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ABSTRACT

Bistability is a system-level property, exploited by many biomolecular interaction networks
as a key mechanism to accomplish different cellular functions (e.g., differentiation, cell
cycle, switch-like response to external stimuli). Bistability has also been experimentally
found to occur in the regulatory network of the galactose metabolic pathway in the model
organism Saccharomyces cerevisiae. In this yeast, bistability generates a persistent memory
of the type of carbon source available in the extracellular medium: under the same ex-
perimental conditions, cells previously grown with different nutrients generate different
responses and get stably locked into two distinct steady states. The molecular interactions of
the GAL regulatory network have been thoroughly dissected through wet-lab experiments;
thus, this system provides a formidable benchmark to our ability to characterize and re-
produce in silico the behavior of bistable biological systems. To this aim, a number of models
have been proposed in the literature; however, we found that they are not able to replicate
the persistent memory behavior observed in (Acar et al., 2005). The present study proposes a
novel model of the GAL regulatory network, which, in addition to reproducing in silico the
experimental findings, can be formally analyzed for structural multistability of the network,
using chemical reaction network theory (CRNT), and allows the characterization of the
domains of attraction (DA). This work provides further insights into the GAL system and
proposes an easily generalizable approach to the study of bistability-associated behaviors in
biological systems.

Key words: bistability, chemical reaction network theory (CRNT), domains of attraction (DA),

GAL regulatory network.

1. INTRODUCTION

Aprimary goal of biologists in the postgenomic era is to understand how characteristic cellular

phenotypes arise from the interactions between the basic elements of life, namely genes, proteins, and

metabolites. By now, it is utterly clear that the properties of complex biomolecular interaction networks
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cannot be solely unveiled by studying the single components, but rather they have to be investigated at

the system level, exploiting the methodological tools of bioinformatics, and systems and control theory

(Cosentino et al., 2011). Among these properties, an especially important one is the capability of several

signaling networks to exhibit a switch-like biochemical response, which enables a cell to toggle between two

discrete, alternative, equilibrium conditions following an external stimulus and to remain locked into the new

steady state even when the stimulus is removed. Well-known examples of this class of biological systems are

the mitogen-activated protein kinase (MAPK) cascades in animal cells (Bagowski et al., 2001; Ferrell et al.,

1998) and the cell cycle regulatory network in Xenopus and Saccharomyces cerevisiae (Sha et al., 2003;

Pannala et al., 2010). In S. cerevisiae, one of the most extensively studied genetic switch is that implemented

by the regulatory network of the galactose metabolic pathway: S. cerevisiae normally uses glucose as the

carbon and energy source. However, in the absence of glucose, it can metabolize galactose as an alternative

source, through Leloir metabolic pathway (Bhat, 2008). Such pathway is controlled by a set of enzymes,

commonly referred to as the GAL system, whose molecular interactions have been thoroughly dissected in

the last years through the classical reductionist molecular biology experimental approach. A number of

mathematical models of the GAL system, in conjunction with guided experiments, have investigated system-

level properties such as ultrasensitivity, memory, noise attenuation, rapid response, and sensitive response

(Acar et al., 2005). In particular, the capability of the GAL system to exhibit persistent memory of the past

exposure to different carbon sources, has been experimentally found in Acar et al. (2005), thus demonstrating

the bistability of the underlying regulatory network. However, notwithstanding this experimental evidence,

the mathematical models proposed so far are not able to reproduce this particular property. This fact has been

recently pointed out in Kulkarni et al. (2010), where the authors test the dynamical nonlinear quadratic model

proposed in Smidtas et al. (2006) against the aforementioned experimental findings and conclude that it does

not exhibit bistability. Kulkarni et al. (2010) extend the Smidtas’ model and derive some conclusions about

cellular memory by applying a method devised by our group (Amato et al., 2007) to analyze the domains of

attraction (DA) of an equilibrium point in nonlinear quadratic systems. On the hand, however, Kulkarni et al.

(2010) do not provide a theoretical analysis nor numerical simulations to prove whether the proposed model

actually exhibits a bistable behavior.

In this work, we propose a novel model that maintains the quadratic form of the most recently proposed

models, derived by applying mass-action kinetics. Indeed, such class of dynamical systems can be easily

tested for structural multistability, applying chemical reaction network theory (CRNT) (Feinberg, 1987,

1988). CRNT is a powerful theoretical tool to establish whether an assigned reaction network, endowed

with mass action kinetics, can exhibit multiple steady states, independently of the particular choice of the

kinetic parameter values. Applying CRNT, we were able to conclude that both Smidtas’ and Kulkarni’s

models cannot exhibit bistability (see Appendix); instead, our model verifies the CRNT conditions for

bistability, and in fact, it can reproduce the persistent memory behavior observed in Acar et al. (2005).

Subsequently, we have also performed an analysis of the DA, applying our method devised in Amato et al.

(2007), to characterize the persistence of cellular memory in correspondence of both equilibrium points.

This article is structured as follows: Section 2 provides a brief overview of the biochemical network of

the GAL regulatory system. In Section 3, we describe the new mathematical model devised to replicate the

persistent memory property of the GAL system. The theoretical analysis tools used in the presented study

are discussed in Section 4, and their application is illustrated in the Section 5, along with the results

obtained through numerical simulations. Finally, in Section 6, we discuss the results and provide some

concluding remarks. Some additional materials, including detailed models and parameter values, are given

in the Appendix.

2. GAL REGULATORY NETWORK IN S. CEREVISIÆ

S. cerevisiae exhibits the capability to metabolize galactose by activating the coordinated transcription of

both structural and regulatory genes. This set of genes enables yeast cells to use galactose as an alternative

energy and carbon source to glucose, when the latter is absent (Bhat, 2008; Lohr, et al., 1995). The entire

pathway, which leads to the consumption of galactose comprises two main subsystems: (i) a metabolic

pathway, from galactose cellular internalization to the production of glucose, and (ii) a regulatory pathway,

which produces all the proteins that activate the transcription of galactose metabolizing enzymes (Pannala

et al., 2010).
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The regulation pathway (Fig. 1) is made up of the following autoregulated factors: a transcriptional

activator protein Gal4p, a repressor protein Gal80p, and a signal transducer protein Gal3p (Timson et al.,

2002). Gal4p activates transcription of genes GAL1, GAL2, GAL7, and GAL10, but is unable to activate the

transcription in the absence of galactose. The protein encoded by gene GAL2 acts as a mediator of galactose

transport into the cell. In the absence of external galactose, Gal80p binds to the activation domain of Gal4p,

thus inhibiting the expression of the GAL genes (Melcher et al., 2001). In the presence of galactose, instead,

the inducer Gal3p is activated to form the complex Gal3p*:Gal80p, which promotes the shuttling of Gal80p

from the nucleus to the cytoplasm. This decreases the concentration of Gal80p, reducing the fraction of

Gal80p-bound Gal4p in the nucleus (Peng et al., 2002). Thus, galactose relieves the inactivation of Gal4p

and promotes transcription of the GAL genes. The presence of glucose (even when galactose is available)

inhibits the synthesis of Gal4p through Mig1p-mediated repression of GAL genes (Klein et al., 1998).

The persistence of cellular memory exhibited by the GAL regulatory network is a system-level property,

resulting from the interactions of several species, forming multiple nested loops. Two coupled positive

feedback loops include the galactose permease Gal2p and the signaling protein Gal3p, respectively, and a

negative feedback loop involves the inhibitor Gal80p. In Angeli et al. (2004), it has been noted that the

existence of a positive-feedback loop, or a mutually inhibitory, double-negative-feedback loop, is a nec-

essary condition for the occurrence of multistability. History-dependent experiments on galactose regu-

latory gene activity revealed the capability of this molecular circuitry to toggle between two discrete,

alternative stable steady states, based on the galactose concentration. Exposing two cell cultures, one grown

in the absence and the other in the presence (2%) of galactose, to extreme (i.e., either high or low) galactose

concentrations, they reach steady states, independently of the past history (absence of memory). For

intermediate concentrations, instead, the two cultures show significantly different expression of the GAL

genes (persistent memory). Signal transducer Gal3p was identified as the most responsible in the generation

of two stable expression states depending on the previous galactose consumption states. The other positive

feedback loop mediated by the Gal2p is only able to increase the difference among the two levels of

expression. A higher level of inhibitor Gal80p results in destabilization of persistent memory (Acar et al.,

2005).

3. MATHEMATICAL MODEL OF THE GAL REGULATORY
NETWORK IN S. CEREVISIÆ

To evaluate the dynamics of the GAL regulatory pathway from external galactose uptake to its

downstream elements, several models have already been proposed in the literature, including both

FIG. 1. Schematic diagram of the

GAL regulatory network in Sac-

charomyces cerevisiæ. External

galactose is internalized into the

cell, then it shuttles between the

cytoplasm and the nucleus. The

signal transducer Gal3p in galac-

tose bound-stage is highlighted to

differentiate it from unbound form.

The pointed arrows indicate acti-

vation, whereas the blunt arrows

indicate inhibition.
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simplified reduced-order models (Smidtas et al., 2006; Kulkarni et al., 2010) and more detailed ones (de

Atauri et al., 2004). We have tested these models against the experimental findings of Acar et al. (2005)

to ascertain whether they can reproduce the persistent memory behavior; however, both numerical

simulations and theoretical analysis performed on such models have provided a negative answer (see

Appendix).

On the basis of these findings, we have devised a novel mathematical model, based on the schematic

diagram of interactions reported in Figure 1. The complete set of reactions is reported in Appendix, and

the state variables (concentrations of each species) of the dynamical model are given in Table 1. The

main goal of our work is to achieve a simple model, derived by applying mass-action kinetics, which can

be characterized with respect to bistability by means of a theoretical analysis tool, namely CRNT.

Therefore, the model does not aim to achieve a detailed description of the biochemical reaction, which

would require much more complex nonlinear kinetics, with the drawback of rendering the stability

analysis a daunting task. Additionally, the formulation of the model in the framework of dynamical

quadratic systems enables us to quantitatively characterize the DA of the equilibrium points, as will be

illustrated in the following.

Note that, in order to focus our study on the bistable behavior, the following simplifying assumptions

have been made: (i) the GAL gene inhibition mechanisms, which are activated in the presence of glucose,

are neglected, since we always assume a zero concentration of glucose; (ii) the galactose uptake into the

cell occurs only through the protein Gal2 (i.e., we neglect the intrinsic Gal2-indipendent transport); (iii) the

nucleoplasmic shuttling is not modeled, and the cytoplasm and nucleus are treated as a single cellular

compartment; (iv) binding/unbinding of Gal4 to/from DNA is neglected; (v) no dimerization of proteins is

modeled; and (vi) only one binding site for Gal4 is modeled for each species.

The pathway starts from the external galactose uptake in the cell membrane and is composed of 16

reaction steps. External galactose is internalized into the yeast cell via the action of Gal2, as described by

the reaction

GeþG2 ! GiþG2þGe (1)

For each internalized molecule, Gi, a new molecule of external galactose, Ge, is added. This is a technical

assumption, which is required to model a medium that is kept at constant galactose concentration, as in the

experiments described in Acar et al. (2005). The transcription and translation of Gal2, Gal3, and Gal80,

promoted by Gal4p, is modeled as

G4 ! GyþG4‚ y¼ 2‚ 3‚ 80 (2)

Activation of Gal3p by internalized galactose is described as

G3þGi ! G3a (3)

The two steps of inactivation of the inhibitor and subsequent release of Gal4p are modeled as a single

reaction:

Table 1. Description of the State Variables of System

State Variable Description

G3 Gal3p protein concentration

Gi Internalized galactose concentration

G3a Active Gal3p protein concentration

G4 Gal4p protein concentration

G80 Gal80p protein concentration

G4,80 Gal4p:Gal80p complex concentration

G3a,80 Active Gal3:Gal80p complex concentration

Gex Extracellular galactose concentration

G2 Gal2p protein concentration
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G4‚80þG3a ! G3a‚80þG4 (4)

Finally, each species is subject to degradation, which is modeled by first-order kinetics (i.e., each species

is transformed into a null product):Gx ! ;.
Assuming mass action kinetics for each reaction rate, we obtain a set of nonlinear ordinary differential

equations (ODEs), containing constant, linear, and quadratic terms in the state variables. The model, which

describes the concentration changes over time of the considered species, can be conveniently written in

matrix form as

_x(t)¼Ax(t)þB(x)þNu(t)‚ (5)

where

x(t)¼ [G3(t) Gi(t) G3a(t) G4(t) G80(t) G4‚80(t) G3a‚80(t) G2(t)]T ‚ (6)

for t ‡ 0 and

B(x)¼
xT B1

..

.

xT Bn

0
B@

1
CAx‚ (7)

with A,Bi 2 Rn · n‚ i¼ 1‚ . . . 8:
Looking at the topologies of previous models (Fig. 2), we can spot some basic differences with respect

to the one proposed in this article. In particular, in Smidtas’ detailed model (Fig. 2a), Gal3p, Gal80p, and

galactose bind together, decreasing the binding of Gal80p to Gal4p. Subsequently, the decreasing of

Gal80p in the nucleus activates Gal4p, triggering transcription of GAL3 and GAL80 genes and closing the

feedback loops, as newly produced Gal3p and Gal80p switch the equilibrium back towards Gal4p

inactivation (Gal4/80p). In the Smidtas’ reduced model (Fig. 2b), an oversimplification of these feedback

loops is adopted, preserving the qualitative dynamics of the detailed model. However, the two feedback

loops involving GAL3 (positive) and GAL80 (negative) are lumped together in a single negative feed-

back loop. In the absence of galactose, Gal3/80p binds the Receptor (R), thus inhibiting its transcriptional

activity of Gal4p. The presence of galactose causes the release of Gal4p and consequential activation of

GAL3 and GAL80 transcription. Thus, newly produced Gal3/80p closes the feedback towards Gal4p

inactivation. Starting from Smidtas’ simplified model, Kulkarni et al. (2010) have proposed an extended

model, by including further molecular reactions and, hence, more state variables (Fig. 2c). However,

their model inherits the simplification regarding the single negative feedback loop of Gal3/80p. Our

model (Fig. 2d) includes more state variables, since we have also taken into account the Gal2p-mediated

uptake of galactose and the formation of Gal3/80p and Gal4/80p complexes from Gal3p, Gal4p, and

Gal80p as reactants, which in the other models are involved in bound stage only. Structurally, our system

is more adherent to the circuit depicted in Acar et al. (2005), consisting of two positive and one negative

feedback loops, which affect the uptake of galactose, the nucleoplasmic shuttling of regulator proteins,

and the transcription of GAL genes. Therefore, we can conclude that the presence of these distinct

positive and negative feedback loops is the key ingredient that determines the occurrence of bistability in

the GAL system.

In the next section, we will introduce two theoretical tools to investigate the properties of a dynamical

nonlinear quadratic system in the general form (eq. 5).

4. STRUCTURAL MULTISTABILITY AND DA OF NONLINEAR
QUADRATIC SYSTEMS

4.1. Multistability analysis: CRNT

We recall that the main goal of our study is to ascertain whether the modeled system exhibits bist-

ability (or, more generally, multistability). Note that, given a certain reaction network, the capability of

the system to exhibit multiple equilibrium points depends on the associated reaction rates and on the

values of the kinetic parameters. Therefore, it is in general not possible to draw any conclusion without
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restricting the scope of the analysis to a more specific class of systems. In our case, having assumed

mass-action kinetics, the structure of the nonlinear ODE system is well defined and corresponds to the

class of dynamical quadratic systems with nonnegative-valued parameters. Even for models of this class,

however, the existence of multiple steady states is in general dependent on the particular choice of the

parameters.

Fortunately, under certain conditions, the characterization of multistability of mass-action systems can

be performed through a powerful analysis tool, CRNT. The advantage of CRNT is that it provides a

straightforward way to analyze the type of dynamical behavior that one can expect from an arbitrarily

complex network of chemical reactions, just by inspection of the topology of the associated graph. More

specifically, CRNT enables us to establish whether an assigned reaction network can exhibit one or

multiple equilibrium points, without even the need to write down the kinetic equations and assign values

to the kinetic parameters. This point makes CRNT especially suitable for dealing with biomolecular

systems, whose parameters are often unknown or subject to significant variability among different

individuals.

For the sake of brevity, it is not possible to provide here the nuts and bolts of CRNT, which is quite

involved and requires a considerable number of preliminary definitions. The interested reader is referred to

the original articles (Feinberg, 1987, 1988) for a detailed treatment or to Cosentino et al. (2011) for an

FIG. 2. Graphical representation

of the GAL core regulatory path-

way. Boxes, species; circles, reac-

tions. Arrows point to reaction

products; reagents are connected to

the reaction by lines (without ar-

rows). A dashed line indicates that

the linked species is both a reagent

and a product. (a) Smidtas’ detailed

model. Gal, galactose; bound re-

ceptor (BR), the Gal3/80p/galac-

tose complex; Gal4_80p and

Gal3_80p denote, respectively, the

Gal4p and Gal80p and the Gal3p

and Gal80p proteins in bound stage.

(b) Smidtas’ reduced model. Re-

ceptor (R), Gal4/3/80p complex, in

which Gal4p is sequestered and

cannot promote its transcriptional

activity, whereas G4 denotes the

transcriptional activator protein

Gal4p. (c) Kulkarni’s model, in

which G4a indicates the activated

Gal4p protein and G4 denotes the

Gal4/3/80p complex. (d) Our

model. It is possible to note that

more state variables and molecular

reactions are considered. Here, Gx

(where x = 2, 3, 4, and 80) denotes

the Galxp protein; Gex and Gic, the

extra- and the intra-cellular galac-

tose; G3att, the signaling protein

Gal3p in active form; G80G3att

and G4G80, the complexes formed

by Gal80p and Gal3p (in active

form), and by Gal4p and Gal80p

proteins, respectively.
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introductory overview of the main results. Despite the complexity of its theoretical foundations, a great

advantage of CRNT is that it requires very little background for practical application; indeed, the CRNT

analysis conditions have been coded in the CRNT Toolbox (http://www.chbmeng.ohio-state.edu/*fein-

berg/crnt), which is freely available. Using this toolbox, it is sufficient to fill in the network’s reactions and

run the algorithm to get a comprehensive report elucidating all the properties of the network of interest. In

particular, the CRNT algorithm indicates either that the associated dynamical system admits multiple

positive steady states for some values of the kinetic parameters, or else that no such combination of

the parameter values exist. In the affirmative case, the algorithm will also provide a set of values of the

kinetic parameters for which the system is multistable.

Finally, it is worth remarking a key point of this approach to the analysis of multistability of chemical

reaction systems: CRNT enables us to characterize multistability as a structural property of the given

reaction network, regardless of any specific choice of the model parameters and of the complexity of the

network. Instead, classical methods for the study of equilibrium points (Murray, 2001) can provide

parametric multistability analysis only for low-order systems, since they are based on the analytical

computation of the equilibrium points.

FIG. 2. Continued.
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In the Results section, we will apply CRNT to invalidate the models proposed in Smidtas et al. (2006)

and Kulkarni et al. (2010) and to validate the model proposed in Section 3.

4.2. Estimation of the DA

Determining the number of equilibrium points and their stability is a fundamental step in the analysis of

biochemical reaction models. However, a complete characterization of the system’s behavior requires the

computation of the DA of each asymptotically stable equilibrium point. The DA of an asymptotically stable

equilibrium point, xe, is a subset of the state space,O, such that every state trajectory starting inO converges to xe.

DAs are of paramount importance in biological systems; indeed, when a system that is operating in the

neighborhood of an equilibrium point leaves the boundaries of its region of attraction, it is usually abruptly

led to a new operating condition (corresponding to another equilibrium point or to oscillations). This

phenomenon is at the basis of many on-off regulatory mechanisms of biological functions and periodic

behaviors at the molecular, cellular, or population level and is closely interweaved with an important issue

in systems biology, namely the relation between cellular decision making and biological noise. Cellular

decision making is the process by which cells can assume different and heritable fates modifying their

genome or the environment in which they reside (Balazsi et al., 2011). Some examples of regulatory

molecular switch concern virus, bacteria, yeast, lower metazoans, and mammals. In lambda phage, a gene

regulatory network controls the lysis/lysogeny decision in which two repressors (CI and Cro) operate as a

mutual toggle switch (lambda switch) with bistable dynamics (Gardner et al., 2000). Another example is

represented by the Nanog-Oct4 gene regulatory network, which controls embryonic stem cell differenti-

ation. In the latter system, regulatory interactions, involving positive and negative feedback, generate

bistability from noise-induced transitions (Chickarmane et al., 2006).

Typical information that one can derive from the knowledge of the DA is the extent of the perturbations

that the system can tolerate without changing its operative condition. In other words, the DA is an indicator

of the capability of the system to adapt to changing environmental conditions, which is recognized in

biology as an essential feature for every living organism.

Unfortunately, the exact computation of the DA for a generic nonlinear system is a very difficult problem

to solve, especially for systems of nontrivial dimension. A more affordable problem is that of determining

an estimate of (and possibly close to) the actual DA. Similarly to what has been discussed for the

multistability analysis, the problem of DA estimation is greatly simplified when dealing with the class of

nonlinear quadratic systems. In particular, below we recall the main result of Amato et al. (2007), which

allows to easily and efficiently solve the aforementioned problem. Since the adopted method yields a

polytopic estimate of the DA, let us first recall the following definition:

Definition 1. A polytope (or box) P � Rn can be described as follows:

P ¼ convfx(i)‚ x(2)‚ . . . ‚ x(p)g (8a)

¼fx 2 Rn : ak
T xp1‚ k¼ 1‚ 2‚ . . . ‚ qg (8b)

where p and q are suitable integers numbers, x(i) denotes the ith vertex of P , and conv[$] indicates the

operation of taking the convex hull of the argument.

Next, we state the problem that is solved by the proposed method. Note that, for the sake of simplicity,

the statement of the problem refers to the equilibrium point in the origin. However, it is easy to generalize

the definition and the procedure to equilibrium points different than zero, via a change of state variables, as

shown in Amato et al. (2007).

Problem 2. Assume that every eigenvalue of A in (5) has strictly negative real part; then, given a

polytope P , with the origin of the state space lying in the interior of P , establish whether P belongs to

the DA of system (5).

We can now recall the following sufficient conditions under which Problem 1 admits a solution (Amato

et al., 2007).

Theorem 3. The polytope P defined in (8) belongs to the DA of system (5) if there exist scalars c,c

and a symmetric matrix P such that
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0 < c < 1‚ (9a)

c > 0‚ (9b)

P > 0‚ (9c)�
1 cak

T

cak P=c

�
q0‚ k¼ 1‚ 2‚ . . . ‚ 2n (9d)

x(i)
T (P=c)x(i)p1‚ i¼ 1‚ 2‚ . . . ‚ 2n (9e)

c(AT PþPA)þ

x(i)
T B1

x(i)
T B2

..

.

x(i)
T Bn

0
BBBBB@

1
CCCCCA

P

þ (B1
T x(i) B2

T x(i) � � �Bn
Tx(i))P < 0‚ i¼ 1‚ 2‚ . . . 2n: (9f)

The inequality conditions given in Theorem 3 can be easily solved through off-the-shelf convex opti-

mization algorithms, for example, using the LMI solvers provided in the MATLAB Robust Control

Toolbox (MathWorks, 2011).

In the Results section, after proving bistability through CRNT, we will apply the above result to

characterize the DA of the equilibrium points of the GAL system model devised in Section 3.

5. RESULTS

5.1. Structural bistability of the GAL regulatory network

Given the reaction diagram for the GAL regulatory network devised in Section 3 and assuming mass-

action kinetics, we have applied the CRNT algorithm to establish whether this regulatory network can

admit multiple equilibrium points. Recall that CRNT enables us to answer this question regardless of the

kinetic parameters. Once the network is defined in the CRNT Toolbox, we applied the Higher Deficiency

Analysis (Ellison, 1998) and Mass Injectivity Analysis (Craciun et al., 2005) routines. These analyses

confirm that the network can admit two steady states and provide us with a set of kinetic parameter values

(Table 2) for which the following steady states, xe1, xe2, exist:

xe1
¼ [63:86 63:86 1:0 1:0 1:12 8:64 21:91 1:0]T [lM]‚

xe2
¼ [126:01 126:01 6:67 2:25 1:12 7:39 62:86 2:25]T [lM]:

Note that the numerical values provided by the CRNT algorithm have been scaled to the micromolar

concentrations in order to be consistent with previously published experimental results and numerical

simulations.

With these values of the kinetic parameters, we have run in silico experiments to further validate the capability

of our model to replicate the persistent memory feature evidenced by Acar et al. (2005). The results of the

Table 2. Kinetic Parameter Values of System

Parameter Value Parameter Value

k1 7.353 · 10 - 3 [lM - 1h - 1] k11 86.79 · 10 - 3 [lM - 1h - 1]

k2 7.078 [h - 1] l1 1.0 [h - 1]

k3 28.282 [lM - 1h - 1] l2 1.0 [h - 1]

k4 0.1158 [h - 1] l3 1.0 [h - 1]

k5 12.03 [lM - 1h - 1] l4 1.0 [h - 1]

k6 3.741 [lM - 1h - 1] l5 1.0 [h - 1]

k7 31.67 [lh - 1] l6 1.0 [h - 1]

k8 1.0 [lh - 1] l7 1.0 [h - 1]

k9 86.79 [lh - 1] l8 1.0 [h - 1]

k10 9.639 [lM · h - 1]
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numerical simulations are shown in Figure 3. The preliminary phase where the cells are grown on different

media, in the presence and in the absence of galactose, is taken into account by setting different initial con-

centrations of the molecular species in the GAL regulatory network. In the simulated experiments, we set all the

initial concentrations at either one of the two equilibrium values xe1
and xe2

, and then we perturb the initial

concentration of one species, to check whether this perturbation leads the system to a different equilibrium point.

In Figure 3, we have reported the perturbation experiments on Gal80p and on the internalized galactose, to

illustrate how different species can have significantly different effects on the destabilization of the current

operative condition. Figure 3a shows that the changes in the initial concentration of Gal80p do not make Gal3p

active to switch to the high equilibrium condition; on the contrary, the initial concentration of internalized

galactose strongly affects the response of the system. Indeed, Figure 3b demonstrates that the response of the

system is bistable since the trajectories funnel into either one of the two steady states, depending on the initial

value of the state variables, thus featuring a persistent memory of the past history of the system.

5.2. Characterization of the DA

In the previous section, we have established that the proposed model can exhibit two distinct steady

states. Here, we want to characterize the DA of each of the equilibrium points, applying the analysis result

devised in Amato et al. (2007) and recalled in Section 4.2.

Note that, in principle, one could try to compute the DAs through numerical experiments, varying the

initial concentration of each species and simulating the system response to check which steady state each

trajectory converges to. However, it is clear that this method can be successful only for very low-order

systems, because the number of simulations increases combinatorially with the number of state variables.

Moreover, the computational approach can only be based on a gridding of the state space, thus generally

yielding very rough results.

Note that the two equilibrium points xe1, xe2 s 0; therefore, we have used two changes of variables,

before computing each DA estimate, as described in Amato et al. (2007). Then, we have defined the

polytopes surrounding each point and have applied the conditions of Theorem 3 to solve Problem 2 for each

polytope. In order to find the best possible estimates of the DAs, we have adopted a trial and error strategy,

by iteratively enlarging the polytopes along different dimensions, stopping the iterations when conditions

(9) could no longer be satisfied. The larger estimates obtained through this procedure are the boxes

FIG. 3. Evolution over time of

the concentration of activated

Gal3p starting from different initial

conditions of Gal80p (a) and of

internalized galactose (b). The

simulations show that trajectories

funnel into either one of the two

stable steady states (denoted by

dashed and solid lines for the low

and the high equilibrium, respec-

tively), depending on the initial

conditions. The system converges

at the low steady state, xe1
, regard-

less of the initial concentration of

Gal80p, whereas different initial

concentrations of internalized ga-

lactose lead the system to different

equilibrium conditions.

BISTABILITY ANALYSIS IN THE GAL NETWORK 157



P 1¼ [53:86‚ 73:86] · [62:86‚ 64:86] · [0:0‚ 4:0] · [0:9‚ 4:0] ·
· [1:02‚ 29:12] · [5:64‚ 8:74] · [21:61‚ 137:0] · [0:0‚ 1:5]‚

P 2¼ [84:01‚ 130:01] · [84:01‚ 126:31] · [6:57‚ 356:67] · [2:24‚ 4:15] ·
· [0:62‚ 10:12] · [4:39‚ 7:49] · [62:76‚ 62:96] · [2:0‚ 3:25]

for the low and high equilibrium point, respectively. The LMI conditions (9) have been implemented and

solved by means of the MATLAB Robust Control Toolbox (MathWorks, 2011).

To validate the DA estimates, we have run simulated experiments: as shown in Figure 4, initial con-

ditions inside the box P 1 (resp. P 2) generate responses that converge to the equilibrium point xe1 (resp.

xe2). Recall that the result of Theorem 3 is only sufficient; therefore, the computed polytopic regions are

conservative estimates of the actual DAs. Thus, if the initial condition is set to a point that is outside the

two boxes, we cannot predict where the trajectory will converge. Nevertheless, we have performed this

converse test, by making some numerical simulations with initial conditions outside, but close to the

frontiers of the boxes. These simulations, which in Figure 4 correspond to the dashed lines, show that each

of these trajectories escapes away from the nearby box and converges to the other equilibrium point.

Although further investigation would be needed to confirm this point, this seems to suggest that the

estimated domains are close to the actual DAs.

6. DISCUSSION

The dynamical behavior of the GAL system has been analyzed both numerically and analytically

by several models already proposed in the literature. However, the mathematical models devised so

far are not able to reproduce persistent memory of the past exposure to galactose, a key property of

the GAL regulatory network, which has been experimentally evidenced in Acar et al. (2005). By

exploiting CRNT to analyze the models based on mass-action kinetics, we have found that the model

cannot exhibit the persistent memory feature because the structure of the underlying reaction net-

works is such that they cannot admit multiple steady states, regardless of the values assigned to the

kinetic parameters.

FIG. 4. State response of the

concentrations of Gal4p (a) and

Gal2p (b) from perturbed initial

conditions belonging to the boxes

P 1 and P 2. Solid (dashed) lines

denote trajectories with initial con-

dition included in P 1 (resp. P 2),

converging to xe1
(resp. xe2

). Star

(circle) markers denote trajectories

with initial condition outside P 1

(resp. P 2), converging to xe2
(resp.

xe1
).
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Motivated by these findings, we have devised a novel model, still based on mass-action kinetics, of the

GAL regulatory network, under certain simplifying assumptions. Using CRNT again, we have performed a

structural bistability analysis of the proposed model, concluding that it can exhibit two steady states for

some values of the kinetic parameters. Using the values obtained through the CRNT toolbox, the model has

been simulated to replicate in silico the persistent-memory experiments conducted in Acar et al. (2005),

confirming the capability to exhibit such features. Additionally, we have tested alternative structures of the

reaction network, looking for simpler models; however, such tests have evidenced that further simplifi-

cation of the model entails significant changes in the global dynamical behavior and, in particular, loss of

bistability.

As determination of the multiple steady states is not sufficient to completely characterize the behavior of

a dynamical nonlinear system, we have subsequently tackled the problem of estimating the DAs of the

computed equilibrium points. Such a problem is hardly solvable for general nonlinear systems; however,

when dealing with the class of quadratic systems, it is possible to exploit the results devised by our group in

Amato et al. (2007). These conditions have enabled us to effectively compute two polytopic estimates of

the DAs of the two distinct equilibrium points found by means of CRNT. The computation of the DAs is a

key issue for a quantitative characterization of the behavior of a biological system; indeed, the DA of an

equilibrium point provides valuable information about the capability of the system to adapt to exogenous

perturbations or transcriptional noise.

The results reported in the present article provide further insights into the functioning of the GAL

regulatory system, and an interesting development would be the experimental validation of the DA esti-

mated on the basis of the proposed mathematical model.

On the other hand, we believe that the main contribution of this work consists in the introduction of a

novel approach to the analysis of some system-level properties in biological systems such as persistent

memory, switch-like biochemical response, and irreversible cell differentiation, which are based on the

capability of the underlying biomolecular regulatory networks to exhibit multiple steady states. We surmise

that the proposed approach, consisting of (a) the analysis for structural multistability of the reaction

network and (b) the estimation of the DAs of the equilibrium points, which has been successfully applied to

the analysis of the well-known GAL system in yeast, can be effectively generalized to other regulatory,

signaling, and metabolic networks.

7. APPENDIX

7.1. Model developed in the present work

The GAL regulatory network model proposed in the present work comprises the following set of

reactions:

G3þGi Ð G3a ! ;
G3a‚80 ! ;
G4‚80þG3a Ð G3a‚80þG4

GeþG2 ! GiþG2þG3

From these reactions, assuming mass action kinetics, we can derive the complete dynamical model

equations as follows:

_G3¼ k9G4� k1G3Giþ k2G3a� l1G3 (A:1a)
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_Gi¼ k11GeG2� k1G3Giþ k2G3a� l8Gi (A:1b)

_G3a¼ k1G3Gi� k2G3a� k5G4‚80G3aþ k6G3a‚80G4� l3G3a (A:1c)

_G4¼ k10� k3G4G80þ k4G4‚80þ k5G4‚80G3a� k6G3a‚80G4� l4G4 (A:1d)

_G80¼ � k3G4G80þ k4G4‚80þ k7G4� l2G80 (A:1e)

_G4‚80¼ k3G4G80� k4G4‚80� k5G4‚80G3aþ k6G3a‚80G4� l6G4‚80 (A:1f)

_G3a‚80¼ k5G4‚80G3a� k6G3a‚80G4� l7G3a‚80 (A:1g)

_G2¼ k8G4� l5G2 (A:1h)

Ge¼ const (A:1i)

7.2. Smidtas’ and Kulkarni’s models

The detailed model proposed in Smidtas et al. (2006) includes the following equations:

c · Gal4p=DNA! c · Gal4p=DNAþGal3pþGal80p (A:2a)

Gal4p=DNAþGal80pÐ Gal80p=Gal4p=DNA (A:2b)

Gal3pþGal80pÐ Gal3p=Gal80p (A:2c)

Gal3p=Gal80pþGalactose! Glactose=Gal3p=Gal80p (A:2d)

Gal3p! ; (A:2e)

Gal80p! ; (A:2f)

In the presence of galactose, Gal3p, Gal80p binds to galactose, thus decreasing the binding of Gal80p to

Gal4p. Reduction of Gal80p activates Gal4p and induces transcription of the GAL3 and GAL80 genes. This

closes the feedback loop, and Gal3p and Gal80p shift the equilibrium back towards Gal4p inactivation

(Gal4p/80p). By means of CRNT, we can obtain that, for arbitrary kinetics (subject to very weak con-

straints), the corresponding differential equations cannot admit a steady state at which all species con-

centrations are positive, nor can they admit a cyclic composition trajectory that passes through a point at

which all species concentrations are positive. In particular, there is no set of rate constants for which the

resulting mass action system can admit two distinct strictly positive steady states that are stoichiometrically

compatible or a degenerate steady state.

Kulkarni et al. (2010) tested the dynamical nonlinear quadratic model proposed in Smidtas et al. (2006)

and derived an ODE model, including more chemical reactions:

G4Ð G4� þGAL3=80 (A:3a)

RþGalÐ G4� þBR (A:3b)

G4 � þGAL3=80Ð R (A:3c)

G4� ! ; (A:3d)

GAL3=80! ; (A:3e)

R! ; (A:3f)

BR! ; (A:3g)

Gal! ; (A:3h)

where GAL3/80 is the complex in which are lumped Gal3p and Gal80p; R is the inactive complex formed

by Gal3p, Gal80p, and Gal4p; BR is the bound receptor comprising Gal3p, Gal80p, and galactose; and G4*

represents the activated transcriptional activator Gal4p protein. The total Gal4p concentration is assumed to

be constant during the GAL response.

By means of CRNT, we can still obtain that, for arbitrary kinetics (subject to very weak constraints), the

corresponding system cannot admit a steady state at which all species concentrations are positive, nor can

they admit a cyclic composition trajectory that passes through a point at which all species concentrations

are positive. In particular, there is no set of rate constants for which the resulting mass action system can

admit two distinct strictly positive steady states that are stoichiometrically compatible or a degenerate

steady state.
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