|, where v; € R™2 is the i-th column of the

matrix V. Then, the solution is given by

<ﬁTLS) = otz (1.14)

1 v

where v is the last element of v, 5. Numerically, this is a more robust

method than computing the inverse of a matrix.

The TLS solution, (1.13) or (1.14), is not optimal when the two noise
terms in Z and X; are correlated, since one of the main assumptions in this
method is that the two noise terms are independent of each other. If there

is some correlation between them, this knowledge can be used to improve
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the solution by using the constrained total least squares (CTLS) technique
[27]. In the case of the problem in the form (1.9), the two noise terms
are obviously correlated because Z is a function of the noise term from the
sampling time k£ equal to 1 to h and X; is a function of the noise term from
k equal to 0 to h — 1. To use the structural information in AC), first the
minimal set of noise is defined as follows:

T o) e R +1)x1

U:(Uh

If v is not white random noise, a whitening process using Cholesky factor-
ization is performed [27]. Here, v is assumed to be white noise and this

whitening process is not necessary. Consider each column of AC, i.e.
AC=(AC) - AC, ACu ACup),
where ACj is the i-th column vector of AC. More specifically
AC; = (iy,_, --ing) €R", i=1,...,n,
AChy1 = Opx1, AChio = AX; = (iy, --iy)" € R". (1.15)
Each AC'% can be written as
ACT = G;v

fori =1,...,n,n+ 1,n + 2. To obtain the explicit form for each G;, we
first define the following column vector of all zero elements, but one, the

1-th element, equal to 1:
ei=0--0 1 0...00 er” i=1,...,n.
For 7 equal to 1,

ACl = (1’Uh—1 T ]_UO)T = (’U}j;_lel . -’l)gel) =
T




Methods based on linear models 17
Likewise for the i-th column of AC,
_ T
AC = [ Opn (h@er)] v

and hence
G;= [Ohxn (In ® ei)T]

fori=1,...,n. Also, from (1.15)

Gny1 = 0h><n(h+1) )

Gpi2 = [(Ih®6i)T Oth} :

Since AC' can be written as
AC = (le oo Gpv Gppyv Gn+2’1)) ,
then the TLS problem can be recast as follows [27]:

. 2
min ||v||
U’ﬁ

s.t. [C-i- (Gw coo Gpv Gpiqv Gn+2v>] [—ﬁll =0. (1.16)

This is called the constrained total least squares (CTLS) problem. With the

following definition,

n n+1
Hg := Zai,jG]‘ + 011Gy — Gpyo = ZﬁjG]‘ — Ghyo, (1.17)
7=1 7j=1

where 3; for 7 = 1,...,n is the j-th element of the i-th row of A and 8,41
is the i-th element of the vector B, (1.16) can be written in the following

form:

g

C Hﬁ’UZO.

Solving for v, we get

g

_ T
v = —HﬁC o

: (1.18)

where Hg is the pseudoinverse of Hg. Hence, the original constrained mini-
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mization problem, (1.16), is transformed into an unconstrained minimization

problem as follows:

g

. 2 . [ T i| T TT T
min ||v|| = min —1|C"H), H,C 1.19
5 [lv]l 5 B g g ( )

)

Now, we introduce two assumptions, which make the formulation simpler.

1. The number of measurements are always strictly greater than the num-
ber of unknowns, i.e. we only consider the overdetermined case, ex-

plicitly h +1 > n + 2, that is h > n + 1.
2. Hg is full rank.

Then the pseudoinverse Hg, is given by
T _ T Ty 1
Hy = Hg (HgHp)

and the unconstrained minimisation problem can be further simplified as

follows:

p

min 67 1| ¢ (HHE) T C (1.20)

The starting guess for § used in the above optimisation problem is simply
the value returned by the solution of the standard least squares problem.
The problem to be solved is to find the values of n(n + 1) parameters of
a linear model that yield the best fit to the observations in the least—squares
sense. Hence, as assumed above, if the number of observations are always
strictly greater than the number of explanatory variables, that is h > n+1,
then the problem admits a unique globally optimal solution. In the other
case, h < n + 1, the interpolation problem is undetermined, and thus there
exist infinitely many values of the optimization variables that equivalently
fit the experimental measurements. In this case, several expedients can
be adopted: first, it is possible to exploit clustering techniques to reduce
the number of nodes and smoothing techniques to increase the number of
samples, in order to satisfy the constraint h > n+1. Furthermore, adopting a
bottom—up reconstruction approach (i.e. starting with a blank network and
increasingly adding new edges) may help in overcoming the dimensionality

problem: in this case, indeed, the number of edges incident to each node
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(and therefore the number of explanatory variables) is iteratively increased
and can be limited to satisfy the above constraint. Finally, the introduction
of sign constraints on the optimization variables, derived from qualitative
prior knowledge of the network topology (as described below), results in a

significant reduction of the solution space.

Note that the methods illustrated above can be extended if p experiments
are performed around the same equilibrium point. Then the terms in the

relation (1.9) are constructed as follows:

Cl...CP r T
Z = , X:( 1, .p> ,
Ip®11><h i Xi Xi

xlk(h — 1) s {L'1k(0)
Ck — L = RnXh ,
ot (h=1) - 2,"(0)

where

is the k-th set of experimental data, x;* = (z¥(h),...,z¥(1)) € R", for
k=1,...,p, I, € RP*P is the identity matrix, 1 € R"*" is a vector of ones

and ® is the Kronecker product. The unknown £ is given by

1

B = (dz‘,* b; "'Eip>T € R"P

The correction terms, AZ and AXj;, are given by

AZ:(A(L..AO’) , AXi:(AXiI"'AXip>’

Opxph
where
k k
]'Uh 1 1110
ACk — L c Rnxh ,
k k
Ty, 4 L
k -k -k \T h
Axi :(th"'lvl) R,

for k =1,...,p and 0 € RP*P" is a matrix of zeros .



20 Reverse Engineering Biomolecular Networks

PACTLS algorithm

In this subsection we describe the PACTLS algorithm, a method devised
for the reverse engineering of partially-known networks from noisy data.
PACTLS uses the CTLS technique to optimally reduce the effects of mea-
surement noise in the data on the reliability of the inference results, while
exploiting qualitative prior knowledge about the network interactions with
an edge selection heuristic based on mechanisms underpinning scale-free
network generation, i.e. network growth and preferential attachment (PA).

The algorithm allows prior knowledge about the network topology to be
taken into account within the CTLS optimization procedure. Since each
element of A can be interpreted as the weight of the edge between two
nodes of the network, this goal can be achieved by constraining some of
the optimization variables to be zero and others to be strictly positive (or
negative), and using a constrained optimization problem solver, e.g. the
nonlinear optimisation function fmincon from the MATLAB Optimization
Toolbox, to solve (1.20). Similarly, we can impose a sign constraint on the
i-th element of the input vector, b;, if we a priori know the qualitative
(i.e. promoting or repressing) effect of the perturbation on the i-th node.
Alternatively, an edge can be easily pruned from the network by setting to
zero the corresponding entry in the minimization problem.

Note that, since the system evolution is sampled, A and B are not ac-
tually the estimates of A and B in (1.2), but rather of the corresponding
matrices of the discrete-time system obtained through the Zero-Order-Hold
(ZOH) discretization method ([28], p. 676) with sampling time T from
system (1.2), that is

z(k + 1) = Agz(k) + Bgu(k), (1.21)

where z(k+1) is a shorthand notation for x(kTs 4+ Ts), z(k) for x(kTs), u(k)

for u(kTy), and
Ts
Ay =5 By = (/ eATd7'> B.
0

In general, the sparsity patterns of A and By differ from those of A and
B. However, if the sampling time is suitably small, (A);; = 0 implies that

(Ag)i; exhibits a very low value, compared to the other elements on the same
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row and column, and the same applies for By and B (see Section 1.2.5 for a
detailed discussion). Therefore, in order to reconstruct the original sparsity
pattern of the continuous—time system’s matrices, one can set to zero the
elements of the estimated matrices whose values are below a certain thresh-
old; this is the basic principle underpinning the edges selection strategy, as
described next.

So far we have described a method to add/remove edges and to introduce
constraints on the sign of the associated weights in the optimization problem.
The problem remains of how to devise an effective strategy to select the
nonzero entries of the connectivity matrix.

The initialization network for the devised algorithm has only self-loops
on every node, which means that the evolution of the i-th state variable is
always influenced by its current value. This yields a diagonal initialization
matrix, AO), Subsequently, new edges are added step-by-step to the network

according to the following iterative procedure:

P1) A first matrix, A4, is computed by solving (1.20) for each row, without
setting any optimization variable to zero. The available prior infor-
mation is taken into account at this point by adding the proper sign
constraints on the corresponding entries of A before solving the op-
timization problem, as explained in the previous subsection. Since it
typically exhibits all nonzero entries, matrix A is not representative of
the network topology, but is rather used to weight the relative influ-
ence of each entry on the system’s dynamics. This information will be
used to select the edges to be added to the network at each step. Each
element of A is normalized with respect to the values of the other ele-
ments in the same row and column, which yields the matrix fl, whose
elements are defined as

A= i
(1Al - 1| Ai

|)1/2 '

P2) At the k-th iteration, the edges ranking matrix G®*) is computed,

T k
Gk _ |Aijlp"

) = , (1.22)
1) n ~
lzp§’“’|Au|
=1
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P3)

P4)
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where )
K
p = (1.23)
ZKl(k)

is the probability of inserting a new edge starting from node j and K, l(k)
is the number of outgoing connections from the [-th node at the k-th
iteration. The p(k) edges with the largest scores in G() are selected
and added to the network; pu(-) is chosen as a decreasing function of
k, that is p(k) = [n/k]. Thus, the network grows rapidly at the
beginning and is subsequently refined by adding smaller numbers of
nodes at each iteration. The form of the function p(-) stems from
the so—called preferential attachment (PA) mechanism, which states
that in a growing network new edges preferentially start from popular
nodes (those with the highest connectivity degree, i.e. the hubs). By
exploiting the mechanisms of network growth and PA, we are able to
guide the network reconstruction algorithm to increase the probability
of producing a network with a small number of hubs and many poorly
connected nodes. Note also that, for each edge, the probability of
incidence is blended with the edge’s weight estimated at point P1);
therefore, the edges with larger estimated weights have a higher chance
to be selected. This ensures that the interactions exerting greater
influence on the network dynamics have a higher probability of being

selected.

The structure of nonzero elements of A% is defined by adding the
entries selected at point P2) to those selected up to iteration k —
1 (including those derived by a priori information), and the set of
inequality constraints is updated accordingly; then Problem 1.20 for

each row, with the additional constraints, is solved to compute A),

The residuals generated by the identified model are compared with the
values obtained at the previous iterations; if the norm of the vector of
residuals has decreased, in the last two iterations, at least by a factor
€, with respect to the value at the first iteration, then the procedure
iterates from point P2), otherwise it stops and returns the topology

(k—2)

described by the sparsity pattern of A . The factor €, is inversely

correlated with the number of edges inferred by the algorithm; on
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the other hand, using a smaller value of ¢, raises the probability of
obtaining false positives. By conducting numerical tests for different
values of €., we have found that setting ¢, = 0.1 yields a good balance

between the various performance indices.

Concerning the input vector, we assume that the perturbation targets
and the qualitative effects of the perturbation are known, thus the pattern
(but not the values of the nonzero elements) of B is preassigned at the initial
step and the corresponding constraints are imposed in all the subsequent

iterations.

1.2.4 Convex optimization methods

In this section, two methods for identifying a linear network model by means
of a convex optimization procedure cast in the form of LMIs are illustrated
[29, 10]. The distinctive feature of these methods is that they easily enable
exploitation of any qualitative prior knowledge which may be available from
knowledge of the underlying biology, thus significantly increasing the infer-
ence performance. The first algorithm is based on an iterative procedure
which starts from a fully connected network - the edges are subsequently
pruned according to a maximum parsimony criterion. The pruning algo-
rithm terminates when the estimation error exceeds an assigned threshold.
The second algorithm, named CORE-Net (Convex Optimisation algorithm
for Reverse Engineering biological interaction Networks), is also based on
the mechanisms of growth and PA, as in the algorithm described in Sec-
tion 1.2.3.

A similar approach based on convex optimization was devised by Julius et
al. in [30], where a method for identifying genetic regulatory networks using
expression profiles from genetic perturbation experiments is presented. A
stability constraint is added to the convex optimization problem and the
[1-norm is used in the cost function in order to obtain a sparse connectivity

matrix.
Identification of the connectivity matrix via LMI-based optimiza-
tion

Assuming that h+ 1 experimental observations, (k) € R*, k =0,..., h, are

available, we can recast the problem in the discrete-time domain as shown
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in (1.7). Our aim is to reconstruct the matrix A and vector B from the
experimental values x(k), k = 0,...,h. The identification problem can be
transformed into that of minimizing the norm of = — ©€2, and thus we can

state the following problem.
Problem 1 Given the sampled data set x(k), k =0,...,h, and the associ-
ated matrices 2, Q, find
mine
©
s.t. E-00)"(2-0Q)<cI. (1.24)

Note that condition (1.24) is quadratic in the unknown matrix variable ©. In

order to obtain a linear optimization problem we convert it to the equivalent

(( -l (E- @Q)T> <0, (1.25)

The equivalence between (1.24) and (1.25) is readily derived by applying the

condition

following lemma.

Lemma 1 Let M € R™™ be a square symmetric matriz partitioned as

My M
M= ) (1.26)
Miy Moo

assume that Mas is nonsingular and define the Schur complement of Mas,
A= My — M12M2_21M1:g. The following statements are equivalent
i) M is positive (negative) definite;

ii) Mo and A are both positive (negative) definite.

Proof. Recall that M is positive (negative) definite iff

Vz e R* 2" Mz >0 (<0),
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moreover it can be decomposed as ([31], p.14)
My M
M= 1; 12
My Mo

T
(I MpMG\ (A0 I MMy,
~\o I 0 M) \0 I '

The latter is a congruence transformation ([32], p.568), which does not mod-
ify the sign definiteness of the transformed matrix; indeed, Vz € R" and
VO, P € RM<

P positive (negative) definite = z/ CTPCz = 2"Pz >0 (<0).

Therefore M is positive (negative) definite iff Moo and A are both positive
(negative) definite. O

Problem 1 with the inequality constraint in the form (1.25) is a general-
ized eigenvalue problem ([33], p. 10), and can be easily solved using efficient
numerical algorithms, such as those implemented in the Matlab LMI Tool-
box [34].

A noteworthy advantage of the proposed convex optimization formu-
lation is that the approach can be straightforwardly extended to the case
when multiple experimental data sets are available for the same biological
network. In this case, there are several matrix pairs (Zg, ), one for each
experiment: the problem can be formulated again as in (1.24), but using a

number of constraints equal to the number of experiments, that is
min e
)
= T (=
s.t. (:.k — @Qk) (:.k — @Qk) < &‘kI, k= 1, e ,Ne,

where N, is the number of available experiments.

As discussed in the previous section, the devised technique is based on
the assumption that the sparsity pattern of the dynamical matrix and in-
put matrix of system (1.2) can be recovered through the estimation of the
corresponding matrices of the associated sampled-data discrete-time system
(1.21) (see Section 1.2.5 for a detailed discussion).
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Except for the LMI formulation, the problem is identical to the one tack-
led by classical linear regression, i.e. finding the values of n(n+1) parameters
of a linear model that yield the best fitting of the observations in the least—
squares sense. Hence, if the number of observations, n(h + 1), is greater or
equal than the number of explanatory variables, that is A > n, the problem
admits a unique globally optimal solution. In the other case, h < n, the in-
terpolation problem is undetermined, thus there exist infinitely many values
of the optimization variables that equivalently fit the experimental measure-
ments. In the latter case, as discussed previously in Section 1.2.1, several
expedients (clustering techniques, bottom-up reconstruction approach, prior
knowledge etc.) can be adopted to solve the undetermination. The key
advantage of the LMI formalism is that it makes it possible to take into
account prior knowledge about the network topology by forcing some of the
optimization variables to be zero and other ones to be strictly positive (or
negative), by introducing the additional inequality A;; > 0 (< 0) to the set
of LMIs. Similarly, we can impose a sign constraint on the i-th element of
the input vector, b;, if we a priori know the qualitative (i.e. promoting or
repressing) effect of the perturbation on the i-th node. Also, an edge can be
easily pruned from the network by setting to zero the corresponding entry

in the matrix optimization variable in the LMIs.

Top—down approach

The first algorithm based on an LMI approach consists of an iterative pro-
cedure that starts from a fully connected network. Subsequently, the edges
are pruned according to a maximum parsimony criterion. The pruning al-
gorithm terminates when the estimation error of the identified model with
respect to the experimental data set exceeds an assigned threshold.

The following basic idea underpins the pruning algorithm: Given the
identified (normalized) connectivity matrix, the edges connecting non-adjacent
(in the original network) nodes have lower weights than the others. This is a
straightforward mathematical translation of the reasonable assumption that
indirect interactions are weaker than direct ones.

In addition to the loose connectivity assumption, our algorithm is also
capable of directly exploiting information about some specific interactions
that are a priori known, taking into account both the direction of the influ-

ence, and its type (promoting or repressing).
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The reconstruction algorithm is structured as follows.

P1)

P2)

P3)

P4)

P5)

A first system is identified by solving Problem 1, and adding all the

known sign constraints.

Let fl(k) = {AZ]} - be the matrix computed at the k-th step;
i,j=1,...n

in order to compare the values of the identified coefficients the matrix

has to be normalized, so let us define the normalized matrix A; =

{Aij}_ _ , Where
i,7=1,....,n

~

- Ay
(HAwsl1Aial)) "

Aij =

~

is obtained by dividing the original value by the norms of its row, A, ;,

and column, A; .

The normalized matrix is analyzed to choose the coefficients to be
nullified at the next identification step; various rules can be adopted at
this step in order to define the threshold below which a given coefficient
is nullified. Good performance has been obtained by setting, for each
coefficient, two thresholds proportional to the mean values of its row
and column. Then the element is nullified only if its absolute value
is lower than the minimum of the two thresholds. This rule reflects
the idea that an arc is a good candidate for elimination if its weight is
low compared to the other arcs arriving to and starting from the same

node.

After choosing the coefficients to be nullified, a new LMI problem is
cast, eliminating the corresponding optimization variables, and a new

solution is computed.

The evolution of the identified system is compared with the experi-
mental data: If the estimation error exceeds a prefixed threshold then

the algorithm stops, otherwise another iteration starts from point P2).

The algorithm requires tuning two optimisation parameters: 1) The thresh-

old value used in the pruning phase, which affects the number of coefficients

eliminated at each step; 2) The upper bound defining the admissible estima-

tion error, which determines the algorithm termination. The first parameter
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influences the connectivity of the final reconstructed network: the greater its
value, the lower the number of connections, thus it is termed the specificity
parameter. The algorithm terminates when either it does not find new arcs
to remove or the estimation error becomes too large.

Concerning the input vector, in this phase, we do not take into account
the effects of external perturbations, then B = 0 and the linear systems,

that represent the in—silico networks, are not subject to exogenous inputs.

Bottom—up approach — CORE-Net algorithm

The CORE-Net algorithm, based on the convex optimization problem cast in
the LMI form as shown above, is specifically suited to infer gene regulatory
networks (GRNs) exhibiting a scale-free topology. The procedure adopts a
bottom-up reconstruction approach, that allows the iterative increment of
the number of edges, exploiting the growth and PA mechanisms, as for the
PACTLS algorithm, illustrated in Section 1.2.3.

A key point underlying CORE-Net (as for PACTLS) is the experimental
observation that Metabolic [35], protein—protein interaction [36] and tran-
scriptional networks [37], as well as many other genomic properties [38],
typically have a small number of hubs and many poorly connected nodes.
A plausible hypothesis for the emergence of such a feature, as shown in [39],
is the PA mechanism during network growth and evolution, where, when a
new node is added to the network, it is more likely to be connected with
one of the few hubs than with one of the many other loosely connected
nodes. In large networks, this evolution rule may generate particular de-
gree distributions, e.g. the well known power-law distribution of scale-free
networks. The technique devised implements the PA mechanism within the
reconstruction process, therefore mimicking the evolution of a biological net-
works to improve the inference performance. Note also that in the case of
partially-known interaction networks, it is very likely that the available prior
knowledge about the connections of the most widely studied genes/proteins
in literature will often coincide with the hubs of the network, and in such
cases we can expect that the PA mechanism will provide significant advan-
tages in the network reconstruction process.

It is worth noticing that, differently from the approach based on top—
down strategy, where the algorithm starts from a fully connected network

and then the edges are subsequently pruned according to a maximum parsi-
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mony criterion, CORE-Net iteratively increments the number of edges, thus
helping to overcome the undetermination problem, as discussed previously,

and to decrease the computational burden.

1.2.5 Sparsity pattern of the discrete—time model

The techniques described in the previous sections are based on the assump-
tion that the sparsity pattern of the dynamical matrix and input matrix of
system (1.2) can be recovered through the estimation of the corresponding
matrices of the associated sampled-data discrete-time system (1.21). Here
we want to validate this hypothesis, by analyzing the relationship between
the dynamical matrices of the continuous-time and discrete-time systems.
For the sake of simplicity, in what follows we will assume that A has n
distinct real negative eigenvalues, \;, |N\;| < |Ajy1|, ¢ = 1,...,n and it is
therefore possible to find a nonsingular matrix P such that! A = PDP~ 1,
with D = diag (A1,...,An). Then, the matrix A; can be rewritten as ([32],
p.525)
Ag =1+ AT, + (A;S)Z + (A§;S)3 +...
— Pdiag (eAITs, . ,e/\”TS> P, (1.27)

If the sampling time is properly chosen, such as to capture all the dynamics
of the system, then Ty < 7; := 1/|\;|, 4 = 1,...,n, which implies ;T < 1.

Therefore the following approximation holds

0 k
, Z AT
6>\sz — % ~ ]_ + AZTS .
k=0 '

From this approximation and (1.27), we obtain
Ad ~ I+ ATS .
As for the input matrix B, the following approximation holds

By= A1 (e — 1) B~ A (ATy) B = BT

!The case of non-diagonalizable matrices is beyond the scope of the present work and
will not be treated here.
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Note that the sparsity patterns of I + ATy and BT are identical to
those of A and B, respectively; only the diagonal entries of A are different,
these, however, are always assumed to be free optimization parameters in our
algorithm. What can be concluded from the previous calculations is that, in
general, (A);; = 0 does not imply (Ag);; = 0; however, one can reasonably
expect (Ag)i; to be much lower than the other elements on the i-th row and
j-th column, provided that T is much smaller than the characteristic time
constants of the system dynamics (the same applies for B and By). Such
considerations can be readily verified by means of numerical tests.

The algorithms presented in this section are based on these arguments,
indeed each algorithm chooses at each step only the largest elements of the
(normalized) estimated A; and By matrices, and it is therefore expected to

disregard the entries corresponding to zeros in the continuous—time matrices.

1.2.6 Application examples

In this section we provide some results of PACTLS, CORE-Net[10] and
TSNI[21] algorithms. In particular we show the performance obtained by
these approaches for inferring gene regulatory networks form experimental
gene expression data.

PACTLS and CORE-Net have been used to reconstruct a cell cycle regu-
latory subnetwork in Saccharomyces cerevisiae from experimental microar-
ray data. We considered the model proposed by [40] for transcriptional
regulation of cyclin and cyclin/CDK regulators and the model proposed by
[41], where the main regulatory circuits that drive the gene expression pro-
gram during the budding yeast cell cycle are considered. The network is
composed of 27 genes: ten genes that encode for transcription factor pro-
teins (ace2, fkhl, swi4, swib, mbpl, swi6, mcml, fkh2, ndd1, yoxl) and
seventeen genes that encode for cyclin and cyclin/CDK regulatory proteins
(clnl, cln2, cln3, cdc20, clbl, clb2, clb4, clbb, clb6, sicl, farl, spol2, apcl,
teml, gind, swel and whi5). The microarray data have been taken from [42],
selecting the data set produced by the alfa factor arrest method. Thus, the
raw data set consists of 27 genes and 18 data points. A smoothing algorithm
has been applied in order to filter the measurement noise and to increase
by interpolation the number of observations. The gold standard regulatory
network comprising the chosen 27 genes has been drawn from the BioGRID
database [43], taking into account the information of [40] and [41]: the net-
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work consists of 119 interactions, not including the self-loops, yielding a
value of the sparsity coefficient, defined by n = 1 — #edges/(n? — n), equal
to 0.87.

Fig. 1.1 shows the results obtained by PACTLS assuming four different levels
of prior knowledge (PK) from 10% to 40% of the network. The performance

is evaluated by using two common statistical indices (see [44], p.138):

e Sensitivity (Sn), defined as

TP

R

which is the fraction of actually existing interactions (TP:=true posi-
tives, FN:=false negatives) that the algorithm infers, also termed Re-

call, and

e Positive Predictive Value (PPV),

TP

PPV = ———
v TP+ FP’

which measures the reliability of the interactions (FP:=false positives)

inferred by the algorithm, also named Precision.

To compute these performance indexes, the weight of an edge is not consid-
ered, but only its existence, so the network is considered as a directed graph.
The performance of PACTLS is compared with one of the most popular sta-
tistical methods for network inference, dynamic Bayesian networks. For
these purposes we used the software BANJO (BAyesian Network inference
with Java Objects), a tool developed by Hartemink and coworkers [45], that
performs network structure inference for static and dynamic Bayesian net-
works (DBNs). The performance of both approaches is compared in Fig. 1.1.
In order to further validate the inference capability of the algorithms, the
figure shows also the results obtained by a random selection of the edges,
based on a binomial distribution: given any ordered pair of nodes, the exis-
tence of a directed edge between them is assumed true with probability p,,
and false with probability 1 — p,. By varying the parameter p, in [0, 1], the
random inference algorithm produces results shown as the solid curves on
the (PPV, Sn) plot in Fig. 1.1.

The performance of PACTLS is consistently significantly better than the
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Figure 1.1: Results for the cell cycle regulatory subnetwork of Saccharomyces
cerevisiae assuming different levels of prior knowledge (PK=10,20,30,40%).

method based on DBNs: the distance of the PACTLS results from the ran-
dom curve is almost always larger than those obtained with the BANJO
software, which is not able to achieve significant Sn levels, probably due to
the low number of time points available. Moreover the results show that
the performance of PACTLS improves progressively when the level of prior
knowledge increases.

Fig. 1.2 shows the regulatory subnetwork inferred by CORE-Net, as-
suming 50% of the edges are a priori known. Seven functional interactions,
which are present in the gold standard network, have been correctly inferred.
Moreover, seven other functional interactions have been returned, which are
not present in the gold standard network. To understand if the latter should
be classified as TP or FP, the authors have manually mined the literature

and the biological databases, and uncovered the following results:

e The interaction between mbpl and ginj is reported by the YEAS-
TRACT database [46]: mbp! is reported to be a transcription factor
for ging;

e A possible interaction between fkh2 and swi6 is also reported by the
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Figure 1.2: Gene regulatory subnetwork of S. cerevisiae inferred by CORE—
Net with 50% of the edges a priori known (thin solid edges). Results ac-
cording to the gold-standard network drawn from the BioGRID database:
TP=thick solid edge, FN=dotted edge, FP=thick dashed edge. The thick
green dashed edges are not present in the BioGRID database, however they
can be classified as TP according to other sources. The FP thick orange
dashed edges are indirect interactions mediated by nddl. No information
has been found regarding the interactions denoted by the thick red dash—dot
edges.
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YEASTRACT database: fkh2 is reported to be a potential transcrip-

tion factor for swi6);

e The interaction between clb! and swi5 appears in Figure 1 in [41],
where the scheme of the main regulatory circuits of budding yeast cell

cycle is described.

Thus, these three interactions can be classified as TP as well and are reported
as green dashed edges in Fig. 1.2.

Concerning the other inferred interactions, two of them can be explained
by the indirect influence of swi6 on fkh1 and fkh2, which is mediated by
ndd1: in fact, the complexes SBF (Swidp/Swibp) and MBF(Mbplp/Swi6p)
both regulate ndd! [40], which can have a physical and genetic interaction
with fkh2. Moreover, fkh1 and fkh2 are forkhead family transcription factors
which positively influence the expression of each other. Thus, the inferred
interactions are not actually between adjacent nodes of the networks and
have to be formally classified as FP (these are reported as orange dashed
edges in Fig. 1.2).

Concerning the last two interactions, that is clb2—apcl and mem1—teml1,
since we have not found any information on them in the literature, in the
absence of further experimental evidences they have to be classified as FP
(reported as red dash-dot edges in Fig. 1.2).

The results obtained in this example confirm that the exploitation of prior
knowledge together with the PA mechanism significantly improves the in-
ference performances.

The algorithm TSNI has been tested for inferring a 9 gene subnetwork
of the DNA-damage response pathway (SOS pathway) in the bacteria Fs-
cherichia coli. The network is composed of 9 genes: lexA, SsB, dinl, umuDC,
rpoD, rpoH, rpoS, recF, recA. The gene expression profiles for all nine genes
were obtained by computing the average of the three replicates for each
time point following treatment by norfloxacin, a known antibiotic that acts
by damaging the DNA. In order to assess the performance of TSNI, the
inferred network is compared with the one identified in [5] by NIR and with
the one obtained from the interactions known in literature among these nine
genes ( 43 interactions, apart from the self-feedback). In Fig. 1.3 the re-
sults obtained by the TSNI algorithm for the E. coli time-series data are

shown by plotting the average of r,, (the ratio between the identified cor-
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rect non zero coefficients with correct sign and the true number of non zero
coefficients) versus r, (the ratio between the identified correct zero coef-
ficients and the true number of zero coefficients), obtained by comparing
the predicted network of TSNI with the network obtained from literature.
The cross on the plot shows the value of r,, and r,, which is obtained
by comparing the network predicted by NIR in [5] with the network from
the literature (NIR predicted 22 connections). When the information that
there should be five connections for each gene is used, as in [5], and thus
four elements in each row of the A matrix to be identified are set to zero,
then TSNI finds 20 connections correctly (corresponding to the diamond in
Fig. 1.3). The results of TSNI are similar to NIR, even if for TSNI only
a single perturbation experiment and 5 time points are used, whereas for
NIR nine different perturbation experiments are used and the matrix B is

assumed to be known.
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1.3 Reconstruction methods based on nonlinear

models

Many models for describing biological networks are nonlinear ODE systems,
involving polynomial or rational functions or power-law approximations.
This section deals with the reverse engineering approaches which are avail-

able for these types of nonlinear models.

1.3.1 Approaches based on polynomial and rational models

In the following the method developed by August and Papachristodoulou in
[13] is illustrated. The procedure is applied for reverse engineering chemical
reaction networks with mass action kinetics (polynomial functions) and gene
regulatory networks with dynamics described by Hill functions (rational)

from time-series data.

Chemical reaction networks

We consider the dynamical systems described as
i(t) = Af(2), (1.28)

where z(t) = (z1(t),...,7,(t))T € R?, the state variables z;, i = 1,...,n,
represent the levels of the different species present in the system, A € R*»*™
is the unknown matrix representing the connectivity structure of the differ-
ent species and f :€ R —€ R™ is the vector of known functions which sat-
isfy appropriate smoothness conditions to ensure local existence and unique-
ness of solutions. Therefore, the relation (1.28) is linear in the unknown pa-
rameters and the main objective is to devise a procedure for reconstruction
of the topology of the network represented by the matrix A, from the given
experimental data.

The chemical reaction network model, described by the relation (1.5),
is equivalent to the dynamical system in the form (1.28), with A = Y A,
and f(z) = ¥U(z). Note that the unknown parameters, which determine the

network structure, are in A.

For reverse engineering the matrix A, we consider the corresponding
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discrete-time system of (1.28) by using the Euler discretization:

T(tk1) = z(te) + (te1 — te) Af (z(tk)) - (1.29)

This problem can be solved in a standard least squares setting as shown in
Section 1.2.1, but in the presence of extra constraints on the entries of A
it does not have a closed-form solution; indeed, it is necessary to take into
account the problem of noise in the data and the sparseness of the network,
features that can not be obtained by solving a least-squares problem. The
problem can, however, be formulated as a Linear Program (LP), a convex
optimization problem for which efficient algorithms are available that can
treat large data sets efficiently and also deal with uncertainties in data or

model parameters:

min || vec(A) ||
st — g < =@ (tgpr) + 2(0k) + (e — ) Af(2(t) < g, (1.30)
u: >0,p, >20,VE,k=1,...,p—1,

where vec(A) € R™ is a vector containing the entries of A, 7 is the set of
measurements, u: and pu, are scalars which are as small as possible for all
k to ensure that the data are in close Euler-fit with the model, thus making
the approximation error as small as possible. Minimizing the /{-norm then
allows the computation of a sparse connectivity matrix [24, 47, 30].

In addition, by modeling the uncertainty in the measurements as

E(ty) — e(k) < &(te) < E(t) +e(k), f(te) = 6(k) < F(2(t)) < F(ti) + (k)
e(k), 3(k), #(tx), F(ty) > 0,Vk, Azj >0,

then a robust formulation of the LP (1.30) is given as

min || vec(A) ||
#(te) — e(k) + (1 — t)A(F (te) — 6(k)),
e(k) + (ther — ) A(F (k) + () <
0OVkk=1,...,p— 1,45 > 0,Vi,j.
(1.31)

st —pp < —Z(tpqr) —e(k+1) +
— & (tgs1) +e(k+ 1) + F(tg) +
E(k),é(k),{ﬂ(tk),f( ) M]-: E 2
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Gene regulatory networks

Consider the model of the gene regulatory network described as

T; =+ fZ(I) —d;z;, (1.32)
> bijr;
=1
fz(x) = d )

1+ E kij{L';-n”
J=1

where v; and d; > 0 are the basal transcription and degradation/dilution

rates, respectively, f; are activation (n;; = m;; > 0) and repression (n;; =

0,m;; > 0) Hill input functions [48], k;; and b;; denote the contribution of

the different transcription factors on the transcription rate.

The model (1.32) can be reformulated and cast in a form that allows iden-
tification using Linear Programming. Consider the corresponding discrete-

time system of (1.32)

Ti(tps1) = zi(tr) + At(vi + fi(wi(te))) — dizi(ty)) (1.33)

where At =ty — t. If bj, ki and m;; are unknown then (1.33) is not
affine in the unknown parameters as is the case in (1.29). We rewrite (1.33)

as follows:

(i (tr) (1—Atd;)—x; (tk+1)+At'yi)+(1+Zkijx;n“ )—i—Athi]‘x?U +Ath; =0,
J J
(1.34)

where, for Njj = TNjj = 0, b; = Zbijxj” = Zbij, whereas, for Njj > 0,

n;; = n;j. For all ¢, j, let an entry ‘zo matrix B ‘ée b;j for which n;; > 0, and
let an entry of matrix K be k;;. As before, given a set of measurements, &,
we can approximate the structure of the gene regulatory network determined
by b;j, b; and k;; if the Hill coefficients m;; and n;; are known and the basal
production and degradation rates are known or considered uncertain but
within a known range. For instance, we can try to recover B, K through
the following LP:
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min || vec(BbK) |1

5. — < (2i(te) (1 — Atdi) = &iter) + Abyi) + (1+ D ki) ™)+
J
+ Athi]‘i‘?Zj + Atb; < i,
J
®> 03 bl]a kl]a bz > OaViaja ka

0<er <7 <e9,0<ey <d; <e9,Vi, (*), (1.35)

where the last requirements (*) represent the case of uncertain production
and degradation rates. Note that as for (1.32)

kij = 0, if and Only ifbij =0or bi = O,Vi,j. (136)

In the following case, the solution of (1.35) violates the (1.36), that cannot

be implemented in a LP:

o if kj; # 0, bj;j = 0 and b; = 0, then the production of X; is not

influenced by Xj, i.e., it is the same case as when k;;=0;

e if b;; # 0 and k;;=0, then X; enhances the production of Xj, i.e, it is

the same case as when k;; # 0;

e if b; #0 and k;; =0 Vi, then the production of X; is not affected by

X, i.e., it is the same case when b; = 0.

1.3.2 Approaches based on S-systems

Several numerical techniques have been proposed in the literature for infer-
ring S-systems from time series measurement; most of them use computa-
tionally expensive meta-heuristics such as Genetic Algorithms (GA), Simu-
lated Annealing (SA), artificial neural networks function approximation or
global optimization methods (see [49] and references therein).

Akutsu et al. in [50] developed a simple approach based on a linear

programming method, named SSYS-1. Assume that dXdit(t) > 0 in (1.6) at

n
H thi’j >
j=1

n
time t. By taking the logarithm of each side of o; [[ X947 > p;
j=1
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we have . .
log v + Zgi,j log X;(t) > log ﬁizhi,j log X(t) . (1.37)

j=1 j=1
Since X;(t) are known, this is a linear inequality if we consider log o; and
log B; as parameters. The same is valid in the case of %it(t) < 0. Therefore,
solving these inequalities by using LP, we can determine the parameters.
However, the parameters are not determined uniquely even if many data

points are given, because the inequality can be rewritten as
n
(log o; — log X(t)) + Z(gi,j — hij)log X;(t) > 0. (1.38)
j=1

Therefore, only the relative ratios of loga; — log 8; and g; j — h; ; are com-
puted. However this information is useful for qualitative understanding of
S-Systems. Since it seems that g; j # h; ; holds for most (i, 7), the fact that

|9i,; — hi ;| is not small means that X; is influenced by X;.

Aa approach based on alternating regression (AR) was proposed as a
fast deterministic method for S-system parameter estimation with low com-
putational cost [51]. A method, inspired by AR and based on multiple lin-
ear regression and sequential quadratic programming (SQP) optimization,
is proposed in [49] for identification of S-Systems models from time-series,
when no information about the network topology is known. Furthermore,
the algorithm is extended to the optimization of network topologies with con-
straints on metabolites and fluxes. This method is based on the substitution
of differentials with estimated slopes and the minimization of the differences
between two vectors obtained from multiple linear regression (MLR) equa-

tions. Consider the following relation

M M
PTi(tn) = o[ [ X(0n)" , DT(T) = BT [ X (1)
j=1 j=1

where S;(t,) represents the estimated slope of metabolite i at time &,
PT;(t,), DT;(t,) the production and degradation term vectors, respectively,

and N is the number of time points and M the number of species (e.g
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metabolites). Because PT; must be positive, the (1.39) can be rewritten as

log PT; = log(ST; + DT;) (1.40)
or in matrix form as
LVyi =i, (1.41)
where
L log(Xi(t1)) -+ log(Xwm(t1))
L=]: : - : ;
L log(Xi(tn)) -+ log(Xnm(tn))
Vi =[log igirgiz - - - gim] s (1.42)

vi =log(ST; + DT;) .
By MLR, the production parameter vector V,; can be obtained as
Voi = (L"L)~ LT, (1.43)
and substituting the (1.43) in (1.42) we obtain

LILTL) ' LT = ;. (1.44)

Note that 7; must be an eigenvector of the matrix W = L(LTL)"'LT,
with an eigenvalue equalling 1. Several standard algorithms to calculate
the eigenvector of the matrix W directly were implemented, but none of
them returned a satisfactory result. Therefore the task was reformulated as
a minimization problem for the logarithm of the squared residuals between
the right and left side hands in (1.44), to define this problem in matrix form

with the cost function:
F=1log((vi —4%)" (vi —4)) (1.45)
where 4; = Wry,.

1.3.3 A case—study

In the following the applicability of the approach devised in [13] by recon-

structing the glycolytic pathway of Lactococcous lactis, using the same ex-
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perimental data from [52], is shown. Lactococcus lactis is a bacterium used
in dairy industry for the production of cheese and buttermilk, mainly be-
cause of its capacity to convert about 95% of the milk sugar lactose (Lact)
to lactic acid. The glycolytic pathway (or glycolysis) consists of chemi-
cal reactions that convert glucose (Glu) into pyruvate (Pyru). In the first
step, glucose is converted into glucose-6-phosphate (G6P). A conversion of
G6P into fructose-1,6-bisphosphate (FBP) follows, which is then converted
sequentially to glyceraldehyde-3-phosphate (Ga3P), 3-phosphoglyceric acid
(3-PGA) and phosphoenolpyrurate (PEP). Additionally, Glucose and PEP
are converted directly to pyruvate and G6P. In [52], since measurement data
for the intermediate Ga3P were unavailable, an additional rate denoting de-
pletion of FBP was included. A simplified description of the pathway is
illustrated in Fig. 1.4.

FBP

=0

PEP+Glu

Q Glu

G6P+Pyru

2x Pyru

Figure 1.4: The glycolysis of Lactococcous lactis

In [13] the following complexes which participate in the chemical reaction
network are assumed: Glu, G6P, FBP, 2x3PGA, 2xPEP, 2xPyru and Lact.
Therefore for the glycolytic pathway in the form of system (1.5) the matrix
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Y, the vectors of the species (z) and of the functions (f = W) are given by

1000000 (Gl (Gl
010000 0 [G6P] [G6P]
0010000 [FBP] [FBP]
Y=(0 00 2 0 0 0f.,z=|[3PGA]|,f(z) [3PG A)?
000020 0 [PEP] [PEP]?
000O0O0Z20 [Pyru] [Pyru)?
00 0O0O0OTO 01 [Lact] [Lact]

For reverse engineering the network topology described by the matrix Ay

one of the possible LPs to be solved is the following:

given Y

T(t1) — 2(t2) + (t2 — 1) Af(2(t1))

min | : I+ | vee(A) |1
f(tp—l) - f(tp) + (tp - tp—l)Af(«%(tp—l))

s.t. A=Y A

Ag,, > 0,0 # 5, Vi, el A =0, (1.46)

where « is a nonnegative constant that allows to regulate the sparsity of
A explicitly. In [13] the (1.46) is solved for « = 0, = 2,and @ = 3, and
the relative pathway is shown in Fig. 1.5, where we can see that the sparse
reaction topology was almost reconstructed. Note that a gradual increase

of a, for 3 < a < 75 does not change the network structure.
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2% 3PGA //

O

2xPEP

2xPyru

Figure 1.5: Reconstructed reaction topology for the glycolysis of Lactococ-
cous lactis: two reactions obtained for a = 0 and o« = 2 are marked with o
and ay, one for @ = 0 with ag, one for « = 3 with ag.
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